Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.587
Filtrar
1.
J Biomed Sci ; 31(1): 48, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730462

RESUMO

Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.


Assuntos
Barreira Hematorretiniana , Vesículas Extracelulares , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/fisiopatologia , Vesículas Extracelulares/metabolismo , Humanos , Retinopatia Diabética/fisiopatologia , Retinopatia Diabética/metabolismo , Doenças Retinianas/fisiopatologia , Doenças Retinianas/metabolismo , Degeneração Macular/fisiopatologia , Degeneração Macular/metabolismo , Animais
2.
Transl Vis Sci Technol ; 13(5): 5, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38713474

RESUMO

Purpose: The blood-retinal barrier (BRB) restricts the delivery of intravenous therapeutics to the retina, necessitating innovative approaches for treating retinal disorders. This study sought to explore the potential of focused ultrasound (FUS) to non-invasively deliver intravenously administered gold nanoparticles (AuNPs) across the BRB. FUS-BRB modulation can offer a novel method for targeted retinal therapy. Methods: AuNPs of different sizes and shapes were characterized, and FUS parameters were optimized to permeate the BRB without causing retinal damage in a rodent model. The delivery of 70-kDa dextran and AuNPs to the retinal ganglion cell (RGC) layer was visualized using confocal and two-photon microscopy, respectively. Histological and statistical analyses were conducted to assess the effectiveness and safety of the procedure. Results: FUS-BRB modulation resulted in the delivery of dextran and AuNPs to the RGC and inner nuclear layer. Smaller AuNPs reached the retinal layers to a greater extent than larger ones. The delivery of dextran and AuNPs across the BRB with FUS was achieved without significant retinal damage. Conclusions: This investigation provides the first evidence, to our knowledge, of FUS-mediated AuNP delivery across the BRB, establishing a foundation for a targeted and non-invasive approach to retinal treatment. The results contribute to developing promising non-invasive therapeutic strategies in ophthalmology to treat retinal diseases. Translational Relevance: Modifying the BRB with ultrasound offers a targeted and non-invasive delivery strategy of intravenous therapeutics to the retina.


Assuntos
Barreira Hematorretiniana , Ouro , Nanopartículas Metálicas , Células Ganglionares da Retina , Animais , Ouro/química , Ouro/administração & dosagem , Células Ganglionares da Retina/citologia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Dextranos/administração & dosagem , Dextranos/química , Sistemas de Liberação de Medicamentos/métodos , Ratos , Microscopia Confocal/métodos , Masculino
3.
FASEB J ; 38(9): e23638, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713098

RESUMO

Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.


Assuntos
Barreira Hematorretiniana , Diabetes Mellitus Experimental , Retinopatia Diabética , Interleucina-10 , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Interleucina-10/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Masculino , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Estreptozocina , Ativação de Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Polaridade Celular/efeitos dos fármacos
4.
PLoS Pathog ; 20(4): e1012156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598560

RESUMO

SARS-CoV-2 has been shown to cause wide-ranging ocular abnormalities and vision impairment in COVID-19 patients. However, there is limited understanding of SARS-CoV-2 in ocular transmission, tropism, and associated pathologies. The presence of viral RNA in corneal/conjunctival tissue and tears, along with the evidence of viral entry receptors on the ocular surface, has led to speculation that the eye may serve as a potential route of SARS-CoV-2 transmission. Here, we investigated the interaction of SARS-CoV-2 with cells lining the blood-retinal barrier (BRB) and the role of the eye in its transmission and tropism. The results from our study suggest that SARS-CoV-2 ocular exposure does not cause lung infection and moribund illness in K18-hACE2 mice despite the extended presence of viral remnants in various ocular tissues. In contrast, intranasal exposure not only resulted in SARS-CoV-2 spike (S) protein presence in different ocular tissues but also induces a hyperinflammatory immune response in the retina. Additionally, the long-term exposure to viral S-protein caused microaneurysm, retinal pigmented epithelium (RPE) mottling, retinal atrophy, and vein occlusion in mouse eyes. Notably, cells lining the BRB, the outer barrier, RPE, and the inner barrier, retinal vascular endothelium, were highly permissive to SARS-CoV-2 replication. Unexpectedly, primary human corneal epithelial cells were comparatively resistant to SARS-CoV-2 infection. The cells lining the BRB showed induced expression of viral entry receptors and increased susceptibility towards SARS-CoV-2-induced cell death. Furthermore, hyperglycemic conditions enhanced the viral entry receptor expression, infectivity, and susceptibility of SARS-CoV-2-induced cell death in the BRB cells, confirming the reported heightened pathological manifestations in comorbid populations. Collectively, our study provides the first evidence of SARS-CoV-2 ocular tropism via cells lining the BRB and that the virus can infect the retina via systemic permeation and induce retinal inflammation.


