Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.703
Filtrar
1.
Food Res Int ; 186: 114364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729726

RESUMO

With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 µm), and fluorescent microscopy. The perforated wheat grains, as well as non-perforated grains as controls, were then incubated with selected microorganisms (Bacillus megaterium Myk145 and B. licheniformis MA572) or with the enzyme ZHD518. The two bacilli strains were not able to significantly reduce the amount of zearalenone (ZEA), neither in the perforated nor in the non-perforated wheat kernels in comparison with the controls. In contrast, the enzyme ZHD518 significantly reduced the initial concentration of ZEA in the perforated and non-perforated wheat kernels in comparison with controls. Moreover, in vitro incubation of ZHD518 with ZEA showed the presence of two non-estrogenic degradation products of ZEA: hydrolysed zearalenone (HZEA) and decarboxylated hydrolysed ZEA (DHZEA). In addition, the physical pre-treatment led to a reduction in detectable mycotoxin contents in a subset of samples. Overall, this study emphasizes the promising potential of combining physical pre-treatment approaches with biological decontamination solutions in order to address the associated problem of mycotoxin contamination and food waste reduction.


Assuntos
Contaminação de Alimentos , Triticum , Zearalenona , Zearalenona/análise , Triticum/química , Triticum/microbiologia , Contaminação de Alimentos/análise , Bacillus megaterium/enzimologia , Descontaminação/métodos , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Bacillus/enzimologia , Sementes/química , Sementes/microbiologia , Microscopia Eletrônica de Varredura
2.
Sci Rep ; 14(1): 10224, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702368

RESUMO

The biosynthesis of nanoparticles offers numerous advantages, including ease of production, cost-effectiveness, and environmental friendliness. In our research, we focused on the bioformation of silver nanoparticles (AgNPs) using a combination of Lactobacillus sp. and Bacillus sp. growth. These AgNPs were then evaluated for their biological activities against multidrug-resistant bacteria. Our study involved the isolation of Bacillus sp. from soil samples and Lactobacillus sp. from raw milk in Dhamar Governorate, Yemen. The synthesized AgNPs were characterized using various techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The antibacterial properties of the AgNPs were assessed using the modified Kirby Bauer disk diffusion method against multidrug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Our results demonstrated that the use of a bacterial mixture for biosynthesis led to faster and more effective production of AgNPs compared to using a single bacterium. The UV-visible spectra showed characteristic peaks indicative of silver nanoparticles, while XRD analysis confirmed the crystalline nature of the synthesized particles. FTIR results suggested the presence of capping proteins that contribute to the synthesis and stability of AgNPs. Furthermore, TEM images revealed the size and morphology of the AgNPs, which exhibited spherical shapes with sizes ranging from 4.65 to 22.8 nm. Notably, the antibacterial activity of the AgNPs was found to be more pronounced against Staphylococcus aureus than Pseudomonas aeruginosa, indicating the potential of these nanoparticles as effective antimicrobial agents. Overall, our study highlights the promising antibacterial properties of AgNPs synthesized by a mixture of Lactobacillus sp. and Bacillus sp. growth. Further research is warranted to explore the potential of utilizing different bacterial combinations for enhanced nanoparticle synthesis.


Assuntos
Antibacterianos , Bacillus , Lactobacillus , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Prata/química , Prata/farmacologia , Bacillus/metabolismo , Lactobacillus/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Physiol Plant ; 176(3): e14325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715548

RESUMO

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Assuntos
Bacillus , Frutanos , Doenças das Plantas , Solanum lycopersicum , Triticum , Frutanos/metabolismo , Triticum/microbiologia , Triticum/metabolismo , Triticum/imunologia , Triticum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Bacillus/fisiologia , Botrytis , Imunidade Vegetal , Resistência à Doença , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/imunologia , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Sementes/imunologia , Ascomicetos
4.
Braz J Biol ; 84: e281448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695423

RESUMO

Bacterial contamination causes irreparable losses in the performance of alcoholic fermentation. Antibiotics are used to control these microorganisms, but they generate residues and cause microbial resistance. Today the only commercial product used by the mills is hops, but it is very expensive. As an alternative, the objective of this work was to evaluate the feasibility of using extracts from plants grown in the Cerrado for antimicrobial control during an alcoholic fermentation to replace antibiotics. Hydraethanolic extracts of leaves and essential oil of the following species were tested: Schinus terebinthifolius Raddi, Serjania erecta, Serjania marginata, Campomanesia adamantium and Syzygium cumini. Only the extract of Serjania marginata did not show any activity against the bacterium Bacillus sp. Both the essential oils as well as the hydroalcoholic extracts of S. terebinthifolius and C. adamantium and the extract of S. erecta showed antibacterial activity without harming the yeast, with potential to replace the hops.


