Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.327
Filtrar
1.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39283311

RESUMO

Autophagy plays a crucial role in cancer cell survival by facilitating the elimination of detrimental cellular components and the recycling of nutrients. Understanding the molecular regulation of autophagy is critical for developing interventional approaches for cancer therapy. In this study, we report that migfilin, a focal adhesion protein, plays a novel role in promoting autophagy by increasing autophagosome-lysosome fusion. We found that migfilin is associated with SNAP29 and Vamp8, thereby facilitating Stx17-SNAP29-Vamp8 SNARE complex assembly. Depletion of migfilin disrupted the formation of the SNAP29-mediated SNARE complex, which consequently blocked the autophagosome-lysosome fusion, ultimately suppressing cancer cell growth. Restoration of the SNARE complex formation rescued migfilin-deficiency-induced autophagic flux defects. Finally, we found depletion of migfilin inhibited cancer cell proliferation. SNARE complex reassembly successfully reversed migfilin-deficiency-induced inhibition of cancer cell growth. Taken together, our study uncovers a new function of migfilin as an autophagy-regulatory protein and suggests that targeting the migfilin-SNARE assembly could provide a promising therapeutic approach to alleviate cancer progression.


Assuntos
Autofagia , Moléculas de Adesão Celular , Proliferação de Células , Lisossomos , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Humanos , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Lisossomos/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Autofagossomos/metabolismo , Células HeLa , Linhagem Celular Tumoral , Ligação Proteica , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Fusão de Membrana , Proteínas Qa-SNARE
2.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273545

RESUMO

Cytopathology induced by methamphetamine (METH) is reminiscent of degenerative disorders such as Parkinson's disease, and it is characterized by membrane organelles arranged in tubulo-vesicular structures. These areas, appearing as clusters of vesicles, have never been defined concerning the presence of specific organelles. Therefore, the present study aimed to identify the relative and absolute area of specific membrane-bound organelles following a moderate dose (100 µM) of METH administered to catecholamine-containing PC12 cells. Organelles and antigens were detected by immunofluorescence, and they were further quantified by plain electron microscopy and in situ stoichiometry. This analysis indicated an increase in autophagosomes and damaged mitochondria along with a decrease in lysosomes and healthy mitochondria. Following METH, a severe dissipation of hallmark proteins from their own vesicles was measured. In fact, the amounts of LC3 and p62 were reduced within autophagy vacuoles compared with the whole cytosol. Similarly, LAMP1 and Cathepsin-D within lysosomes were reduced. These findings suggest a loss of compartmentalization and confirm a decrease in the competence of cell clearing organelles during catecholamine degeneration. Such cell entropy is consistent with a loss of energy stores, which routinely govern appropriate subcellular compartmentalization.


Assuntos
Autofagossomos , Lisossomos , Metanfetamina , Metanfetamina/farmacologia , Animais , Células PC12 , Ratos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Catepsina D/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
3.
Dev Cell ; 59(17): 2273-2274, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255771

RESUMO

In this issue of Developmental Cell, Jiang et al. report that the Arabidopsis HOPS tethering complex subunit VPS41 acts to catalyze the formation of a degradation pathway composed of a hybrid of autophagosomes and late endosomes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autofagossomos , Autofagia , Endossomos , Vacúolos , Endossomos/metabolismo , Vacúolos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética
4.
Nat Commun ; 15(1): 7743, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39231962

RESUMO

Autophagy is a finely orchestrated process required for the lysosomal degradation of cytosolic components. The final degradation step is essential for clearing autophagic cargo and recycling macromolecules. Using a CRISPR/Cas9-based screen, we identify RNAseK, a highly conserved transmembrane protein, as a regulator of autophagosome degradation. Analyses of RNAseK knockout cells reveal that, while autophagosome maturation is intact, cargo degradation is severely disrupted. Importantly, lysosomal protease activity and acidification remain intact in the absence of RNAseK suggesting a specificity to autolysosome degradation. Analyses of lysosome fractions show reduced levels of a subset of hydrolases in the absence of RNAseK. Of these, the knockdown of PLD3 leads to a defect in autophagosome clearance. Furthermore, the lysosomal fraction of RNAseK-depleted cells exhibits an accumulation of the ESCRT-III complex component, VPS4a, which is required for the lysosomal targeting of PLD3. Altogether, here we identify a lysosomal hydrolase delivery pathway required for efficient autolysosome degradation.