Assuntos
Barreira Hematorretiniana , COVID-19 , Retina , SARS-CoV-2 , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Animais , Barreira Hematorretiniana/virologia , COVID-19/imunologia , COVID-19/virologia , Camundongos , Humanos , Retina/virologia , Retina/imunologia , Retina/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Inflamação/imunologia , Inflamação/virologia , Betacoronavirus/fisiologia , Tropismo Viral , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/patologia
5.
J Neuroinflammation ; 21(1): 105, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649885

RESUMO

BACKGROUND: NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS: Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS: We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS: Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.


Assuntos
Barreira Hematorretiniana , Pressão Intraocular , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , Doenças Neuroinflamatórias , Animais , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Camundongos , Barreira Hematorretiniana/patologia , Barreira Hematorretiniana/metabolismo , Pressão Intraocular/fisiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Camundongos Knockout , Proliferação de Células/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neuroglia/metabolismo , Neuroglia/patologia , Hipertensão Ocular/patologia , Hipertensão Ocular/metabolismo , Glaucoma/patologia , Glaucoma/metabolismo , Estresse Oxidativo/fisiologia
6.
AIDS ; 38(6): 779-789, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578957

RESUMO

OBJECTIVE: This study aims to investigate the functions and mechanistic pathways of Astrocyte Elevated Gene-1 (AEG-1) in the disruption of the blood-retinal barrier (BRB) caused by the HIV-1 envelope glycoprotein gp120. DESIGN: We utilized ARPE-19 cells challenged with gp120 as our model system. METHODS: Several analytical techniques were employed to decipher the intricate interactions at play. These included PCR, Western blot, and immunofluorescence assays for the molecular characterization, and transendothelial electrical resistance (TEER) measurements to evaluate barrier integrity. RESULTS: We observed that AEG-1 expression was elevated, whereas the expression levels of tight junction proteins ZO-1, Occludin, and Claudin5 were downregulated in gp120-challenged cells. TEER measurements corroborated these findings, indicating barrier dysfunction. Additional mechanistic studies revealed that the activation of NFκB and MMP2/9 pathways mediated the AEG-1-induced barrier destabilization. Through the use of lentiviral vectors, we engineered cell lines with modulated AEG-1 expression levels. Silencing AEG-1 alleviated gp120-induced downregulation of tight junction proteins and barrier impairment while concurrently inhibiting the NFκB and MMP2/9 pathways. Conversely, overexpression of AEG-1 exacerbated these pathological changes, further compromising the integrity of the BRB. CONCLUSION: Gp120 upregulates the expression of AEG-1 and activates the NFκB and MMP2/9 pathways. This in turn leads to the downregulation of tight junction proteins, resulting in the disruption of barrier function.


Assuntos
Barreira Hematorretiniana , Proteína gp120 do Envelope de HIV , Infecções por HIV , HIV-1 , Proteínas de Membrana , Proteínas de Ligação a RNA , Humanos , Barreira Hematorretiniana/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
7.
FASEB J ; 38(5): e23512, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430220