Assuntos
Fermentação , Extratos Vegetais , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Bacillus , Óleos Voláteis/farmacologia , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos
5.
J Hazard Mater ; 471: 134302, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640664

RESUMO

Antimony (Sb) and arsenic (As) lead to soil pollution and structural degradation at Sb smelting sites. However, most sites focus solely on Sb/As immobilization, neglecting the restoration of soil functionality. Here, we investigated the effectiveness of Fe/H2O2 modified biochar (Fe@H2O2-BC) and Sb-oxidizing bacteria (Bacillus sp. S3) in immobilizing Sb/As and enhancing soil functional resilience at an Sb smelting site. Over a twelve-month period, the leaching toxicity of As and Sb was reduced to 0.05 and 0.005 mg L-1 (GB3838-2002) respectively, with 1% (w/w) Fe@H2O2-BC and 2% (v/v) Bacillus sp. S3 solution. Compared to CK, the combination of Fe@H2O2-BC and Bacillus sp. S3 significantly reduced the bioavailable As/Sb by 98.00%/93.52%, whilst increasing residual As and reducible Sb fractions by 210.31% and 96.51%, respectively. The combined application generally improved soil aggregate structure, pore characteristics, and water-holding capacity. Fe@H2O2-BC served as a pH buffer and long-term reservoir of organic carbon, changing the availability of carbon substrates to bacteria. The inoculation of Bacillus sp. S3 facilitated the transformation of Sb(III)/As(III) to Sb(V)/As(V) and differentiated the composition and functional roles of bacterial communities in soils. The combination increased the abundance of soil saprotrophs by 164.20%, whilst improving the relative abundance of N- and S-cycling bacteria according to FUNGuild and FAPROTAX analysis. These results revealed that the integrated application was instrumental in As/Sb detoxification/immobilization and soil function restoration, which demonstrating a promising microbially-driven ecological restoration strategy at Sb smelting sites.


Assuntos
Antimônio , Arsênio , Bacillus , Carvão Vegetal , Peróxido de Hidrogênio , Microbiologia do Solo , Poluentes do Solo , Antimônio/química , Carvão Vegetal/química , Arsênio/metabolismo , Arsênio/química , Poluentes do Solo/metabolismo , Bacillus/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Recuperação e Remediação Ambiental/métodos , Oxirredução , Solo/química , Ferro/química , Ferro/metabolismo , Biodegradação Ambiental
6.
Protein Expr Purif ; 219: 106486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642864

RESUMO

New thermostable ß-1,3-1,4-glucanase (lichenase) designated as Blg29 was expressed and purified from a locally isolated alkaliphilic bacteria Bacillus lehensis G1. The genome sequence of B. lehensis predicted an open reading frame of Blg29 with a deduced of 249 amino acids and a molecular weight of 28.99 kDa. The gene encoding for Blg29 was successfully amplified via PCR and subsequently expressed as a recombinant protein using the E. coli expression system. Recombinant Blg29 was produced as a soluble form and further purified via immobilized metal ion affinity chromatography (IMAC). Based on biochemical characterization, recombinant Blg29 showed optimal activity at pH9 and temperature 60 °C respectively. This enzyme was stable for more than 2 h, incubated at 50 °C, and could withstand ∼50 % of its activity at 70 °C for an hour and a half. No significant effect on Blg29 was observed when incubated with metal ions except for a small increase with ion Ca2+. Blg29 showed high substrate activity towards lichenan where Vm, Km, Kcat, and kcat/Km values were 2040.82 µmolmin‾1mg‾1, 4.69 mg/mL, and 986.39 s‾1 and 210.32 mLs‾1mg‾1 respectively. The high thermostability and activity make this enzyme useable for a broad prospect in industry applications.