Assuntos
Autofagossomos , Autofagia , Complexos Endossomais de Distribuição Requeridos para Transporte , Lisossomos , Lisossomos/metabolismo , Humanos , Autofagossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Sistemas CRISPR-Cas , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Hidrolases/metabolismo , Hidrolases/genética , Células HeLa , Células HEK293
5.
Cell Rep ; 43(8): 114619, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39128005

RESUMO

Autophagosome formation initiated on the endoplasmic reticulum (ER)-associated omegasome requires LC3. Translational regulation of LC3 biosynthesis is unexplored. Here we demonstrate that LC3 mRNA is recruited to omegasomes by directly binding to the ER transmembrane Sigma-1 receptor (S1R). Cell-based and in vitro reconstitution experiments show that S1R interacts with the 3' UTR of LC3 mRNA and ribosomes to promote LC3 translation. Strikingly, the 3' UTR of LC3 is also required for LC3 protein lipidation, thereby linking the mRNA-3' UTR to LC3 function. An autophagy-defective S1R mutant responsible for amyotrophic lateral sclerosis cannot bind LC3 mRNA or induce LC3 translation. We propose a model wherein S1R de-represses LC3 mRNA via its 3' UTR at the ER, enabling LC3 biosynthesis and lipidation. Because several other LC3-related proteins use the same mechanism, our data reveal a conserved pathway for localized translation essential for autophagosome biogenesis with insights illuminating the molecular basis of a neurodegenerative disease.


Assuntos
Regiões 3' não Traduzidas , Autofagia , Retículo Endoplasmático , Proteínas Associadas aos Microtúbulos , Biossíntese de Proteínas , RNA Mensageiro , Receptores sigma , Receptor Sigma-1 , Receptores sigma/metabolismo , Receptores sigma/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Retículo Endoplasmático/metabolismo , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regiões 3' não Traduzidas/genética , Ribossomos/metabolismo , Animais , Autofagossomos/metabolismo , Células HeLa
6.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125836

RESUMO

Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to autophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms, we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and anti-inflammatory rosuvastatin (RST) in secondary microglial cultures with or without bafilomycin A1 (BAF) pretreatment, an antibiotic that potently inhibits autophagosome fusion with lysosomes. The levels of the microglia marker protein Iba1 and the autophagosome marker protein p62/SQSTM1 were quantified by Western blots, while the number of p62/SQSTM1 immunoreactive puncta was quantitatively analyzed using fluorescent immunocytochemistry. BAF pretreatment hampered microglial survival and decreased Iba1 protein level under all culturing conditions. Cytoplasmic p62/SQSTM1 level was increased in cultures treated with LPS+RST but reversed markedly when BAF+LPS+RST were applied together. Furthermore, the number of p62/SQSTM1 immunoreactive autophagosome puncta was significantly reduced when RST was used but increased significantly in BAF+RST-treated cultures, indicating a modulation of autophagic flux through reduction in p62/SQSTM1 degradation. These findings collectively indicate that the cytoplasmic level of p62/SQSTM1 protein and autophagocytotic flux are differentially regulated, regardless of pro- or anti-inflammatory state, and provide context for understanding the role of autophagy in microglial function in various inflammatory settings.


Assuntos
Autofagossomos , Autofagia , Lipopolissacarídeos , Macrolídeos , Microglia , Proteína Sequestossoma-1 , Animais , Proteína Sequestossoma-1/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Macrolídeos/farmacologia , Autofagia/efeitos dos fármacos , Ratos , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Células Cultivadas , Inflamação/metabolismo , Biomarcadores/metabolismo
7.
EMBO Rep ; 25(9): 3789-3811, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39152217