RESUMO

The robust integrity of the retinal pigment epithelium (RPE), which contributes to the outer brain retina barrier (oBRB), is compromised in several retinal degenerative and vascular disorders, including diabetic macular edema (DME). This study evaluates the role of a new generation of histone deacetylase inhibitor (HDACi), ITF2357, in regulating outer blood-retinal barrier function and investigates the underlying mechanism of action in inhibiting TNFα-induced damage to RPE integrity. Using the immortalized RPE cell line (ARPE-19), ITF2357 was found to be non-toxic between 50 nM and 5 µM concentrations. When applied as a pre-treatment in conjunction with an inflammatory cytokine, TNFα, the HDACi was safe and effective in preventing epithelial permeability by fortifying tight junction (ZO-1, -2, -3, occludin, claudin-1, -2, -3, -5, -19) and adherens junction (E-cadherin, Nectin-1) protein expression post-TNFα stress. Mechanistically, ITF2357 depicted a late action at 24 h via attenuating IKK, IκBα, and p65 phosphorylation and ameliorated the expression of IL-1ß, IL-6, and MCP-1. Also, ITF2357 delayed IκBα synthesis and turnover. The use of Bay 11-7082 and MG132 further uncovered a possible role for ITF2357 in non-canonical NF-κB activation. Overall, this study revealed the protection effects of ITF2357 by regulating the turnover of tight and adherens junction proteins and modulating NF-κB signaling pathway in the presence of an inflammatory stressor, making it a potential therapeutic application for retinal vascular diseases such as DME with compromised outer blood-retinal barrier.


Assuntos
Retinopatia Diabética , Ácidos Hidroxâmicos , Edema Macular , Humanos , NF-kappa B/metabolismo , Retinopatia Diabética/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Edema Macular/metabolismo , Transdução de Sinais , Epitélio Pigmentado da Retina/metabolismo , Barreira Hematorretiniana/metabolismo , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia , Pigmentos da Retina/uso terapêutico
8.
Nat Commun ; 15(1): 1372, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355716

RESUMO

Diabetic retinopathy (DR) is a microvascular disorder characterized by inner blood-retinal barrier (iBRB) breakdown and irreversible vision loss. While the symptoms of DR are known, disease mechanisms including basement membrane thickening, pericyte dropout and capillary damage remain poorly understood and interventions to repair diseased iBRB microvascular networks have not been developed. In addition, current approaches using animal models and in vitro systems lack translatability and predictivity to finding new target pathways. Here, we develop a diabetic iBRB-on-a-chip that produces pathophysiological phenotypes and disease pathways in vitro that are representative of clinical diagnoses. We show that diabetic stimulation of the iBRB-on-a-chip mirrors DR features, including pericyte loss, vascular regression, ghost vessels, and production of pro-inflammatory factors. We also report transcriptomic data from diabetic iBRB microvascular networks that may reveal drug targets, and examine pericyte-endothelial cell stabilizing strategies. In summary, our model recapitulates key features of disease, and may inform future therapies for DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Humanos , Barreira Hematorretiniana/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Fenótipo , Dispositivos Lab-On-A-Chip , Vasos Retinianos/metabolismo , Retina/metabolismo , Diabetes Mellitus/metabolismo
9.
Prog Retin Eye Res ; 99: 101245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242492

RESUMO

Blood-retinal barrier (BRB) disruption is a common accompaniment of intermediate, posterior and panuveitis causing leakage into the retina and macular oedema resulting in vision loss. It is much less common in anterior uveitis or in patients with intraocular lymphoma who may have marked signs of intraocular inflammation. New drugs used for chemotherapy (cytarabine, immune checkpoint inhibitors, BRAF inhibitors, EGFR inhibitors, bispecific anti-EGFR inhibitors, MET receptor inhibitors and Bruton tyrosine kinase inhibitors) can also cause different types of uveitis and BRB disruption. As malignant disease itself can cause uveitis, particularly from breast, lung and gastrointestinal tract cancers, it can be clinically difficult to sort out the cause of BRB disruption. Immunosuppression due to malignant disease and/or chemotherapy can lead to infection which can also cause BRB disruption and intraocular infection. In this paper we address the pathophysiology of BRB disruption related to intraocular inflammation and malignancy, methods for estimating the extent and effect of the disruption and examine why some types of intraocular inflammation and malignancy cause BRB disruption and others do not. Understanding this may help sort and manage these patients, as well as devise future therapeutic approaches.