Assuntos
Bacillus , Proteínas de Bactérias , Estabilidade Enzimática , Escherichia coli , Proteínas Recombinantes , Bacillus/enzimologia , Bacillus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Clonagem Molecular , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/biossíntese , Expressão Gênica , Temperatura , Especificidade por Substrato
7.
J Hazard Mater ; 470: 134254, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615644

RESUMO

The existence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has been a global public environment and health issue. Due to the different cell structures, gram-positive/negative ARB exhibit various inactivation mechanisms in water disinfection. In this study, a gram-negative ARB Escherichia coli DH5α (E. coli DH5α) was used as a horizontal gene transfer (HGT) donor, while a gram-positive ARB Bacillus as a recipient. To develop an efficient and engineering applicable method in water disinfection, ARB and ARGs removal efficiency of Fe(VI) coupled peroxydisulfate (PDS) or peroxymonosulfate (PMS) was compared, wherein hydroxylamine (HA) was added as a reducing agent. The results indicated that Fe(VI)/PMS/HA showed higher disinfection efficiency than Fe(VI)/PDS/HA. When the concentration of each Fe(VI), PMS, HA was 0.48 mM, 5.15 log E. coli DH5α and 3.57 log Bacillus lost cultivability, while the proportion of recovered cells was 0.0017 % and 0.0566 %, respectively, and HGT was blocked. Intracellular tetA was reduced by 2.49 log. Fe(IV) and/or Fe(V) were proved to be the decisive reactive species. Due to the superiority of low cost as well as high efficiency and practicality, Fe(VI)/PMS/HA has significant application potential in ARB, ARGs removal and HGT inhibition, offering a new insight for wastewater treatment.


Assuntos
Transferência Genética Horizontal , Ferro , Peróxidos , Peróxidos/química , Ferro/química , Purificação da Água/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Desinfecção/métodos , Sulfatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bacillus/genética , Bacillus/efeitos dos fármacos , Bacillus/metabolismo
8.
Arch Microbiol ; 206(5): 222, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642140

RESUMO

Animal feed is vulnerable to fungal infections, and the use of bio-preserving probiotics has received increasing attention. In contrast to Lactobacillus and Bifidobacteria spp., fewer Bacillus spp. have been recognized as antifungal probiotics. Therefore, our objective was to screen antifungal strains and provide more Bacillus candidates to bridge this gap. Here, we screened 56 bacterial strains for cyclic lipopeptide genes and conducted an antifungal assay with Aspergillus niger as a representative fungus. We found that a Bacillus strain Bacillus amyloliquefaciens PM415, isolated from pigeon manure, exhibited the highest fungal inhibition activity as demonstrated by the confrontation assay and morphological observation under scanning electron microscope (SEM). Preliminary safety assessment and probiotic characterization revealed its non-pathogenic feature and stress tolerance capability. Whole genome sequencing of Bacillus amyloliquefaciens PM415 revealed a genome size of 4.16 Mbp and 84 housekeeping genes thereof were used for phylogenetic analysis showing that it is most closely related to Bacillus amyloliquefaciens LFB112. The in silico analysis further supported its non-pathogenic feature at the genomic level and revealed potential biosynthetic gene clusters responsible for its antifungal property. RNA-seq analysis revealed genome-wide changes in transportation, amino acid metabolism, non-ribosomal peptides (NRPs) biosynthesis and glycan degradation during fungal antagonism. Our results suggest that Bacillus amyloliquefaciens PM415 is a safe and effective probiotic strain that can prevent fungal growth in animal feeds.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Probióticos , Animais , Bacillus amyloliquefaciens/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Filogenia
9.
Protein Expr Purif ; 219: 106479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574878

RESUMO

Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.


Assuntos
Bacillus , Detergentes , Serina Proteases , Detergentes/química , Detergentes/farmacologia , Serina Proteases/isolamento & purificação , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio
10.
Curr Microbiol ; 81(6): 142, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625396