RESUMO

One of the key events in autophagy is the formation of a double-membrane phagophore, and many regulatory mechanisms underpinning this remain under investigation. WIPI2b is among the first proteins to be recruited to the phagophore and is essential for stimulating autophagy flux by recruiting the ATG12-ATG5-ATG16L1 complex, driving LC3 and GABARAP lipidation. Here, we set out to investigate how WIPI2b function is regulated by phosphorylation. We studied two phosphorylation sites on WIPI2b, S68 and S284. Phosphorylation at these sites plays distinct roles, regulating WIPI2b's association with ATG16L1 and the phagophore, respectively. We confirm WIPI2b is a novel ULK1 substrate, validated by the detection of endogenous phosphorylation at S284. Notably, S284 is situated within an 18-amino acid stretch, which, when in contact with liposomes, forms an amphipathic helix. Phosphorylation at S284 disrupts the formation of the amphipathic helix, hindering the association of WIPI2b with membranes and autophagosome formation. Understanding these intricacies in the regulatory mechanisms governing WIPI2b's association with its interacting partners and membranes, holds the potential to shed light on these complex processes, integral to phagophore biogenesis.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Autofagia , Proteínas de Membrana , Humanos , Autofagossomos/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas de Transporte/metabolismo , Células HEK293 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Ligação Proteica
8.
Adv Sci (Weinh) ; 11(31): e2308307, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166458

RESUMO

Aloperine (ALO), a quinolizidine-type alkaloid isolated from a natural Chinese herb, has shown promising antitumor effects. Nevertheless, its common mechanism of action and specific target remain elusive. Here, it is demonstrated that ALO inhibits the proliferation and migration of non-small cell lung cancer cell lines in vitro and the tumor development in several mouse tumor models in vivo. Mechanistically, ALO inhibits the fusion of autophagosomes with lysosomes and the autophagic flux, leading to the accumulation of sequestosome-1 (SQSTM1) and production of reactive oxygen species (ROS), thereby inducing tumor cell apoptosis and preventing tumor growth. Knockdown of SQSTM1 in cells inhibits ROS production and reverses ALO-induced cell apoptosis. Furthermore, VPS4A is identified as a direct target of ALO, and the amino acids F153 and D263 of VPS4A are confirmed as the binding sites for ALO. Knockout of VPS4A in H1299 cells demonstrates a similar biological effect as ALO treatment. Additionally, ALO enhances the efficacy of the anti-PD-L1/TGF-ß bispecific antibody in inhibiting LLC-derived subcutaneous tumor models. Thus, ALO is first identified as a novel late-stage autophagy inhibitor that triggers tumor cell death by targeting VPS4A.


Assuntos
Autofagossomos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Lisossomos , Quinolizidinas , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Linhagem Celular Tumoral , Quinolizidinas/farmacologia , Modelos Animais de Doenças , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Progressão da Doença , Proliferação de Células/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos
9.
Dev Cell ; 59(17): 2287-2301.e6, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39111309

RESUMO

Autophagy is a universal degradation system in eukaryotic cells. In plants, although autophagosome biogenesis has been extensively studied, the mechanism of how autophagosomes are transported to the vacuole for degradation remains largely unexplored. In this study, we demonstrated that upon autophagy induction, Arabidopsis homotypic fusion and protein sorting (HOPS) subunit VPS41 converts first from condensates to puncta, then to ring-like structures, termed VPS41-associated phagic vacuoles (VAPVs), which enclose autophagy-related gene (ATG)8s for vacuolar degradation. This process is initiated by ADP ribosylation factor (ARF)-like GTPases ARLA1s and occurs concurrently with autophagy progression through coupling with the synaptic-soluble N-ethylmaleimide-sensitive factor attachment protein rmleceptor (SNARE) proteins. Unlike in other eukaryotes, autophagy degradation in Arabidopsis is largely independent of the RAB7 pathway. By contrast, dysfunction in the condensates-to-VAPVs conversion process impairs autophagosome structure and disrupts their vacuolar transport, leading to a significant reduction in autophagic flux and plant survival rate. Our findings suggest that the conversion pathway might be an integral part of the autophagy program unique to plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autofagossomos , Autofagia , Vacúolos , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Vacúolos/metabolismo , Autofagossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , proteínas de unión al GTP Rab7 , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética
10.
Nat Commun ; 15(1): 7194, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169022