Assuntos
Neoplasias , Uveíte , Humanos , Barreira Hematorretiniana/fisiologia , Retina/patologia , Inflamação/patologia , Uveíte/patologia , Neoplasias/patologia
10.
Adv Sci (Weinh) ; 11(2): e2302776, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983591

RESUMO

Activation of hypoxia-inducible factor 1α (HIF1α) contributes to blood-retinal barrier (BRB) breakdown and pathological neovascularization responsible for vision loss in ischemic retinal diseases. During disease progression, mitochondrial biology is altered to adapt to the ischemic environment created by initial vascular dysfunction, but the mitochondrial adaptive mechanisms, which ultimately contribute to the pathogenesis of ischemic retinopathy, remain incompletely understood. In the present study, it is identified that expression of mitochondrial chaperone tumor necrosis factor receptor-associated protein 1 (TRAP1) is essential for BRB breakdown and pathologic retinal neovascularization in mouse models mimicking ischemic retinopathies. Genetic Trap1 ablation or treatment with small molecule TRAP1 inhibitors, such as mitoquinone (MitoQ) and SB-U015, alleviate retinal pathologies via proteolytic HIF1α degradation, which is mediated by opening of the mitochondrial permeability transition pore and activation of calcium-dependent protease calpain-1. These findings suggest that TRAP1 can be a promising target for the development of new treatments against ischemic retinopathy, such as retinopathy of prematurity and proliferative diabetic retinopathy.


Assuntos
Retinopatia Diabética , Doenças Retinianas , Neovascularização Retiniana , Animais , Camundongos , Barreira Hematorretiniana , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Isquemia , Neovascularização Patológica/metabolismo , Retina/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia
11.
J Ethnopharmacol ; 323: 117658, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38160865

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic retinopathy (DR) is one of the most severe complications of diabetes mellitus, diabetes belongs to the category of "emaciation-thirst disease" in traditional Chinese medicine (TCM). Bushen Huoxue Prescription (BHP) is composed of traditional Chinese materia medica, which has therapeutic effects on DR and early diabetic retinal edema (EDRE). However, the therapeutic mechanism is unclear. AIM OF THE STUDY: Exploring the mechanism of BHP against EDRE. METHODS: Feeding Sprague Dawley (SD) rats a high-fat, high-sugar diet as well as providing intraperitoneal injections of streptozotocin (STZ) to promote inner blood-retinal barrier (iBRB) damage that can trigger EDRE, evaluating the therapeutic effect of BHP by the level of expressiveness of TJ proteins (ZO-1,Occludin) of the iBRB and the leakage of rhodamine B isothiocyanate (RITC) in the retina. The combination of network pharmacology and metabolomics was employed to study the mechanism of BHP in preventing of EDRE, then four proteins which were closely to the damage of iBRB were chosen for the validation by employing Western Blot (WB). RESULTS: Research of network pharmacology had shown that BHP had efficacy against EDRE by regulating targets such as AKT1, ALB, TNF, PPARG, etc, its potential pathways mainly involving signaling pathways such as HIF-1. In untargeted metabolomics analysis of serum, 15 differential metabolites were identified, with the metabolic pathways focusing on ketone body metabolism and synthesis, sphingolipid metabolism and phenylalanine metabolism. The conclusions of metabolomics and network pharmacology revealed that BHP can treat EDRE by alleviating hypoxia and oxidative stress and exerting protection of the iBRB. Finally, BHP's protection behavior of the iBRB was validated by WB experiments. CONCLUSION: Through integrating pharmacodynamics, network pharmacology and metabolomics, BHP was discovered to have a crucial function in EDRE therapy by preserving the integrity of iBRB. This comprehensive strategy also provided a reasonable way to reveal the multi-components, multi-targets, multi-pathways mechanism of TCM.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Medicamentos de Ervas Chinesas , Ratos , Animais , Barreira Hematorretiniana , Ratos Sprague-Dawley , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/metabolismo , Diabetes Mellitus/metabolismo
12.
Part Fibre Toxicol ; 20(1): 50, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110941