RESUMO

The present work aims to quantitatively and qualitatively monitor the production of lipopeptide mixtures by Bacillus methylotrophicus DCS1 strain in Landy medium and to investigate the antifungal activities of DCS1 strain and its produced lipopeptides. The in vitro activities were tested by the direct confrontation and agar well diffusion methods, while the in vivo study was carried out in order to test the efficiency of DCS1 bacterial suspension in the control of Fusarium wilt in tomato plants. Identification of lipopeptides by mass spectrometry (LC/MSD-TOF) showed that lipopeptide isoforms produced during the first 24 h and 48 h of fermentation are identical, belonging to bacillomycin D and fengycins A and B homologues with a difference in the yield of production. After 72 h of fermentation corresponding to the end of incubation period, B. methylotrophicus DCS1 is able to produce a mixture of surfactin, pumilacidin, iturin A/mycosubtilin, iturin C1, bacillomycin D and fengycins A and B isoforms. The results of in vitro antifungal experiments suggest that B. methylotrophicus DCS1 has a significant potential as a biocontrol agent, owing to lipopeptides produced, endowed with antifungal activity against several phytopathogenic fungi. The curative treatment of tomato plants with DCS1 bacterial suspension was more effective in the protection against Fusarium oxysporum f. sp. radicis-lycopersici (FORL) than the preventive treatment by comparing the average number of leaves remaining healthy after 30 days of each treatment and the appearance of tomato plants roots. The results indicate that B. methylotrophicus DCS1 exhibit a significant suppression of Fusarium wilt symptoms in tomato plants comparable to that of commercial fungicides and could be an alternative to chemically synthesized pesticides.


Assuntos
Bacillus , Fusarium , Solanum lycopersicum , Antifúngicos/farmacologia , Lipopeptídeos/farmacologia , Isoformas de Proteínas
11.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632051

RESUMO

AIMS: We aimed to develop an effective bacterial combination that can combat Fusarium oxysporum infection in watermelon using in vitro and pot experiments. METHODS AND RESULTS: In total, 53 strains of Bacillus and 4 strains of Pseudomonas were screened. Pseudomonas strains P3 and P4 and Bacillus strains XY-2-3, XY-13, and GJ-1-15 exhibited good antagonistic effects against F. oxysporum. P3 and P4 were identified as Pseudomonas chlororaphis and Pseudomonas fluorescens, respectively. XY-2-3 and GJ-1-15 were identified as B. velezensis, and XY-13 was identified as Bacillus amyloliquefaciens. The three Bacillus strains were antifungal, promoted the growth of watermelon seedlings and had genes to synthesize antagonistic metabolites such as bacilysin, surfactin, yndj, fengycin, iturin, and bacillomycin D. Combinations of Bacillus and Pseudomonas strains, namely, XY-2-3 + P4, GJ-1-15 + P4, XY-13 + P3, and XY-13 + P4, exhibited a good compatibility. These four combinations exhibited antagonistic effects against 11 pathogenic fungi, including various strains of F. oxysporum, Fusarium solani, and Rhizoctonia. Inoculation of these bacterial combinations significantly reduced the incidence of Fusarium wilt in watermelon, promoted plant growth, and improved soil nutrient availability. XY-13 + P4 was the most effective combination against Fusarium wilt in watermelon with the inhibition rate of 78.17%. The number of leaves; aboveground fresh and dry weights; chlorophyll, soil total nitrogen, and soil available phosphorus content increased by 26.8%, 72.12%, 60.47%, 16.97%, 20.16%, and 16.50%, respectively, after XY-13 + P4 inoculation compared with the uninoculated control. Moreover, total root length, root surface area, and root volume of watermelon seedlings were the highest after XY-13 + P3 inoculation, exhibiting increases by 265.83%, 316.79%, and 390.99%, respectively, compared with the uninoculated control. CONCLUSIONS: XY-13 + P4 was the best bacterial combination for controlling Fusarium wilt in watermelon, promoting the growth of watermelon seedlings, and improving soil nutrient availability.


Assuntos
Bacillus , Citrullus , Resistência à Doença , Fusarium , Doenças das Plantas , Pseudomonas , Fusarium/crescimento & desenvolvimento , Citrullus/microbiologia , Citrullus/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bacillus/fisiologia , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/fisiologia , Antibiose , Pseudomonas fluorescens/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Antifúngicos/farmacologia
12.
Commun Biol ; 7(1): 434, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594357

RESUMO

Beneficial microorganisms for corals (BMCs), or probiotics, can enhance coral resilience against stressors in laboratory trials. However, the ability of probiotics to restructure the coral microbiome in situ is yet to be determined. As a first step to elucidate this, we inoculated putative probiotic bacteria (pBMCs) on healthy colonies of Pocillopora verrucosa in situ in the Red Sea, three times per week, during 3 months. pBMCs significantly influenced the coral microbiome, while bacteria of the surrounding seawater and sediment remained unchanged. The inoculated genera Halomonas, Pseudoalteromonas, and Bacillus were significantly enriched in probiotic-treated corals. Furthermore, the probiotic treatment also correlated with an increase in other beneficial groups (e.g., Ruegeria and Limosilactobacillus), and a decrease in potential coral pathogens, such as Vibrio. As all corals (treated and non-treated) remained healthy throughout the experiment, we could not track health improvements or protection against stress. Our data indicate that healthy, and therefore stable, coral microbiomes can be restructured in situ, although repeated and continuous inoculations may be required in these cases. Further, our study provides supporting evidence that, at the studied scale, pBMCs have no detectable off-target effects on the surrounding microbiomes of seawater and sediment near inoculated corals.


Assuntos
Antozoários , Bacillus , Microbiota , Probióticos , Vibrio , Animais , Antozoários/microbiologia
13.
Curr Microbiol ; 81(5): 128, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580768

RESUMO

Endophytic bacteria serve as a rich source of diverse antimicrobial compounds. Recently, there has been a growing interest in utilizing endophytic Bacillus spp. as biological agents against phytogenic fungi, owing to their potential to produce a wide range of antimicrobial substances. The objective of this research was to investigate the protective abilities of 15 endophytic Bacillus spp. isolated from previous study from wheat plant, against the phytopathogenic fungi, Fusarium graminearum and Macrophomina phaseolina. A dual culture plate assay was conducted as a preliminary analysis, revealing that 7 out of 15 endophytic Bacillus spp. demonstrated inhibition against one or both of the phytopathogenic fungi used in this study. All seven endophytes were further assessed for the presence of diffusible antifungal metabolites. The cultures were grown in potato dextrose broth for 120 h, and the cell-free supernatant was extracted and analyzed using the cup plate method. The methanolic extract yielded similar results to the dual culture plate analysis, except for WL2-15. Additionally, deformities in the mycelial structure were examined under the light microscope upon exposure to methanolic extract. Furthermore, the analysis and identification of metabolites were carried out via gas chromatography-mass spectrometry of methanolic extract from selected seven endophytic Bacillus spp. The chromatogram revealed the presence of some major peaks such as tridecanoic acid, methyl ester, hydroperoxide, 1-methylbutyl, 9-octadecenamide, (z)-, hexane-1,3,4-triol, 3,5-dimethyl- tetradecanoic acid. To the best of our knowledge, this is the first report of these biocontrol agents in endophytic Bacillus spp. Interestingly, volatile organic compound production was also seen in all the isolates against the phytopathogenic fungi.


Assuntos
Anti-Infecciosos , Bacillus , Antifúngicos/química , Bacillus/metabolismo , Fungos/metabolismo , Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Extratos Vegetais/metabolismo , Endófitos
14.
Curr Microbiol ; 81(5): 132, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592497

RESUMO

Abiotic stresses threaten the strategic crops of Poaceae (Gramineae) worldwide. Habitat-adapted microbiome of wild plants has the potential to alleviate abiotic stresses in alternate hosts. Persian Gulf's coastal deserts are colonized by halophyte plants hosting habitat-adapted halophytic microbiota. Here, endophytic bacteria from wild Poaceae in coastal deserts of the north Persian Gulf at Hormozgan province, Iran, were isolated and screened for mitigating salinity stress in wheat. Accordingly, seven dominant species of wild Poaceae in the region, i.e., Aeloropus lagopoides, Aeloropus litiralis, Chrysopogon aucheri, Cymbopogon olivieri, Desmostachya sp., Halopayrum mucronatum, and Sporbuls arabicus, were explored. In total, 367 endophytic bacteria were isolated, 90 of which tolerated 2.5-M NaCl. Of these, 38 strains were selected based on their bioactivity and applied for in vitro wheat-interaction assays under 250-mM NaCl stress. Five superior strains promoted seed germination and growth indices in rain-fed winter wheat cv. Sardari, i.e., Bacillus subtilis B14, B19, & B27, Bacillus sp. B21, and Bacillus licheniformis Ba38. In planta assays in saline soil (2.7 dS m-1) using the superior strains indicated that Bacillus sp. B21 and Bacillus licheniformis Ba38 increased germination and root and shoot lengths and their dry and fresh weights in wheat seedlings. Moreover, phenolics and flavonoids contents of wheat seedlings were influenced by endophyte application. Thus, the coastal desert-adapted microbiome of wild Poaceae could alleviate abiotic stress and promote growth in cultivated species of Poaceae, such as wheat.