RESUMO

Autophagy is a highly conserved process from yeast to mammals in which intracellular materials are engulfed by a double-membrane organelle called autophagosome and degrading materials by fusing with the lysosome. The process of autophagy is regulated by sequential recruitment and function of autophagy-related (Atg) proteins. Genetic hierarchical analyses show that the ULK1 complex comprised of ULK1-FIP200-ATG13-ATG101 translocating from the cytosol to autophagosome formation sites as a most upstream ATG factor; this translocation is critical in autophagy initiation. However, how this translocation occurs remains unclear. Here, we show that ULK1 is palmitoylated by palmitoyltransferase ZDHHC13 and translocated to the autophagosome formation site upon autophagy induction. We find that the ULK1 palmitoylation is required for autophagy initiation. Moreover, the ULK1 palmitoylated enhances the phosphorylation of ATG14L, which is required for activating PI3-Kinase and producing phosphatidylinositol 3-phosphate, one of the autophagosome membrane's lipids. Our results reveal how the most upstream ULK1 complex translocates to the autophagosome formation sites during autophagy.


Assuntos
Aciltransferases , Autofagossomos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Autofagia , Peptídeos e Proteínas de Sinalização Intracelular , Lipoilação , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Autofagia/fisiologia , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Aciltransferases/metabolismo , Aciltransferases/genética , Autofagossomos/metabolismo , Células HEK293 , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Transporte Proteico , Proteínas de Transporte Vesicular
11.
Parasit Vectors ; 17(1): 347, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160562

RESUMO

BACKGROUND: The encystation of Acanthamoeba castellanii has important ecological and medical significance. Blocking encystation is the key to preventing transmission and curing infections caused by A. castellanii. The formation of autophagosomes is one of the most important changes that occur during the encystation of Acanthamoeba. Our previous studies have shown that the heat shock protein 20 of A. castellanii (Ac-HSP20) is involved in its encystation. This study aimed to determine the role and mechanism of Ac-HSP20 in regulating autophagy involved in the encystation of A. castellanii. METHODS: Immunofluorescence assay, western blotting and transmission electron microscopy were used to analyze the dynamic changes in autophagy during the initiation and continuation of encystation. The knockdown of Ac-HSP20 was performed to clarify its regulation of encystation and autophagy and to elucidate the molecular mechanism by which Ac-HSP20 participates in autophagy to promote cyst maturation. RESULTS: The encystation rates and autophagosomes were significantly decreased by treatment with the autophagy inhibitor 3-MA. The autophagy marker LC3B and autophagic lysosomes increased with the induced duration of encystation and reached the maximum at 48 h. The encystation rate, LC3B expression and autophagosomes decreased when Ac-HSP20 was knocked down by siRNA transfection. In addition, the expression levels of Ac-HSP20 and LC3B increased and the expressions of p-AKT and p-mTOR decreased after 48 h of encystation without knockdown. However, the expressions of p-AKT and p-mTOR increased while the expression of LC3B decreased under the knockdown of Ac-HSP20. Furthermore, the protein expression of LC3B increased when the PI3K/AKT/mTOR signaling pathway was inhibited but decreased when the pathway was activated. CONCLUSIONS: The results demonstrated that autophagy is positively correlated with the encystation of A. castellanii, and Ac-HSP20 regulates autophagy to maintain the homeostasis of A. castellanii by inhibiting the PI3K /AKT /mTOR signaling pathway, thus promoting the maturation and stability of encystation.


Assuntos
Acanthamoeba castellanii , Autofagia , Proteínas de Choque Térmico HSP20 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Acanthamoeba castellanii/fisiologia , Acanthamoeba castellanii/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico HSP20/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Encistamento de Parasitas/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Autofagossomos/metabolismo
12.
J Cell Sci ; 137(15)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39145464

RESUMO

Autophagy refers to a set of degradative mechanisms whereby cytoplasmic contents are targeted to the lysosome. This is best described for macroautophagy, where a double-membrane compartment (autophagosome) is generated to engulf cytoplasmic contents. Autophagosomes are decorated with ubiquitin-like ATG8 molecules (ATG8s), which are recruited through covalent lipidation, catalysed by the E3-ligase-like ATG16L1 complex. LC3 proteins are ATG8 family members that are often used as a marker for autophagosomes. In contrast to canonical macroautophagy, conjugation of ATG8s to single membranes (CASM) describes a group of non-canonical autophagy processes in which ATG8s are targeted to pre-existing single-membrane compartments. CASM occurs in response to disrupted intracellular pH gradients, when the V-ATPase proton pump recruits ATG16L1 in a process called V-ATPase-ATG16L1-induced LC3 lipidation (VAIL). Recent work has demonstrated a parallel, alternative axis for CASM induction, triggered when the membrane recruitment factor TECPR1 recognises sphingomyelin exposed on the cytosolic face of a membrane and forms an alternative E3-ligase-like complex. This sphingomyelin-TECPR1-induced LC3 lipidation (STIL) is independent of the V-ATPase and ATG16L1. In light of these discoveries, this Cell Science at a Glance article summarises these two mechanisms of CASM to highlight how they differ from canonical macroautophagy, and from each other.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Humanos , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Animais , Autofagossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo
13.
ACS Nano ; 18(36): 24872-24897, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39197041