RESUMO

BACKGROUND: The association between air pollution and retinal diseases such as age-related macular degeneration (AMD) has been demonstrated, but the pathogenic correlation is unknown. Damage to the outer blood-retinal barrier (oBRB), which consists of the retinal pigment epithelium (RPE) and choriocapillaris, is crucial in the development of fundus diseases. OBJECTIVES: To describe the effects of airborne fine particulate matter (PM2.5) on the oBRB and disease susceptibilities. METHODS: A PM2.5-exposed mice model was established through the administration of eye drops containing PM2.5. Optical coherence tomography angiography, transmission electron microscope, RPE immunofluorescence staining and Western blotting were applied to study the oBRB changes. A co-culture model of ARPE-19 cells with stretching vascular endothelial cells was established to identify the role of choroidal vasodilatation in PM2.5-associated RPE damage. RESULTS: Acute exposure to PM2.5 resulted in choroidal vasodilatation, RPE tight junctions impairment, and ultimately an increased risk of retinal edema in mice. These manifestations are very similar to the pachychoroid disease represented by central serous chorioretinopathy (CSC). After continuous PM2.5 exposure, the damage to the RPE was gradually repaired, but AMD-related early retinal degenerative changes appeared under continuous choroidal inflammation. CONCLUSION: This study reveals oBRB pathological changes under different exposure durations, providing a valuable reference for the prevention of PM2.5-related fundus diseases and public health policy formulation.


Assuntos
Barreira Hematorretiniana , Células Endoteliais , Animais , Camundongos , Angiofluoresceinografia/métodos , Suscetibilidade a Doenças/patologia , Epitélio Pigmentado da Retina/patologia
13.
Mol Pharm ; 20(11): 5877-5887, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37883694

RESUMO

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two ATP-binding cassette efflux transporters that are coexpressed at the human blood-brain barrier (BBB) and blood-retina barrier (BRB). While pharmacological inhibition of P-gp and/or BCRP results in increased brain distribution of dual P-gp/BCRP substrate drugs, such as the tyrosine kinase inhibitor erlotinib, the effect of P-gp and/or BCRP inhibition on the retinal distribution of such drugs has hardly been investigated. In this study, we used positron emission tomography (PET) imaging to assess the effect of transporter inhibition on the distribution of [11C]erlotinib to the human retina and brain. Twenty two healthy volunteers underwent two PET scans after intravenous (i.v.) injection of a microdose (<5 µg) of [11C]erlotinib, a baseline scan, and a second scan either with concurrent i.v. infusion of tariquidar to inhibit P-gp (n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, 650 mg, or 1000 mg, n = 17) to saturate erlotinib transport. In addition, transport of [3H]erlotinib to the retina and brain was assessed in mice by in situ carotid perfusion under various drug transporter inhibition settings. In comparison to the baseline PET scan, coadministration of tariquidar or erlotinib led to a significant decrease of [11C]erlotinib total volume of distribution (VT) in the human retina by -25 ± 8% (p ≤ 0.05) and -41 ± 16% (p ≤ 0.001), respectively. In contrast, erlotinib intake led to a significant increase in [11C]erlotinib VT in the human brain (+20 ± 16%, p ≤ 0.001), while administration of tariquidar did not result in any significant changes. In situ carotid perfusion experiments showed that both P-gp and BCRP significantly limit the distribution of erlotinib to the mouse retina and brain but revealed a similar discordant effect at the mouse BRB and BBB following co-perfusion with tariquidar and erlotinib as in humans. Co-perfusion with prototypical inhibitors of solute carrier transporters did not reveal a significant contribution of organic cation transporters (e.g., OCTs and OCTNs) and organic anion-transporting polypeptides (e.g., OATP2B1) to the retinal and cerebral distribution of erlotinib. In conclusion, we observed a dissimilar effect after P-gp and/or BCRP inhibition on the retinal and cerebral distribution of [11C]erlotinib. The exact mechanism for this discrepancy remains unclear but may be related to the function of an unidentified erlotinib uptake carrier sensitive to tariquidar inhibition at the BRB. Our study highlights the great potential of PET to study drug distribution to the human retina and to assess the functional impact of membrane transporters on ocular drug distribution.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Cloridrato de Erlotinib , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematorretiniana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias da Mama/metabolismo
14.
Exp Eye Res ; 237: 109691, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37884204