Assuntos
Bacillus licheniformis , Bacillus , Microbiota , Triticum , Poaceae , Plantas Tolerantes a Sal , Endófitos , Cloreto de Sódio , Estresse Salino , Bacillus subtilis
15.
PLoS One ; 19(4): e0297217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635692

RESUMO

This study focuses on isolated thermophilic Bacillus species' adaptability and physiological diversity, highlighting their ecological roles and potential industrial applications. We specifically investigated their capacity to thrive in extreme conditions by examining their environmental tolerances and adaptations at the metabolic and genetic levels. The primary objective is to evaluate the suitability of these species for biotechnological applications, considering their resilience in harsh environments. We conducted a comparative analysis of the environmental adaptability parameters for various Bacillus species. This included examining growth temperature ranges, pH tolerance, oxygen requirements, carbohydrate fermentation patterns, colony morphology, enzymatic activities, and genetic properties. Controlled laboratory experiments provided the data, which were then analyzed to determine patterns of adaptability and diversity. The research revealed that Bacillus species could endure temperatures as high as 73°C, with a generally lower growth limit at 43°C. However, strains TBS35 and TBS40 were exceptions, growing at 37°C. Most strains preferred slightly alkaline conditions (optimal pH 8), but TBS34, TBS35, and TBS40 exhibited adaptations to highly alkaline environments (pH 11). Oxygen requirement tests classified the species into aerobic, anaerobic, and facultative aerobic categories. Genetic analysis highlighted variations in DNA concentrations, 16s rRNA gene lengths, and G+C content across species. Although glucose was the primary substrate for carbohydrate fermentation, exceptions indicated metabolic flexibility. The enzymatic profiles varied, with a universal absence of urease and differences in catalase and oxidase production. Our findings underscore thermophilic Bacillus species' significant adaptability and diversity under various environmental conditions. Their resilience to extreme temperatures, pH levels, varied oxygen conditions, and diverse metabolic and genetic features emphasize their potential for biotechnological applications. These insights deepen our understanding of these species' ecological roles and highlight their potential industrial and environmental applications.


Assuntos
Bacillus , RNA Ribossômico 16S/genética , Temperatura Alta , Oxigênio , Carboidratos , Filogenia
16.
Food Microbiol ; 121: 104497, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637068

RESUMO

Daqu is a saccharification agent required for fermenting Baijiu, a popular Chinese liquor. Our objective was to investigate the relationships between physicochemical indices, microbial community diversity, and metabolite profiles of strong-flavor Jinhui Daqu during different storage periods. During different storage periods of Jinhui Daqu, we combined Illumina MiSeq sequencing and non-target sequencing techniques to analyze dynamic changes of the microbial community and metabolite composition, established a symbiotic network and explored the correlation between dominant microorganisms and differential metabolites in Daqu. Fungal community diversity in 8d_Daqu was higher than that in 45d_Daqu and 90d_Daqu, whereas bacterial community diversity was higher in 90d_Daqu. Twelve bacterial and four fungal genera were dominant during storage of Daqu. Bacillus, Leuconostoc, Kroppenstedtia, Lactococcus, Thermomyces and Wickerhamomyces decreased as the storage period increased. Differences of microbiota structure led to various metabolic pathways, and 993 differential metabolites were found in all Daqu samples. Differential microorganisms were significantly related to key metabolites. Major metabolic pathways involved in the formation of amino acids and lipids, such as l-arogenate and hydroxyproline, were identified. Interactions between moisture, acidity, and microbes may drive the succession of the microbial community, which further affects the formation of metabolites.


Assuntos
Bacillus , Microbiota , Fermentação , Bactérias , Metaboloma
17.
Food Microbiol ; 121: 104498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637069

RESUMO

Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.