RESUMO

Potential exposure to cobalt nanoparticles (CoNPs) occurs in various fields, including hard alloy industrial production, the increasing use of new energy lithium-ion batteries, and millions of patients with metal-on-metal joint prostheses. Evidence from human, animal, and in vitro experiments suggests a close relationship between CoNPs and neurotoxicity. However, a systematic assessment of central nervous system (CNS) impairment due to CoNPs exposure and the underlying molecular mechanisms is lacking. In this study, we found that CoNPs induced neurodegenerative damage both in vivo and in vitro, including cognitive impairment, ß-amyloid deposition and Tau hyperphosphorylation. CoNPs promoted the formation of autophagosomes and impeding autophagosomal-lysosomal fusion in vivo and in vitro, leading to toxic protein accumulation. Moreover, CoNPs exposure reduced the level of transcription factor EB (TFEB) and the abundance of lysosome, causing a blockage in autophagosomal-lysosomal fusion. Interestingly, overexpression of long noncoding RNA NR_030777 mitigated CoNPs-induced neurodegenerative damage in both in vivo and in vitro models. Fluorescence in situ hybridization assay revealed that NR_030777 directly binds and stabilizes TFEB mRNA, alleviating the blockage of autophagosomal-lysosomal fusion and ultimately restoring neurodegeneration induced by CoNPs in vivo and in vitro. In summary, our study demonstrates that autophagic dysfunction is the main toxic mechanism of neurodegeneration upon CoNPs exposure and NR_030777 plays a crucial role in CoNPs-induced autophagic dysfunction. Additionally, the proposed adverse outcome pathway contributes to a better understanding of CNS toxicity assessment of CoNPs.


Assuntos
Autofagossomos , Cobalto , Lisossomos , Nanopartículas Metálicas , RNA Longo não Codificante , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Cobalto/química , Cobalto/farmacologia , Animais , Nanopartículas Metálicas/química , Humanos , Camundongos , Masculino , Autofagia/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/induzido quimicamente
14.
Methods Mol Biol ; 2845: 15-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115654

RESUMO

The selective degradation of nuclear components via autophagy, termed nucleophagy, is an essential process observed from yeasts to mammals and crucial for maintaining nucleus homeostasis and regulating nucleus functions. In the budding yeast Saccharomyces cerevisiae, nucleophagy occurs in two different manners: one involves autophagosome formation for the sequestration and vacuolar transport of nucleus-derived vesicles (NDVs), and the other proceeds with the invagination of the vacuolar membrane for the uptake of NDVs into the vacuole, termed macronucleophagy and micronucleophagy, respectively. This chapter describes methods to analyze and quantify activities of these nucleophagy pathways in yeast.


Assuntos
Autofagia , Núcleo Celular , Saccharomyces cerevisiae , Vacúolos , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Núcleo Celular/metabolismo , Autofagia/fisiologia , Autofagossomos/metabolismo
15.
Methods Mol Biol ; 2845: 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115653

RESUMO

Selective removal of excess or damaged mitochondria is an evolutionarily conserved process that contributes to mitochondrial quality and quantity control. This catabolic event relies on autophagy, a membrane trafficking system that sequesters cytoplasmic constituents into double membrane-bound autophagosomes and delivers them to lysosomes (vacuoles in yeast) for hydrolytic degradation and is thus termed mitophagy. Dysregulation of mitophagy is associated with various diseases, highlighting its physiological relevance. In budding yeast, the pro-mitophagic single-pass membrane protein Atg32 is upregulated under prolonged respiration or nutrient starvation, anchored on the surface of mitochondria, and activated to recruit the autophagy machinery for the formation of autophagosomes surrounding mitochondria. In this chapter, we provide protocols to assess Atg32-mediated mitophagy using fluorescence microscopy and immunoblotting.


