Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 901
Filtrar
1.
Cells ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786104

RESUMO

Radiation-induced heart disease (RIHD), a common side effect of chest irradiation, is a primary cause of mortality among patients surviving thoracic cancer. Thus, the development of novel, clinically applicable cardioprotective agents which can alleviate the harmful effects of irradiation on the heart is of great importance in the field of experimental oncocardiology. Biglycan and decorin are structurally related small leucine-rich proteoglycans which have been reported to exert cardioprotective properties in certain cardiovascular pathologies. Therefore, in the present study we aimed to examine if biglycan or decorin can reduce radiation-induced damage of cardiomyocytes. A single dose of 10 Gray irradiation was applied to induce radiation-induced cell damage in H9c2 cardiomyoblasts, followed by treatment with either biglycan or decorin at various concentrations. Measurement of cell viability revealed that both proteoglycans improved the survival of cardiac cells post-irradiation. The cardiocytoprotective effect of both biglycan and decorin involved the alleviation of radiation-induced proapoptotic mechanisms by retaining the progression of apoptotic membrane blebbing and lowering the number of apoptotic cell nuclei and DNA double-strand breaks. Our findings provide evidence that these natural proteoglycans may exert protection against radiation-induced damage of cardiac cells.


Assuntos
Apoptose , Biglicano , Decorina , Miócitos Cardíacos , Decorina/metabolismo , Biglicano/metabolismo , Apoptose/efeitos da radiação , Apoptose/efeitos dos fármacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos da radiação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos
2.
RMD Open ; 10(2)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806188

RESUMO

OBJECTIVE: Clinical observation suggests that vascular activation and autoimmunity precede remodelling of the extracellular matrix (ECM) in systemic sclerosis (SSc). We challenge this paradigm by hypothesising that ECM biomarkers are already disturbed in patients with very early SSc (veSSc) when fibrosis is not yet clinically detectable. METHODS: 42 patients with veSSc, defined as the presence of Raynaud's phenomenon and at least one of puffy fingers, positive antinuclear antibodies or pathological nailfold capillaroscopy, not meeting the 2013 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for SSc, were compared with healthy controls (HCs, n=29). ECM degradation (BGM, C3M, C4M and C6M) and ECM formation biomarkers (PRO-C3, PRO-C4 and PRO-C5) were measured in serum using ELISAs. A cross-sectional analysis at baseline and a longitudinal analysis was performed. RESULTS: Compared with HC, veSSc patients showed a strongly dysregulated turnover of type III and IV collagens (higher C3M, C4M, both p<0.0001 and PRO-C3, p=0.004, lower turnover ratios PRO-C3/C3M and PRO-C4/C4M, both p<0.0001). The biglycan degradation biomarker BGM was higher in veSSc than in HC (p=0.006), whereas the degradation biomarker for type VI collagen, C6M, was lower (p=0.002). In an ROC analysis, biomarkers of type III and IV collagen excellently distinguished between veSSc and HC: C3M, AUC=0.95, p<0.0001; C4M, AUC=0.97, p<0.0001; turnover ratios PRO-C3/C3M, AUC=0.80, p<0.0001; PRO-C4/C4M, AUC=0.97; p<0.0001. CONCLUSION: These findings indicate ECM remodelling as a very early phenomenon of SSc occurring in parallel with microvascular and autoimmune changes. Biomarkers of type III and IV collagens distinguished between veSSc patients and HC, indicating them as potential biomarkers for the detection of veSSc.


Assuntos
Biomarcadores , Escleroderma Sistêmico , Humanos , Escleroderma Sistêmico/sangue , Escleroderma Sistêmico/diagnóstico , Biomarcadores/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Curva ROC , Idoso , Biglicano/sangue , Biglicano/metabolismo , Colágeno Tipo III/sangue , Colágeno Tipo III/metabolismo
3.
BMC Cancer ; 24(1): 516, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654221

RESUMO

BACKGROUND: Numerous studies have indicated that cancer-associated fibroblasts (CAFs) play a crucial role in the progression of colorectal cancer (CRC). However, there are still many unknowns regarding the exact role of CAF subtypes in CRC. METHODS: The data for this study were obtained from bulk, single-cell, and spatial transcriptomic sequencing data. Bioinformatics analysis, in vitro experiments, and machine learning methods were employed to investigate the functional characteristics of CAF subtypes and construct prognostic models. RESULTS: Our study demonstrates that Biglycan (BGN) positive cancer-associated fibroblasts (BGN + Fib) serve as a driver in colorectal cancer (CRC). The proportion of BGN + Fib increases gradually with the progression of CRC, and high infiltration of BGN + Fib is associated with poor prognosis in terms of overall survival (OS) and recurrence-free survival (RFS) in CRC. Downregulation of BGN expression in cancer-associated fibroblasts (CAFs) significantly reduces migration and proliferation of CRC cells. Among 101 combinations of 10 machine learning algorithms, the StepCox[both] + plsRcox combination was utilized to develop a BGN + Fib derived risk signature (BGNFRS). BGNFRS was identified as an independent adverse prognostic factor for CRC OS and RFS, outperforming 92 previously published risk signatures. A Nomogram model constructed based on BGNFRS and clinical-pathological features proved to be a valuable tool for predicting CRC prognosis. CONCLUSION: In summary, our study identified BGN + Fib as drivers of CRC, and the derived BGNFRS was effective in predicting the OS and RFS of CRC patients.


Assuntos
Biglicano , Fibroblastos Associados a Câncer , Neoplasias Colorretais , Aprendizado de Máquina , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/metabolismo , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Prognóstico , Biglicano/metabolismo , Biglicano/genética , Proliferação de Células , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Feminino , Movimento Celular , Microambiente Tumoral
4.
Cell Tissue Res ; 396(3): 343-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492000

RESUMO

Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.


Assuntos
Dentina , Camundongos Knockout , Receptores de Calcitriol , Animais , Receptores de Calcitriol/metabolismo , Dentina/metabolismo , Camundongos , Biglicano/metabolismo , Cicatrização , Camundongos Endogâmicos C57BL , Decorina/metabolismo , Calcificação Fisiológica
5.
J Clin Res Pediatr Endocrinol ; 16(2): 151-159, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38238969

RESUMO

Objective: In animal models of obesity, adipocyte-derived versican, and macrophage-derived biglycan play a crucial role in mediating adipose tissue inflammation. The aim was to investigate levels of versican and biglycan in obese children and any potential association with body adipose tissue and hepatosteatosis. Methods: Serum levels of versican, biglycan, interleukin-6 (IL-6), and high sensitivity C-reactive protein (hsCRP) were measured by ELISA. Fat deposition in the liver, spleen, and subcutaneous adipose tissue was calculated using the IDEAL-IQ sequences in magnetic resonance images. Bioimpedance analysis was performed using the Tanita BC 418 MA device. Results: The study included 36 obese and 30 healthy children. The age of obese children was 13.6 (7.5-17.9) years, while the age of normal weight children was 13.0 (7.2-17.9) years (p=0.693). Serum levels of versican, hsCRP, and IL-6 were higher in the obese group (p=0.044, p=0.039, p=0.024, respectively), while no significant difference was found in biglycan levels between the groups. There was a positive correlation between versican, biglycan, hsCRP, and IL-6 (r=0.381 p=0.002, r=0.281 p=0.036, rho=0.426 p=0.001, r=0.424 p=0.001, rho=0.305 p=0.017, rho=0.748 p<0.001, respectively). Magnetic resonance imaging revealed higher segmental and global hepatic steatosis in obese children. There was no relationship between hepatic fat content and versican, biglycan, IL-6, and hsCRP. Versican, biglycan, hsCRP, and IL-6 were not predictive of hepatosteatosis. Body fat percentage >32% provided a predictive sensitivity of 81.8% and a specificity of 70.5% for hepatosteatosis [area under the curve (AUC): 0.819, p<0.001]. Similarly, a body mass index standard deviation score >1.75 yielded a predictive sensitivity of 81.8% and a specificity of 69.8% for predicting hepatosteatosis (AUC: 0.789, p<0.001). Conclusion: Obese children have higher levels of versican, hsCRP, and IL-6, and more fatty liver than their healthy peers.


Assuntos
Tecido Adiposo , Biglicano , Obesidade Infantil , Versicanas , Humanos , Versicanas/metabolismo , Versicanas/sangue , Criança , Masculino , Feminino , Biglicano/metabolismo , Biglicano/sangue , Adolescente , Tecido Adiposo/metabolismo , Obesidade Infantil/sangue , Obesidade Infantil/metabolismo , Macrófagos/metabolismo , Adipócitos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/sangue , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Interleucina-6/sangue , Estudos de Casos e Controles
6.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256024

RESUMO

Proteoglycans are differentially expressed in different atherosclerotic plaque phenotypes, with biglycan and decorin characteristic of ruptured plaques and versican and hyaluronan more prominent in eroded plaques. Following plaque disruption, the exposure of extracellular matrix (ECM) proteins triggers platelet adhesion and thrombus formation. In this study, the impact of differential plaque composition on platelet function and thrombus formation was investigated. Platelet adhesion, activation and thrombus formation under different shear stress conditions were assessed in response to individual proteoglycans and composites representing different plaque phenotypes. The results demonstrated that all the proteoglycans tested mediated platelet adhesion but not platelet activation, and the extent of adhesion observed was significantly lower than that observed with type I and type III collagens. Thrombus formation upon the rupture and erosion ECM composites was significantly reduced (p < 0.05) compared to relevant collagen alone, indicating that proteoglycans negatively regulate platelet collagen responses. This was supported by results demonstrating that the addition of soluble biglycan or decorin to whole blood markedly reduced thrombus formation on type I collagen (p < 0.05). Interestingly, thrombus formation upon the erosion composite displayed aspirin sensitivity, whereas the rupture composite was intensive to aspirin, having implications for current antiplatelet therapy regimes. In conclusion, differential platelet responses and antiplatelet efficacy are observed on ECM composites phenotypic of plaque rupture and erosion. Proteoglycans inhibit thrombus formation and may offer a novel plaque-specific approach to limit arterial thrombosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Trombose , Humanos , Biglicano , Decorina , Proteínas da Matriz Extracelular , Aspirina , Colágeno Tipo I
7.
Ann Biomed Eng ; 52(3): 657-670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38079083

RESUMO

Interest in studying neonatal development and the improved healing response observed in neonates is increasing, with the goal of using this work to create better therapeutics for tendon injury. Decorin and biglycan are two small leucine-rich proteoglycans that play important roles in collagen fibrillogenesis to develop, maintain, and repair tendon structure. However, little is known about the roles of decorin and biglycan in early neonatal development and healing. The goal of this study was to determine the effects of decorin and biglycan knockdown on Achilles tendon structure and mechanics during neonatal development and recovery of these properties after injury of the neonatal tendon. We hypothesized that knockdown of decorin and biglycan would disrupt the neonatal tendon developmental process and produce tendons with impaired mechanical and structural properties. We found that knockdown of decorin and biglycan in an inducible, compound decorin/biglycan knockdown model, both during development and after injury, in neonatal mice produced tendons with reduced mechanical properties. Additionally, the collagen fibril microstructure resembled an immature tendon with a large population of small diameter fibrils and an absence of larger diameter fibrils. Overall, this study demonstrates the importance of decorin and biglycan in facilitating tendon growth and maturation during neonatal development.


Assuntos
Tendão do Calcâneo , Animais , Camundongos , Tendão do Calcâneo/fisiologia , Biglicano/genética , Colágeno/química , Decorina/genética , Proteínas da Matriz Extracelular
8.
Exp Dermatol ; 33(1): e14969, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967213

RESUMO

Alopecia is a prevalent problem of cutaneous appendages and lacks effective therapy. Recently, researchers have been focusing on mesenchymal components of the hair follicle, i.e. dermal papilla cells, and we previously identified biglycan secreted by dermal papilla cells as the key factor responsible for hair follicle-inducing ability. In this research, we hypothesized biglycan played an important role in hair follicle cycle and regeneration through regulating the Wnt signalling pathway. To characterize the hair follicle cycle and the expression pattern of biglycan, we observed hair follicle morphology in C57BL/6 mice on Days 0, 3, 5, 12 and 18 post-depilation and found that biglycan is highly expressed at both mRNA and protein levels throughout anagen in HFs. To explore the role of biglycan during the phase transit process and regeneration, local injections were administered in C57BL/6 and nude mice. Results showed that local injection of biglycan in anagen HFs delayed catagen progression and involve activating the Wnt/ß-catenin signalling pathway. Furthermore, local injection of biglycan induced HF regeneration and up-regulated expression of key Wnt factors in nude mice. In addition, cell analyses exhibited biglycan knockdown inactivated the Wnt signalling pathway in early-passage dermal papilla cell, whereas biglycan overexpression or incubation activated the Wnt signalling pathway in late-passage dermal papilla cells. These results indicate that biglycan plays a critical role in regulating HF cycle transit and regeneration in a paracrine and autocrine fashion by activating the Wnt/ß-catenin signalling pathway and could be a potential treatment target for hair loss diseases.


Assuntos
Folículo Piloso , beta Catenina , Camundongos , Animais , Folículo Piloso/metabolismo , beta Catenina/metabolismo , Camundongos Nus , Biglicano/metabolismo , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/genética , Alopecia/metabolismo , Regeneração/fisiologia , Proliferação de Células
9.
Immunol Cell Biol ; 102(2): 97-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982607

RESUMO

Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.


Assuntos
Glicocálix , Sindecana-1 , Sindecana-1/metabolismo , Glicocálix/metabolismo , Sindecana-3/metabolismo , Sindecana-4/metabolismo , Sindecana-2/metabolismo , Biglicano/metabolismo , Glipicanas/metabolismo , Decorina/metabolismo , Quimiocinas/metabolismo , Anti-Inflamatórios/metabolismo
10.
Rev Bras Ginecol Obstet ; 45(12): e754-e763, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38141595

RESUMO

OBJECTIVE: The serum ischemia modified albumin (IMA), biglycan, and decorin levels of pregnant women who were hospitalized for threatened preterm labor were measured. METHODS: Fifty-one consecutive pregnant women with a single pregnancy between the 24th and 36th weeks with a diagnosis of threatened preterm labor were included in the present prospective cohort study. RESULTS: As a result of multivariate logistic regression analysis for predicting preterm delivery within 24 hours, 48 hours, 7 days, 14 days, ≤ 35 gestational weeks, and ≤ 37 gestational weeks after admission, area under the curve (AUC) (95% confidence interval [CI[) values were 0.95 (0.89-1.00), 0.93 (0.86-0.99), 0.91 (0.83-0.98), 0.92 (0.85-0.99), 0.82 (0.69-0.96), and 0.89 (0.80-0.98), respectively. In the present study, IMA and biglycan levels were found to be higher and decorin levels lower in women admitted to the hospital with threatened preterm labor and who gave preterm birth within 48 hours compared with those who gave birth after 48 hours. CONCLUSION: In pregnant women admitted to the hospital with threatened preterm labor, the prediction preterm delivery of the combined model created by adding IMA, decorin, and biglycan in addition to the TVS CL measurement was higher than the TVS CL measurement alone. CLINICAL TRIAL REGISTRATION: The present trial was registered at ClinicalTrials.gov, number NCT04451928.


OBJETIVO: Medir os níveis séricos de albumina modificada por isquemia (IMA), biglicano e decorina de gestantes hospitalizadas por ameaça de parto prematuro. MéTODOS: Cinquenta e uma mulheres grávidas consecutivas com uma única gravidez entre a 24ª e a 36ª semanas com diagnóstico de ameaça de trabalho de parto prematuro foram incluídas no presente estudo de corte prospectivo. RESULTADOS: Como resultado da análise de regressão logística multivariada para prever parto prematuro dentro de 24 horas, 48 horas, 7 dias, 14 dias, ≤ 35 semanas gestacionais e ≤ 37 semanas gestacionais após a admissão, área sob a curva (AUC) (95% de confiança os valores de intervalo [CI[) foram 0,95 (0,89­1,00), 0,93 (0,86­0,99), 0,91 (0,83­0,98), 0,92 (0,85­0,99), 0,82 (0,69­0,96) e 0,89 (0,80­0,98), respectivamente. No presente estudo, os níveis de IMA e biglican foram maiores e os níveis de decorin menores em mulheres admitidas no hospital com ameaça de trabalho de parto prematuro e que tiveram parto prematuro em 48 horas em comparação com aquelas que deram à luz após 48 horas. CONCLUSãO: Em gestantes admitidas no hospital com ameaça de trabalho de parto prematuro, a predição de parto prematuro do modelo combinado criado pela adição de IMA, decorin e biglican, além da medição do TVS CL, foi maior do que a medição do TVS CL isoladamente. REGISTRO DO ENSAIO CLíNICO: O presente ensaio foi registrado em ClinicalTrials.gov, número NCT04451928.


Assuntos
Trabalho de Parto Prematuro , Nascimento Prematuro , Recém-Nascido , Feminino , Gravidez , Humanos , Decorina , Estudos Prospectivos , Biomarcadores , Biglicano , Albumina Sérica , Isquemia
11.
Matrix Biol ; 123: 48-58, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793508

RESUMO

In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Proteoglicanos Pequenos Ricos em Leucina , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Decorina/genética , Decorina/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Sinais (Psicologia) , Sulfato de Queratano/metabolismo , Biglicano/genética , Biglicano/metabolismo , Matriz Extracelular/metabolismo
12.
Ultrastruct Pathol ; 47(6): 484-494, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37840262

RESUMO

Thin endometrium, defined as an endometrial thickness of less than 7 mm during the late follicular phase, is a common cause of frequent cancelation of embryo transfers or recurrent implantation failure during assisted reproductive treatment. Small proteoglycans regulate intracellular signaling cascades by bridging other matrix molecules and tissue elements, affecting cell proliferation, adhesion, migration, and cytokine concentration. The aim of the study is to investigate the role of small leucine-rich proteoglycans in the pathogenesis of thin and thick human endometrium and their differences from normal endometrium in terms of fine structure properties. Normal, thin, and thick endometrial samples were collected, and small leucine-rich proteoglycans (SLRPs), decorin, lumican, biglycan, and fibromodulin immunoreactivities were comparatively analyzed immunohistochemically. The data were compared statistically. Moreover, ultrastructural differences among the groups were evaluated by transmission electron microscopy. The immunoreactivities of decorin, lumican, and biglycan were higher in the thin endometrial glandular epithelium and stroma compared to the normal and thick endometrium (p < .001). Fibromodulin immunoreactivity was also higher in the thin endometrial glandular epithelium than in the normal and thick endometrium (p < .001). However, there was no statistical difference in the stroma among the groups. Ultrastructural features were not profoundly different among cases. Telocytes, however, were not seen in the thin endometrium in contrast to normal and thin endometrial tissues. These findings suggest a possible role of changes in proteoglycan levels in the pathogenesis of thin endometrium.


Assuntos
Proteoglicanos Pequenos Ricos em Leucina , Telócitos , Feminino , Humanos , Biglicano/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Lumicana/metabolismo , Decorina/metabolismo , Fibromodulina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Endométrio , Telócitos/metabolismo
13.
J Toxicol Sci ; 48(8): 457-467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532579

RESUMO

Cadmium is an environmental pollutant and a risk factor for atherosclerosis. In the atherosclerotic intima, dermatan sulfate chains accelerate accumulation and oxidation of LDL cholesterol. The major type of dermatan sulfate proteoglycan that is synthesized by vascular endothelial cells is biglycan. In the present study, we analyzed the effect of cadmium on the biglycan synthesis using cultured bovine aortic endothelial cells. Cadmium did not induce biglycan mRNA and core protein expression; however, it elongated the chondroitin/dermatan sulfate chains of biglycan. Among elongation enzymes of the chondroitin/dermatan sulfate chain, chondroitin sulfate synthase 1 (CHSY1) mRNA and protein expression were dose- and time-dependently upregulated by cadmium depending on protein kinase Cα. This finding suggests that CHSY1-dependent elongation of chondroitin/dermatan sulfate chains of biglycan may exacerbate cadmium-induced atherosclerosis.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Animais , Bovinos , Biglicano , Dermatan Sulfato/metabolismo , Cádmio , Células Endoteliais/metabolismo , RNA Mensageiro , Proteínas Quinases , Células Cultivadas
14.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446002

RESUMO

Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite , Humanos , Agrecanas/metabolismo , Cartilagem Articular/metabolismo , Decorina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Biglicano/metabolismo , Osteoartrite/diagnóstico , Osteoartrite/metabolismo , Doenças das Cartilagens/metabolismo , Lectinas Tipo C/metabolismo
15.
Nat Cancer ; 4(8): 1102-1121, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460872

RESUMO

Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.


Assuntos
Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Masculino , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/genética , Células Mieloides/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Osteopontina/metabolismo , Biglicano/metabolismo
16.
J Orthop Res ; 41(10): 2238-2249, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37132501

RESUMO

The small leucine-rich proteoglycans, decorin and biglycan, are minor components of the tendon extracellular matrix that regulate fibrillogenesis and matrix assembly. Our study objective was to define the temporal roles of decorin and biglycan during tendon healing using inducible knockout mice to include genetic knockdown at specific phases of healing: time of injury, the proliferative phase, and the remodeling phase. We hypothesized that knockdown of decorin or biglycan would adversely affect tendon healing, and that by prescribing the timing of knockdown, we could elucidate the temporal roles of these proteins during healing. Contrary to our hypothesis, decorin knockdown did not affect tendon healing. However, when biglycan was knocked down, either alone or coupled with decorin, tendon modulus was increased relative to wild-type mice, and this finding was consistent among all induction timepoints. At 6 weeks postinjury, we observed increased expression of genes associated with the extracellular matrix and growth factor signaling in the biglycan knockdown and compound decorin-biglycan knockdown tendons. Interestingly, these groups demonstrated opposing trends in gene expression as a function of knockdown-induction timepoint, highlighting distinct temporal roles for decorin and biglycan. In summary, this study finds that biglycan plays multiple functions throughout tendon healing, with the most impactful, detrimental role likely occurring during late-stage healing. Statement of clinical importance: This study helps to define the molecular factors that regulate tendon healing, which may aid in the development of new clinical therapies.


Assuntos
Tendões , Cicatrização , Animais , Camundongos , Biglicano/genética , Biglicano/metabolismo , Decorina , Proteínas da Matriz Extracelular/metabolismo , Camundongos Knockout , Tendões/fisiologia , Cicatrização/fisiologia
17.
J Biochem Mol Toxicol ; 37(8): e23381, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37128782

RESUMO

Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+ , malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+ , MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis.


Assuntos
Ferroptose , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ferroptose/genética , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Biglicano/genética , Biglicano/metabolismo
18.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047781

RESUMO

BICD2 variants have been linked to neurodegenerative disorders like spinal muscular atrophy with lower extremity predominance (SMALED2) or hereditary spastic paraplegia (HSP). Recently, mutations in BICD2 were implicated in myopathies. Here, we present one patient with a known and six patients with novel BICD2 missense variants, further characterizing the molecular landscape of this heterogenous neurological disorder. A total of seven patients were genotyped and phenotyped. Skeletal muscle biopsies were analyzed by histology, electron microscopy, and protein profiling to define pathological hallmarks and pathogenicity markers with consecutive validation using fluorescence microscopy. Clinical and MRI-features revealed a typical pattern of distal paresis of the lower extremities as characteristic features of a BICD2-associated disorder. Histological evaluation showed myopathic features of varying severity including fiber size variation, lipofibromatosis, and fiber splittings. Proteomic analysis with subsequent fluorescence analysis revealed an altered abundance and localization of thrombospondin-4 and biglycan. Our combined clinical, histopathological, and proteomic approaches provide new insights into the pathophysiology of BICD2-associated disorders, confirming a primary muscle cell vulnerability. In this context, biglycan and thrombospondin-4 have been identified, may serve as tissue pathogenicity markers, and might be linked to perturbed protein secretion based on an impaired vesicular transportation.


Assuntos
Proteínas Associadas aos Microtúbulos , Atrofia Muscular Espinal , Humanos , Biglicano/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteômica , Atrofia Muscular Espinal/genética , Mutação , Músculo Esquelético/metabolismo
19.
Circulation ; 147(20): 1518-1533, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37013819

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is characterized by a phenotypic switch of valvular interstitial cells to bone-forming cells. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors at the interface between innate immunity and tissue repair. Type I interferons (IFNs) are not only crucial for an adequate antiviral response but also implicated in bone formation. We hypothesized that the accumulation of endogenous TLR3 ligands in the valvular leaflets may promote the generation of osteoblast-like cells through enhanced type I IFN signaling. METHODS: Human valvular interstitial cells isolated from aortic valves were challenged with mechanical strain or synthetic TLR3 agonists and analyzed for bone formation, gene expression profiles, and IFN signaling pathways. Different inhibitors were used to delineate the engaged signaling pathways. Moreover, we screened a variety of potential lipids and proteoglycans known to accumulate in CAVD lesions as potential TLR3 ligands. Ligand-receptor interactions were characterized by in silico modeling and verified through immunoprecipitation experiments. Biglycan (Bgn), Tlr3, and IFN-α/ß receptor alpha chain (Ifnar1)-deficient mice and a specific zebrafish model were used to study the implication of the biglycan (BGN)-TLR3-IFN axis in both CAVD and bone formation in vivo. Two large-scale cohorts (GERA [Genetic Epidemiology Research on Adult Health and Aging], n=55 192 with 3469 aortic stenosis cases; UK Biobank, n=257 231 with 2213 aortic stenosis cases) were examined for genetic variation at genes implicated in BGN-TLR3-IFN signaling associating with CAVD in humans. RESULTS: Here, we identify TLR3 as a central molecular regulator of calcification in valvular interstitial cells and unravel BGN as a new endogenous agonist of TLR3. Posttranslational BGN maturation by xylosyltransferase 1 (XYLT1) is required for TLR3 activation. Moreover, BGN induces the transdifferentiation of valvular interstitial cells into bone-forming osteoblasts through the TLR3-dependent induction of type I IFNs. It is intriguing that Bgn-/-, Tlr3-/-, and Ifnar1-/- mice are protected against CAVD and display impaired bone formation. Meta-analysis of 2 large-scale cohorts with >300 000 individuals reveals that genetic variation at loci relevant to the XYLT1-BGN-TLR3-interferon-α/ß receptor alpha chain (IFNAR) 1 pathway is associated with CAVD in humans. CONCLUSIONS: This study identifies the BGN-TLR3-IFNAR1 axis as an evolutionarily conserved pathway governing calcification of the aortic valve and reveals a potential therapeutic target to prevent CAVD.


Assuntos
Estenose da Valva Aórtica , Calcinose , Adulto , Animais , Humanos , Camundongos , Valva Aórtica/patologia , Estenose da Valva Aórtica/patologia , Biglicano/metabolismo , Calcinose/metabolismo , Células Cultivadas , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Peixe-Zebra
20.
Cancer Res ; 83(10): 1725-1741, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37067922

RESUMO

Glioblastomas (GBM) are aggressive brain tumors with extensive intratumoral heterogeneity that contributes to treatment resistance. Spatial characterization of GBMs could provide insights into the role of the brain tumor microenvironment in regulating intratumoral heterogeneity. Here, we performed spatial transcriptomic and single-cell analyses of the mouse and human GBM microenvironment to dissect the impact of distinct anatomical regions of brains on GBM. In a syngeneic GBM mouse model, spatial transcriptomics revealed that numerous extracellular matrix (ECM) molecules, including biglycan, were elevated in areas infiltrated with brain tumor-initiating cells (BTIC). Single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing showed that ECM molecules were differentially expressed by GBM cells based on their differentiation and cellular programming phenotypes. Exogeneous biglycan or overexpression of biglycan resulted in a higher proliferation rate of BTICs, which was associated mechanistically with low-density lipoprotein receptor-related protein 6 (LRP6) binding and activation of the Wnt/ß-catenin pathway. Biglycan-overexpressing BTICs developed into larger tumors and displayed mesenchymal phenotypes when implanted intracranially in mice. This study points to the spatial heterogeneity of ECM molecules in GBM and suggests that the biglycan-LRP6 axis could be a therapeutic target to curb tumor growth. SIGNIFICANCE: Characterization of the spatial heterogeneity of glioblastoma identifies regulators of brain tumor-initiating cells and tumor growth that could serve as candidates for therapeutic interventions to improve the prognosis of patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Biglicano/genética , Biglicano/metabolismo , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Análise Espacial , Proliferação de Células , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...