Assuntos
Bacillus , Lauratos , Monoglicerídeos , Monoglicerídeos/farmacologia , Monoglicerídeos/química , Ácidos , Ácidos Láuricos/farmacologia , Carbono
18.
Food Microbiol ; 121: 104509, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637073

RESUMO

Quantifying spore germination and outgrowth heterogeneity is challenging. Single cell level analysis should provide supplementary knowledge regarding the impact of unfavorable conditions on germination and outgrowth dynamics. This work aimed to quantify the impact of pH on spore germination and outgrowth, investigating the behavior of individual spore crops, produced under optimal and suboptimal conditions. Bacillus mycoides (formerly B. weihenstephanensis) KBAB4 spores, produced at pH 7.4 and at pH 5.5 were incubated at different pH values, from pH 5.2 to 7.4. The spores were monitored by microscopy live imaging, in controlled conditions, at 30 °C. The images were analyzed using SporeTracker, to determine the state of single cells. The impact of pH on germination and outgrowth times and rates was estimated and the correlation between these parameters was quantified. The correlation between germination and outgrowth times was significantly higher at low pH. These results suggest that an environmental pressure highlights the heterogeneity of spore germination and outgrowth within a spore population. Results were consistent with previous observations at population level, now confirmed and extended to single cell level. Therefore, single cell level analyses can be used to quantify the heterogeneity of spore populations, which is of interest in order to control the development of spore-forming bacteria, responsible for food safety issues.


Assuntos
Bacillus , Esporos Bacterianos , Humanos , Esporos , Concentração de Íons de Hidrogênio , Bacillus subtilis
19.
J Agric Food Chem ; 72(15): 8674-8683, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569079

RESUMO

The enhancement of intracellular glutamate synthesis in glutamate-independent poly-γ-glutamic acid (γ-PGA)-producing strains is an essential strategy for improving γ-PGA production. Bacillus tequilensis BL01ΔpgdSΔggtΔsucAΔgudB:P43-ppc-pyk-gdhA for the efficient synthesis of γ-PGA was constructed through expression of glutamate synthesis features of Corynebacterium glutamicum, which increased the titer of γ-PGA by 2.18-fold (3.24 ± 0.22 g/L) compared to that of B. tequilensis BL01ΔpgdSΔggtΔsucAΔgudB (1.02 ± 0.11 g/L). To further improve the titer of γ-PGA and decrease the production of byproducts, three enzymes (Ppc, Pyk, and AceE) were assembled to a complex using SpyTag/Catcher pairs. The results showed that the γ-PGA titer of the assembled strain was 31.31% higher than that of the unassembled strain. To further reduce the production cost, 25.73 ± 0.69 g/L γ-PGA with a productivity of 0.48 g/L/h was obtained from cheap molasses. This work provides new metabolic engineering strategies to improve the production of γ-PGA in B. tequilensis BL01. Furthermore, the engineered strain has great potential for the industrial production of γ-PGA from molasses.


Assuntos
Bacillus , Corynebacterium glutamicum , Ácido Poliglutâmico/análogos & derivados , Ácido Glutâmico/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo
20.
Environ Microbiol Rep ; 16(2): e13250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575119

RESUMO

The rhizosphere and phyllosphere of plants are home to a diverse range of microorganisms that play pivotal roles in ecosystem services. Consequently, plant growth-promoting bacteria (PGPB) are extensively utilized as inoculants to enhance plant growth and boost productivity. Despite this, the interactions between the rhizosphere and phyllosphere, which are influenced by PGPB inoculation, have not been thoroughly studied to date. In this study, we inoculated Bacillus velezensis SQR9, a PGPB, into the bulk soil, rhizosphere or phyllosphere, and subsequently examined the bacterial communities in the rhizosphere and phyllosphere using amplicon sequencing. Our results revealed that PGPB inoculation increased its abundance in the corresponding compartment, and all treatments demonstrated plant growth promotion effects. Further analysis of the sequencing data indicated that the presence of PGPB exerted a more significant impact on bacterial communities in both the rhizosphere and phyllosphere than in the inoculation compartment. Notably, the PGPB stimulated similar rhizosphere-beneficial microbes regardless of the inoculation site. We, therefore, conclude that PGPB can promote plant growth both directly and indirectly through the interaction between the rhizosphere and phyllosphere, leading to the enrichment of beneficial microorganisms.


Assuntos
Bacillus , Ecossistema , Rizosfera , Raízes de Plantas/microbiologia , Bactérias/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...