Assuntos
Microscopia de Fluorescência , Mitocôndrias , Mitofagia , Saccharomycetales , Microscopia de Fluorescência/métodos , Saccharomycetales/metabolismo , Mitocôndrias/metabolismo , Immunoblotting/métodos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Autofagia/fisiologia , Autofagossomos/metabolismo , Receptores Citoplasmáticos e Nucleares
16.
Methods Mol Biol ; 2841: 189-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115778

RESUMO

Macroautophagy, hereafter autophagy, plays a crucial role in the degradation of harmful or unwanted cellular components through a double-membrane autophagosome. Upon autophagosome fusion with the vacuole, the degraded materials are subsequently recycled to generate macromolecules, contributing to cellular homeostasis, metabolism, and stress tolerance in plants. A hallmark during autophagy is the formation of isolation membrane structure named as phagophore, which undergoes multiple steps to become as a complete double-membrane autophagosome. Methodologies have been developed in recent years to observe and quantify the autophagic process, which greatly advance knowledge of autophagosome biogenesis in plant cells. In this chapter, we will introduce two methods to dissect the autophagosome-related structures in the Arabidopsis plant cells, including the correlative light and electron microscopy, to map the ultrastructural feature of autophagosomal structures, and time-lapse imaging to monitor the temporal recruitment of autophagy machinery during autophagosome formation.


Assuntos
Arabidopsis , Autofagossomos , Autofagia , Células Vegetais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Autofagia/fisiologia , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Imagem com Lapso de Tempo/métodos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Microscopia Eletrônica/métodos
17.
Methods Mol Biol ; 2841: 215-224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115781

RESUMO

Macroautophagy/autophagy is a highly conserved process for the degradation of cellular components and plays an essential role in cellular homeostasis maintenance. During autophagy, specialized double-membrane vesicles known as autophagosomes are formed and sequester cytoplasmic cargoes and deliver them to lysosomes or vacuoles for breakdown. Central to this process are autophagy-related (ATG) proteins, with the ATG9-the only integral membrane protein in this core machinery-playing a central role in mediating autophagosome formation. Recent years have witnessed the maturation of cryo-electron microscopy (cryo-EM) and single-particle analysis into powerful tools for high-resolution structural determination of protein complexes. These advancements have significantly deepened our understanding of the intricate molecular mechanisms underlying autophagosome biogenesis. In this study, we present a protocol detailing the acquisition of the three-dimensional structure of ATG9 from Arabidopsis thaliana. The structural resolution achieved 7.8 Å determined by single-particle cryo-electron microscopy (cryo-EM).


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Relacionadas à Autofagia , Microscopia Crioeletrônica , Microscopia Crioeletrônica/métodos , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestrutura , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Autofagia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura
18.
Cells ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39120287

RESUMO

Autophagy engulfs cellular components in double-membrane-bound autophagosomes for clearance and recycling after fusion with lysosomes. Thus, autophagy is a key process for maintaining proteostasis and a powerful cell-intrinsic host defense mechanism, protecting cells against pathogens by targeting them through a specific form of selective autophagy known as xenophagy. In this context, ubiquitination acts as a signal of recognition of the cargoes for autophagic receptors, which direct them towards autophagosomes for subsequent breakdown. Nevertheless, autophagy can carry out a dual role since numerous viruses including members of the Orthoherpesviridae family can either inhibit or exploit autophagy for its own benefit and to replicate within host cells. There is growing evidence that Herpes simplex virus type 1 (HSV-1), a highly prevalent human pathogen that infects epidermal keratinocytes and sensitive neurons, is capable of negatively modulating autophagy. Since the effects of HSV-1 infection on autophagic receptors have been poorly explored, this study aims to understand the consequences of HSV-1 productive infection on the levels of the major autophagic receptors involved in xenophagy, key proteins in the recruitment of intracellular pathogens into autophagosomes. We found that productive HSV-1 infection in human neuroglioma cells and keratinocytes causes a reduction in the total levels of Ub conjugates and decreases protein levels of autophagic receptors, including SQSTM1/p62, OPTN1, NBR1, and NDP52, a phenotype that is also accompanied by reduced levels of LC3-I and LC3-II, which interact directly with autophagic receptors. Mechanistically, we show these phenotypes are the result of xenophagy activation in the early stages of productive HSV-1 infection to limit virus replication, thereby reducing progeny HSV-1 yield. Additionally, we found that the removal of the tegument HSV-1 protein US11, a recognized viral factor that counteracts autophagy in host cells, enhances the clearance of autophagic receptors, with a significant reduction in the progeny HSV-1 yield. Moreover, the removal of US11 increases the ubiquitination of SQSTM1/p62, indicating that US11 slows down the autophagy turnover of autophagy receptors. Overall, our findings suggest that xenophagy is a potent host defense against HSV-1 replication and reveals the role of the autophagic receptors in the delivery of HSV-1 to clearance via xenophagy.