RESUMO

Macular edema (ME) is caused with disruption of the blood-retinal barrier (BRB) followed by fluid accumulation in the subretinal space. Main components of the outer and inner BRB are retinal pigment epithelial (RPE) cells and retinal microvascular endothelial cells, respectively. In addition, glial cells also participate in the functional regulation of the BRB as the member of 'neurovascular unit'. Under various stresses, cells in neurovascular units secrete inflammatory cytokines. Neuroinflammation induced by these cytokines can cause BRB dysfunction by degrading barrier-related proteins and contribute to the pathophysiology of ME. Prostaglandins (PGs) are crucial lipid mediators involved in neuroinflammation. Among PGs, a novel EP2 agonist, omidenepag (OMD) acts on not only the uveoscleral pathway but also the conventional pathway, unlike F prostanoid (FP) receptor agonists. Moreover, the combination use of the EP and the FP agonist is not recommended because of the risk of inflammation. In this study, we investigated effects of OMD and latanoprost acid (LTA), a FP agonist, on BRB and microglia in vitro and in vivo. To investigate the function of outer/inner BRB and microglia, in vitro, ARPE-19 cells, human retinal microvascular endothelial cells (HRMECs), and MG5 cells were used. Cell viability, inflammatory cytokines mRNA and protein levels, barrier morphology/function, and microglial activation were evaluated using proliferation assays, qRT-PCR, ELISA, immunocytochemistry, trans-epithelial electrical resistance, and permeability assay. Moreover, after vitreous injection into the mouse, outer BRB morphology, glial activation, and cytokine expression were assessed. Each OMD and LTA alone did not affect the viability or cytokines expression of the three types of cells. In ARPE-19 cells, the co-stimulation of OMD and LTA increased the mRNA and protein levels of inflammatory cytokines (IL-6, TNF-α, and VEGF-A) and decreased the barrier function and the junction-related protein (ZO-1 and ß-catenin). By contrast in HRMECs, the co-stimulation affected significant differences in the mRNA levels of some cytokine (IL-6 and TNF-α) but enhanced the barrier function. In MG5 cells, the cytokines mRNA and size of Iba1-expressed cell were increased. A non-steroidal anti-inflammatory inhibited the barrier dysfunction and the junction-related protein downregulation in ARPE-19 cells and activation of MG5 cells. Also in vivo, the co-stimulation induced outer BRB disruption, cytokine increase, and retinal glial activation. Therefore, the co-stimulation of EP2 and FP induced the inflammatory cytokine-mediated outer BRB disruption, the enhanced inner BRB function, and the microglial activation. The BRB imbalance and the intrinsic prostaglandin production may be involved in OMD-related inflammation.


Assuntos
Barreira Hematorretiniana , Edema Macular , Camundongos , Humanos , Animais , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Edema Macular/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Cells ; 12(20)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887287

RESUMO

Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/ß-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.


Assuntos
Doenças Retinianas , Doenças Vasculares , Animais , Barreira Hematorretiniana , Retina/metabolismo , Doenças Retinianas/metabolismo , Modelos Animais , Doenças Vasculares/metabolismo
16.
Mol Pharm ; 20(11): 5901-5909, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37860991

RESUMO

Mucopolysaccharidoses (MPSs) make up a group of lysosomal storage diseases characterized by the aberrant accumulation of glycosaminoglycans throughout the body. Patients with MPSs display various signs and symptoms, such as retinopathy, which is also observed in patients with MPS II. Unfortunately, retinal disorders in MPS II are resistant to conventional intravenous enzyme-replacement therapy because the blood-retinal barrier (BRB) impedes drug penetration. In this study, we show that a fusion protein, designated pabinafusp alfa, consisting of an antihuman transferrin receptor antibody and iduronate-2-sulfatase (IDS), crosses the BRB and reaches the retina in a murine model of MPS II. We found that retinal function, as assessed by electroretinography (ERG) in MPS II mice, deteriorated with age. Early intervention with repeated intravenous treatment of pabinafusp alfa decreased heparan sulfate deposition in the retina, optic nerve, and visual cortex, thus preserving or even improving the ERG response in MPS II mice. Histological analysis further revealed that pabinafusp alfa mitigated the loss of the photoreceptor layer observed in diseased mice. In contrast, recombinant nonfused IDS failed to reach the retina and hardly affected the retinal disease. These results support the hypothesis that transferrin receptor-targeted IDS can penetrate the BRB, thereby ameliorating retinal dysfunction in MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Doenças Retinianas , Animais , Camundongos , Barreira Hematorretiniana/metabolismo , Glicosaminoglicanos , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/uso terapêutico , Ácido Idurônico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/diagnóstico , Receptores da Transferrina , Doenças Retinianas/tratamento farmacológico
17.
Diabetes ; 72(12): 1841-1852, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722135

RESUMO

Hemopexin (HPX) is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. The aim of this study was to evaluate whether HPX blockade by specific antibodies (aHPX) could avoid vascular leakage in vivo and microvascular angiogenesis in vitro and ex vivo. For this purpose, the effect of intravitreal (IVT) injections of aHPX on vascular leakage was evaluated in db/db mice and rats with streptozotocin-induced diabetes using the Evans Blue method. Retinal neurodegeneration and inflammation were also evaluated. The antiangiogenic effect of aHPX on human retinal endothelial cells (HRECs) was tested by scratch wound healing and tube formation using standardized methods, as well as by choroidal sprouting assays from retinal explants obtained in rats. We found that IVT injection of aHPX significantly reduced vascular leakage, retinal neurodegeneration, and inflammation. In addition, treatment with aHPX significantly reduced HREC migration and tube formation induced by high glucose concentration and suppressed choroidal sprouting even after vascular endothelial growth factor stimulation, with this effect being higher than obtained with bevacizumab. The antipermeability and antiangiogenic effects of IVT injection of aHPX suggest the blockade or inhibition of HPX as a new strategy for the treatment of advanced stages of diabetic retinopathy. ARTICLE HIGHLIGHTS: Hemopexin (HPX) is the best-characterized permeability factor in steroid-sensitive nephrotic syndrome. We have previously reported that HPX is overexpressed in the retina of patients with diabetes and induces the breakdown of the blood-retinal barrier in vitro. Here, we report that intravitreal injection of anti-HPX antibodies significantly reduces vascular leakage, retinal neurodegeneration, and inflammation in diabetic murine models and that the immunoneutralization of HPX exerts a significant antiangiogenic effect in vitro and in retinal explants. The blockade of HPX can be considered as a new therapy for advanced stages of diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Ratos , Humanos , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Hemopexina/metabolismo , Hemopexina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , Barreira Hematorretiniana/metabolismo , Anticorpos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Inflamação/metabolismo
18.
Exp Eye Res ; 235: 109638, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657528

RESUMO

Although mouse models are widely used in retinal drug development, pharmacokinetics in mouse eye is poorly understood. In this study, we applied non-invasive in vivo fluorophotometry to study pharmacokinetics of intravitreal fluorescein sodium (molecular weight 0.38 kDa) and fluorescein isothiocyanate-dextran (FD-150; molecular weight 150 kDa) in mice. Intravitreal half-lives of fluorescein and FD-150 in mouse eyes were 0.53 ± 0.06 h and 2.61 ± 0.86 h, respectively. These values are 8-230 times shorter than the elimination half-lives of similar compounds in the human vitreous. The apparent volumes of distribution in the mouse vitreous were close to the anatomical volume of the mouse vitreous (FD-150, 5.1 µl; fluorescein, 9.6 µl). Dose scaling factors were calculated from mouse to rat, rabbit, monkey and human translation. Based on pharmacokinetic modelling and compound concentrations in the vitreous and anterior chamber, fluorescein is mainly eliminated posteriorly across blood-retina barrier, but FD-150 is cleared via aqueous humour outflow. The results of this study improve the knowledge of intravitreal pharmacokinetics in mouse and facilitate inter-species scaling in ocular drug development.


Assuntos
Retina , Corpo Vítreo , Camundongos , Ratos , Humanos , Animais , Coelhos , Barreira Hematorretiniana , Fluoresceína , Câmara Anterior , Injeções Intravítreas
19.
ACS Biomater Sci Eng ; 9(8): 4929-4939, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37494673

RESUMO

The outer blood-retinal barrier (oBRB) provides an optimal environment for the function of the photoreceptor by regulating the exchange of molecules between subretinal space and the choriocapillaris, and its dysfunction could impair the photoreceptor's function and vision. The existing in vitro models have limitations in reproducing the barrier function or physiological characteristics of oBRB and choriocapillaris. Here, we engineered a microphysiological system-based oBRB-choriocapillaris model that simultaneously incorporates the desired physiological characteristics and is simple to fabricate. First, we generated microvascular networks to mimic choriocapillaris and investigated the role of fibroblasts in vasculogenesis. By adding retinal pigment epithelial cells to one side of blood vessels formed with endothelial cells and fibroblasts and optimizing their culture medium conditions, we established an oBRB-choriocapillaris model. To verify the physiological similarity of our oBRB-choriocapillaris model, we identified the polarization and expression of the tight junction of the retinal pigment epithelium, Bruch's membrane, and the fenestral diaphragm of choriocapillaris. Finally, we tried to recapitulate the diabetes mellitus environment in our model with hyperglycemia and diabetes-related cytokines. This induced a decrease in tight junction integrity, loss of barrier function, and shrinkage of blood vessels, similar to the in vivo pathological changes observed in the oBRB and choriocapillaris. The oBRB-choriocapillaris model developed using a microphysiological system is expected to offer a valuable in vitro platform for retinal and choroidal vascular diseases in preclinical applications.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Barreira Hematorretiniana/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Sistemas Microfisiológicos , Corioide/irrigação sanguínea , Corioide/metabolismo , Corioide/patologia , Diabetes Mellitus/patologia
20.
Peptides ; 168: 171065, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495040

RESUMO

During diabetic retinopathy (DR) progression, the retina undergoes various metabolic changes, including hypoxia-signalling cascade induction in the cells of retinal pigmented epithelium (RPE). The overexpression of hypoxic inducible factors causes transcription of many target genes including vascular endothelial growth factor (VEGF). The RPE cells form the outer blood retinal barrier (oBRB), a specialized structure that regulates ions and metabolites flux into the retina to maintain a suitable quality of its extracellular microenvironment. VEGF worsens retinal condition since its secretion from the basolateral compartment of RPE cells compromises the barrier's integrity and induces choroidal neovascularization. In this work, we hypothesized that PACAP prevents the damage to oBRB and controls choroidal neovascularization through the induction of ADNP. Firstly, we demonstrated that ADNP is expressed in Streptozotocin (STZ)-induced diabetic animals. To validate our hypothesis, we cultured endothelial cells (H5V) forming vessels-like structures, in a conditioned medium (CM) derived from ARPE-19 cells exposed to hyperglycaemic/hypoxic insult, containing a known VEGF concentration. The involvement of PACAP-ADNP axis on oBRB integrity was evaluated through the measurement of trans-epithelial-electrical resistance and permeability assay performed on ARPE cell monolayer cultured in CM and by analysing the expression of two tight junction forming proteins, ZO1 and occludin. By culturing H5V in CM, we demonstrated that PACAP-ADNP axis counteracted vessels-like structures formation promoted by VEGF. In conclusion, the results suggested a primary role of PACAP/ADNP axis in preventing oBRB damage and in controlling aberrant choroidal neovascularization induced by VEGF secreted from RPE cells exposed to hyperglycaemia/hypoxic insult in DR.


Assuntos
Neovascularização de Coroide , Retinopatia Diabética , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Células Endoteliais/metabolismo , Retina/metabolismo , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Retinopatia Diabética/metabolismo , Barreira Hematorretiniana/metabolismo , Hipóxia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...