Assuntos
Autofagia , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiologia , Herpes Simples/virologia , Herpes Simples/imunologia , Herpes Simples/metabolismo , Macroautofagia , Replicação Viral , Autofagossomos/metabolismo , Queratinócitos/virologia , Queratinócitos/metabolismo , Proteína Sequestossoma-1/metabolismo , Interações Hospedeiro-Patógeno , Animais , Proteínas Nucleares , Proteínas de Ciclo Celular , Proteínas de Membrana Transportadoras
19.
Curr Microbiol ; 81(10): 315, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162852

RESUMO

We previously reported autophagy-mediated degradation of nuclei, nucleophagy, in the filamentous fungus Aspergillus oryzae. In this study, we examined whether nuclei are degraded as a whole. We generated A. oryzae mutants deleted for orthologs of Saccharomyces cerevisiae YPT7 and ATG15 which are required, respectively, for autophagosome-vacuole fusion and vacuolar degradation of autophagic bodies. Degradation of histone H2B-EGFP under starvation conditions was greatly decreased in the ΔAoypt7 and ΔAoatg15 mutants. Fluorescence and electron microscopic observations showed that autophagosomes and autophagic bodies surrounding the entire nuclei were accumulated in the cytoplasm of ΔAoypt7 and the vacuole of ΔAoatg15, respectively. These results indicate that nuclei are engulfed in the autophagosomes as a whole and transported/released into the vacuolar lumen where they are degraded.


Assuntos
Aspergillus oryzae , Autofagossomos , Proteínas Fúngicas , Vacúolos , Vacúolos/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Autofagossomos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Proteínas rab de Ligação ao GTP
20.
Am J Reprod Immunol ; 92(2): e13903, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39177075

RESUMO

INTRODUCTION: To explore the mechanisms of labor by investigating the autophagy of placental and fetal membranes tissue in normal pregnant women. METHODS: Placenta and fetal membranes were collected from women with singleton pregnancies without any medical complications and from women who delivered vaginally (labor-initiated group; L group) or by caesarean section (labor-noninitiated group; NL group). Autophagosomes were observed by transmission electron microscopy (TEM). Immunofluorescence and western blotting (WB) were used to detect protein levels of the autophagy markers LC3A and LC3B. TEM, immunohistochemistry (IHC), and WB were used to compare autophagy in different parts of the placenta and fetal membranes in the L and NL groups. The expression of LC3B/LC3A, ROCK1, and ROCK2 in the placenta of nonpregnant and pregnant rats was detected by WB and IHC. RESULTS: TEM and IHC results showed an increase in the number of autophagosomes and autophagic lysosomes in the L group, and WB results indicated an increase in the LC3B/A ratio between the placenta and fetal membranes in the L group. Autophagy was significantly increased on the maternal side of the placenta in the L group, and the level of autophagy became higher near rupture in the fetal membranes and near the point where the umbilical cord joins the placenta in the L group. The LC3B/A ratio increased and ROCK1 and ROCK2 levels decreased in postnatal rats. DISCUSSION: Autophagy can occur in the placenta and fetal membranes and its activity is higher at the onset of labor, suggesting a role in labor.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos , Placenta , Quinases Associadas a rho , Feminino , Gravidez , Humanos , Autofagia/fisiologia , Placenta/metabolismo , Placenta/ultraestrutura , Quinases Associadas a rho/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Ratos , Adulto , Início do Trabalho de Parto , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Membranas Extraembrionárias/metabolismo , Trabalho de Parto/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA