Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.677
Filtrar
1.
J Environ Radioact ; 276: 107448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749215

RESUMO

Among environment contaminants, 210Pb and 210Po have gained significant research attention due to their radioactive toxicity. Moss, with its exceptional adsorption capability for these radionuclides, serves as an indicator for environmental 210Pb and 210Po pollution. The paper reviews a total of 138 articles, summarizing the common methods and analytical results of 210Pb and 210Po research in moss. It elucidates the accumulation characteristics of 210Pb and 210Po in moss, discusses current research challenges, potential solutions, and future prospects in this field. Existing literature indicates limitations in common measurement techniques for 210Pb and 210Po in moss, characterized by high detection limits or lengthy sample processing. The concentration of 210Pb and 210Po within moss display substantial variations across different regions worldwide, ranging from

Assuntos
Briófitas , Radioisótopos de Chumbo , Polônio , Monitoramento de Radiação , Radioisótopos de Chumbo/análise , Polônio/análise , Briófitas/química , Monitoramento de Radiação/métodos
2.
Environ Microbiol ; 26(5): e16631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757479

RESUMO

Peatlands, one of the oldest ecosystems, globally store significant amounts of carbon and freshwater. However, they are under severe threat from human activities, leading to changes in water, nutrient and temperature regimes in these delicate systems. Such shifts can trigger a substantial carbon flux into the atmosphere and diminish the water-holding capacity of peatlands. Microbes associated with moss in peatlands play a crucial role in providing these ecosystem services, which are at risk due to global change. Therefore, understanding the factors influencing microbial composition and function is vital. Our study focused on five peatlands along an altitudinal gradient in Switzerland, where we sampled moss on hummocks containing Sarracenia purpurea. Structural equation modelling revealed that habitat condition was the primary predictor of community structure and directly influenced other environmental variables. Interestingly, the microbial composition was not linked to the local moss species identity. Instead, microbial communities varied significantly between sites due to differences in acidity levels and nitrogen availability. This finding was also mirrored in a co-occurrence network analysis, which displayed a distinct distribution of indicator species for acidity and nitrogen availability. Therefore, peatland conservation should take into account the critical habitat characteristics of moss-associated microbial communities.


Assuntos
Bactérias , Briófitas , Ecossistema , Microbiota , Suíça , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Briófitas/microbiologia , Solo/química , Microbiologia do Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Áreas Alagadas , Biodiversidade
3.
Sci Total Environ ; 932: 173045, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734098

RESUMO

The main objective of this study was to develop and test a method of separating externally deposited Mn oxyhydroxides and co-precipitated elements from samples of aquatic moss (the moss Fontinalis antipyretica). The method, which uses 0.1 M hydroxylamine to dissolve the oxyhydroxides, was tested with samples collected in rivers with slightly acidic, well­oxygenated waters, where high rates of Mn precipitation occur. The method was effective (it extracted up to 84 % of the Mn) and selective (Fe oxyhydroxides were not extracted). The elements Ba, Cd, Zn and Ni were associated with the Mn oxyhydroxides, while Al, As, Cr, Cu, Fe, Hg and Pb were not. Deposition of Mn therefore increased the concentration of some elements in the moss samples. However, as Mn precipitation depends on Eh and pH, which are independent of the concentrations of the elements in water, the relationship between water and moss element concentrations is not clear (i.e. the data are noisy). This is a problem in biomonitoring studies, which assume a close relationship between element concentrations in moss and water. The value of the proposed extraction method is that it can be used to correct the effect of Mn deposition. We present an example of this correction applied to the Cd concentrations in the test data. We found that the noise introduced by the Mn, including age-related effects (observed by comparing concentrations in 0-2.5 and 2.2-5.0 cm sections from the shoot apex), can be reduced. Additionally, the correction revealed recent increases in Cd concentrations in one site that were not observed in the uncorrected data. Another finding of interest was the low content of total Mn and different extractability (of most elements) observed in moss samples collected in alkaline waters. Finally, we discuss how future studies designed for different environmental scenarios can benefit from application of the proposed method.


Assuntos
Briófitas , Monitoramento Ambiental , Oligoelementos , Poluentes Químicos da Água , Oligoelementos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Briófitas/química , Manganês/análise , Bryopsida/química
4.
Environ Monit Assess ; 196(6): 513, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709416

RESUMO

Anthropogenic pollution impacts human and environmental health, climate change, and air quality. Karabük, an industrial area from the Black Sea Region in northern Türkiye, is vulnerable to environmental pollution, particularly soil and air. In this research on methodological aspects, we analyzed the concentrations of six potential toxic metals in the atmospheric deposition of the city using the passive method of moss biomonitoring. The ground-growing terrestrial moss, Hypnum cupressiforme Hedw., was collected during the dry season of August 2023 at 20 urban points. The concentrations of Cr, Cu, Cd, Ni, Pb, and Co were determined in mosses by the ICP-MS method. Descriptive statistical analysis was employed to evaluate the status and variance in the spatial distribution of the studied metals, and multivariate analysis, Pearson correlation, and cluster analysis were used to investigate the associations of elements and discuss the most probable sources of these elements in the study area. Cd and Co showed positive and significant inter-element correlations (r > 0.938), representing an anthropogenic association mostly present in the air particles emitted from several metal plants. The results showed substantial impacts from local industry, manufactured activity, and soil dust emissions. Steel and iron smelter plants and cement factories are the biggest emitters of trace metals in the Karabük area and the primary sources of Cr, Cd, Ni, and Co deposition.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais Pesados , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Monitoramento Biológico/métodos , Cidades , Briófitas/química , Indústrias , Poluição do Ar/estatística & dados numéricos , Turquia
5.
Sci Total Environ ; 934: 173021, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740203

RESUMO

Persistent organic pollutants (POPs) pose a significant global threat to human health and the environment, and require continuous monitoring due to their ability to migrate long distances. Active biomonitoring using cloned mosses is an inexpensive but underexplored method to assess POPs, mainly due to the poor understanding of the loading mechanisms of these pollutants in mosses. In this work, Fontinalis antipyretica (aquatic moss) and Sphagnum palustre (terrestrial moss) were evaluated as potential biomonitors of hexachlorocyclohexanes (HCHs: α-, ß-, γ-, δ-HCH), crucial POPs. Moss clones, grown in photobioreactors and subsequently oven-dried, were used. Their lipid composition and distribution were characterized through molecular and histochemical studies. Adsorption experiments were carried out in the aqueous phase using the repeated additions method and in the gas phase using an active air sampling technique based on solid-phase extraction, a pioneering approach in moss research. F. antipyretica exhibited greater lipid content in the walls of most cells and higher adsorption capacity for all HCH isomers in both gaseous and liquid environments. These findings highlight the need for further investigation of POP loading mechanisms in mosses and open the door to explore other species based on their lipid content.


Assuntos
Monitoramento Ambiental , Hexaclorocicloexano , Hexaclorocicloexano/análise , Monitoramento Ambiental/métodos , Adsorção , Briófitas/química , Poluentes Ambientais/análise , Monitoramento Biológico/métodos , Sphagnopsida/química
6.
J Hazard Mater ; 470: 134266, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626682

RESUMO

The role of forest ecosystems in the global mercury (Hg) biogeochemical cycle is widely recognized; however, using litterfall as a surrogate to assess the Hg sink function of forests encounters limitations. We investigated the accumulation characteristics and influencing factors of Hg in mosses from two remote subalpine forests in southwestern China. The results indicated that there was high Hg accumulation in subalpine forest mosses, with average concentrations of 82 ± 49 ng g-1 for total mercury (THg) and 1.3 ± 0.8 ng g-1 for methylmercury (MeHg). We demonstrated that the accumulation capacity of Hg in mosses was significantly dependent on species and substrates (micro-habitats), the mosses on tree trunks exhibited significantly elevated Hg accumulation levels (THg 132 ± 56 ng g-1, MeHg 1.6 ± 0.2 ng g-1) compared to mosses in other substrates. The surface morphologies and biochemical components of leaf (phyllidia), such as cation exchange capacity (CEC), pectin, uronic acid, and metallothionein, play a crucial role in the accumulation of Hg by mosses. These findings provide valuable insights into Hg accumulation in forest mosses. Suggesting that the contribution of mosses Hg accumulation should be considered when assessing atmospheric Hg sinks of forests.


Assuntos
Briófitas , Florestas , Mercúrio , Compostos de Metilmercúrio , China , Mercúrio/metabolismo , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/análise , Briófitas/metabolismo , Briófitas/química , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química
7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 739-748, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646762

RESUMO

Biological soil crust (biocrust) is widely distributed on the Loess Plateau and plays multiple roles in regulating ecosystem stability and multifunctionality. Few reports are available on the distribution characteristics of biocrust in this region, which limits the assessment of its ecological functions. Based on 388 sampling points in different precipitation zones on the Loess Plateau from 2009 to 2020, we analyzed the coverage, composition, and influencing factors of biocrust across different durations since land abandonment, precipitation levels, topography (slope aspect and position), and utilization of abandoned slopelands (shrubland, forest, and grassland). On this base, with the assistance of machine learning and spatial modeling methods, we generated a distribution map of biocrust and its composition at a resolution of 250 m × 250 m, and analyzed the spatial distribution of biocrust on the Loess Plateau. The results showed that the average biocrust coverage in the woodlands and grasslands was 47.3%, of which cyanobacterial crust accounted for 25.5%, moss crust 19.7%, and lichen crust 2.1%. There were significant temporal and spatial variations. Temporally, the coverage of biocrust in specific regions fluctuated with the extension of the abandoned durations and coverage of cyanobacterial crust, while moss crust showed a reverse pattern. In addition, the coverage of biocrust in the wet season was slightly higher than that in the dry season within a year. Spatially, the coverage of biocrusts on the sandy lands area on the Loess Plateau was higher and dominated by cyanobacterial crusts, while the coverage was lower in the hilly and gully area. Precipitation and utilization of abandoned land were the major factors driving biocrust coverage and composition, while slope direction and position did not show obvious effect. In addition, soil organic carbon content, pH, and texture were related to the distribution of biocrust. This study uncovered the spatial and temporal variability of biocrust distribution, which might provide important data support for the research and management of biocrust in the Loess Plateau region.


Assuntos
Ecossistema , Florestas , Líquens , Solo , Análise Espaço-Temporal , China , Solo/química , Líquens/crescimento & desenvolvimento , Pradaria , Cianobactérias/crescimento & desenvolvimento , Microbiologia do Solo , Altitude , Monitoramento Ambiental , Briófitas/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
8.
New Phytol ; 242(6): 2411-2429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38659154

RESUMO

Bryophytes, including the lineages of mosses, liverworts, and hornworts, are the second-largest photoautotroph group on Earth. Recent work across terrestrial ecosystems has highlighted how bryophytes retain and control water, fix substantial amounts of carbon (C), and contribute to nitrogen (N) cycles in forests (boreal, temperate, and tropical), tundra, peatlands, grasslands, and deserts. Understanding how changing climate affects bryophyte contributions to global cycles in different ecosystems is of primary importance. However, because of their small physical size, bryophytes have been largely ignored in research on water, C, and N cycles at global scales. Here, we review the literature on how bryophytes influence global biogeochemical cycles, and we highlight that while some aspects of global change represent critical tipping points for survival, bryophytes may also buffer many ecosystems from change due to their capacity for water, C, and N uptake and storage. However, as the thresholds of resistance of bryophytes to temperature and precipitation regime changes are mostly unknown, it is challenging to predict how long this buffering capacity will remain functional. Furthermore, as ecosystems shift their global distribution in response to changing climate, the size of different bryophyte-influenced biomes will change, resulting in shifts in the magnitude of bryophyte impacts on global ecosystem functions.


Assuntos
Briófitas , Mudança Climática , Ciclo do Nitrogênio , Água , Briófitas/fisiologia , Água/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Nitrogênio/metabolismo , Ecossistema
9.
Environ Monit Assess ; 196(5): 442, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602562

RESUMO

The Burabay State National Natural Park is a national park of the great natural and historical values located in the north of Kazakhstan, which has been exposed in recent years to significant anthropogenic impact. The moss biomonitoring was performed in the Borovoye resort community, an important tourist destination in the national park, to identify the level of air pollution. Mosses collected at 29 locations were subjected to neutron activation analysis to determine 36 elements and additionally to ICP-OES to detect the level of Cu and Pb. Factor analysis was applied to check if there are any associations between identified elements and to link them with possible emission sources. According to contamination factor and pollution load indices the investigated area belongs to three classes of pollution: unpolluted, suspected and moderate. Potential ecological risk index calculated for selected elements revealed harmless risk to human health. The level of element obtained in Burabay State National Natural Park was compared with the data available for other national parks.


Assuntos
Poluição do Ar , Briófitas , Humanos , Biomarcadores Ambientais , Parques Recreativos , Cazaquistão , Monitoramento Ambiental
10.
Sci Total Environ ; 931: 172750, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677426

RESUMO

Soil nematodes are the most abundant animals on Earth and play critical roles in regulating numerous ecosystem processes, from enhancing primary productivity to mineralizing multiple nutrients. In dryland soils, a rich community of microphyte organisms (biocrusts) provide critical habitats for soil nematodes, but their presence is being threatened by increasing aridity induced by global climate change. Despite its importance, how types of biocrusts and aridity index influence soil nematode community in dryland mountain ecosystems remains largely unknown. To fill these knowledge gaps, we conducted a field survey with contrasting aridity indexes (0.2, 0.4, and 0.6) and three types of biocrusts (cyanobacterial, cyanobacterial-moss mixed, and moss crusts) in the topsoil (0-5 cm) from the northern Chinese Loess Plateau. We found that the abundance (number of individuals per gram of soil), richness (number of Operational Taxonomic Units; OTUs), and diversity (number of different species) of soil nematodes were remarkably higher under biocrusts than in bare soils, regardless of aridity index and types of biocrusts. Our results also showed that the same variables had the highest values in moss crusts compared to cyanobacterial and cyanobacterial-moss mixed crusts. Structural equation modelling further revealed that biocrust types and traits (i.e., biocrust thickness, chlorophyll content, shear force, and penetration resistance) are the most important factors associated with both nematode abundance and richness. Together, our findings indicate that biocrusts, especially moss cover, and less stressful aridity conditions favor soil nematodes community in dryland mountain regions. Such knowledge is critical for anticipating the distribution of these animals under climate change scenarios and, ultimately, the numerous ecosystem services supported by soil nematodes.


Assuntos
Briófitas , Cianobactérias , Ecossistema , Nematoides , Solo , Animais , China , Mudança Climática , Clima Desértico , Monitoramento Ambiental
11.
Sci Total Environ ; 925: 171592, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479526

RESUMO

Climate and land-use changes are altering fire regimes in many regions around the world. To date, most studies have focused on the effects of altered fire regimes on woody and herbaceous communities, while the mechanisms driving post-fire bryophyte succession remain poorly understood, particularly in Mediterranean-type ecosystems. Here, we examined changes in bryophyte functional composition along a post-fire chronosequence (ranging from 1 to 20+ years) in Pyrenean oak woodlands (northeastern Portugal). To do so, we defined bryophyte functional groups based on seven morphological, reproductive, and life history traits. Then, we fitted linear and structural equation models to disentangle the direct and indirect effects of fire (time since fire and fire intensity), vegetation structure, climate, topography, and edaphic conditions on the abundance of each group. We identified two main functional groups: early colonizers (species with traits associated with strong colonization ability and desiccation tolerance) and perennial stayers (species with high competitive ability, i.e., large perennial mosses). Overall, the abundance of early colonizer species decreased with time since fire and increased with fire intensity, while the opposite was observed for perennial stayers. Thus, successional dynamics reflected a trade-off between species' competitive and colonization abilities, highlighting the role of biotic interactions later in succession. Patterns of functional composition were also consistent with changes in environmental conditions during succession, suggesting that species may experience stressful conditions (i.e., high radiation and low water availability) in early stages of post-fire succession. Our results also indicate that increased fire intensity may alter successional trajectories, leading to long-term changes in bryophyte communities. By understanding the response of bryophyte communities to fire, we were able to identify species with potential use as soil restoration materials.


Assuntos
Briófitas , Incêndios , Ecossistema , Florestas , Clima , Briófitas/fisiologia
12.
Sci Total Environ ; 926: 171786, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508248

RESUMO

Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in deglaciated barren soil, few studies have been conducted on the dynamics of biotic communities and the impact of physicochemical characteristics in shaping the different successional stages. In this study an integrated approach encompassing physicochemical parameters and molecular taxonomy was used for identifying the indicator taxa and the presence of intra- and inter-kingdom interactions in five different crust/biocrust successional stages: i) physical crust, ii) cyanobacteria-dominated biocrust, iii) cyanobacteria/moss-dominated biocrust, iv) moss-dominated biocrust and v) bryophyte carpet. The phylum Gemmatimonadota was the bacterial indicator taxon in the early stage, promoting both inter- and intra-kingdom interactions, while Cyanobacteria and Nematoda phyla played a pivotal role in formation and dynamics of cyanobacteria-dominated biocrusts. A multitrophic community, characterized by a shift from oligotrophic to copiotrophic bacteria and the presence of saproxylic arthropod and herbivore insects was found in the cyanobacteria/moss-dominated biocrust, while a more complex biota, characterized by an increased fungal abundance (classes Sordariomycetes, Leotiomycetes, and Dothideomycetes, phylum Ascomycota), associated with highly trophic consumer invertebrates (phyla Arthropoda, Rotifera, Tardigrada), was observed in moss-dominated biocrusts. The class Bdelloidea and the family Hypsibiidae (phyla Rotifera and Tardigrada, respectively) were metazoan indicator taxon in bryophyte carpet, suggesting their potential role in shaping structure and function of this late successional stage. Nitrogen and phosphorus were the main physicochemical limiting factors driving the shift among different crust/biocrust successional stages. Identification and characterization of indicator taxa, biological intra- and inter-kingdom interactions and abiotic factors driving the shift among different crust/biocrust successional stages provide a detailed picture on crust/biocrust dynamics, revealing a strong interconnection among micro- and macrobiota systems. These findings enhance our understanding of biocrust ecosystems in High Arctic, providing valuable insights for their conservation and management in response to environmental shifts due to climate change.


Assuntos
Briófitas , Cianobactérias , Animais , Ecossistema , Solo/química , Biota , Microbiologia do Solo
13.
Sci Total Environ ; 926: 171741, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508261

RESUMO

Mounting evidence points to the need for high-resolution climatic data in biodiversity analyses under global change. As we move to finer resolution, other factors than climate, including other abiotic variables and biotic interactions play, however, an increasing role, raising the question of our ability to predict community composition at fine scales. Focusing on two lineages of land plants, bryophytes and tracheophytes, we determine the relative contribution of climatic, non-climatic environmental drivers, spatial effects, community architecture and composition of one lineage to predict community composition of the other lineage, and how our ability to predict community composition varies along an elevation gradient. The relationship between community composition of one lineage and 68 environmental variables at 2-25 m spatial resolution, architecture and composition of the other lineage, and spatial factors, was investigated by hierarchical and variance partitioning across 413 2x2m plots in the Swiss Alps. Climatic data, although significant, contributed less to the model than any other variable considered. Community composition of one lineage, reflecting both direct interactions and unmeasured (hidden) abiotic factors, was the best predictor of community composition of the other lineage. Total explained variance substantially varied with elevation, underlining the fact that the strength of the species composition-environment relationship varies depending on environmental conditions. Total variance explained increased towards high elevation up to 50 %, with an increasing importance of spatial effects and vegetation architecture, pointing to increasing positive interactions and aggregated species distribution patterns in alpine environments. In tracheophytes, an increase of the contribution of non-climatic environmental factors was also observed at high elevation, in line with the hypothesis of a stronger environmental control under harsher conditions. Further improvements of our ability to predict changes in plant community composition may involve the implementation of historical variables and higher-resolution climatic data to better describe the microhabitat conditions actually experienced by organisms.


Assuntos
Briófitas , Traqueófitas , Biodiversidade , Plantas
14.
Planta ; 259(5): 92, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504021

RESUMO

MAIN CONCLUSION: Fiber-like cells with thickened cell walls of specific structure and polymer composition that includes (1 → 4)-ß-galactans develop in the outer stem cortex of several moss species gametophytes. The early land plants evolved several specialized cell types and tissues that did not exist in their aquatic ancestors. Of these, water-conducting elements and reproductive organs have received most of the research attention. The evolution of tissues specialized to fulfill a mechanical function is by far less studied despite their wide distribution in land plants. For vascular plants following a homoiohydric trajectory, the evolutionary emergence of mechanical tissues is mainly discussed starting with the fern-like plants with their hypodermal sterome or sclerified fibers that have xylan and lignin-based cell walls. However, mechanical challenges were also faced by bryophytes, which lack lignified cell-walls. To characterize mechanical tissues in the bryophyte lineage, following a poikilohydric trajectory, we used six wild moss species (Polytrichum juniperinum, Dicranum sp., Rhodobryum roseum, Eurhynchiadelphus sp., Climacium dendroides, and Hylocomium splendens) and analyzed the structure and composition of their cell walls. In all of them, the outer stem cortex of the leafy gametophytic generation had fiber-like cells with a thickened but non-lignified cell wall. Such cells have a spindle-like shape with pointed tips. The additional thick cell wall layer in those fiber-like cells is composed of sublayers with structural evidence for different cellulose microfibril orientation, and with specific polymer composition that includes (1 → 4)-ß-galactans. Thus, the basic cellular characters of the cells that provide mechanical support in vascular plant taxa (elongated cell shape, location at the periphery of a primary organ, the thickened cell wall and its peculiar composition and structure) also exist in mosses.


Assuntos
Briófitas , Bryopsida , Células Germinativas Vegetais/metabolismo , Plantas/metabolismo , Bryopsida/metabolismo , Lignina/metabolismo , Galactanos/metabolismo , Parede Celular/metabolismo
15.
Sci Total Environ ; 923: 171601, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461972

RESUMO

Mosspheres are a kind of moss transplants which offer a novel approach for detecting atmospheric pollution using devitalized mosses, as they reflect the atmospheric deposition of certain elements and polycyclic hydrocarbons. However, due to the unique features of the mosspheres such as the low elemental concentrations in the cultured material, the data treatment needs to be different from that of conventional biomonitoring studies. In this article, our objectives are to identify the best parameter for expressing the levels of chemical elements accumulated by mosspheres, and to apply a recently developed method to assess the probability of pollution of each sample and of the study area. To do this, we used data from a study in which 81 mosspheres were exposed in a medium-sized city in southwestern Europe. Comparing different pollution indices, we selected the enrichment rate (ER) as the most useful, as it is resilient to fluctuations in the initial concentrations and takes into account the time factor, allowing for greater comparability among studies. Then, we determined that the statistical distribution of the ERs of most elements fitted a normal distribution, showing that most samples did not differ significantly from the background concentrations for these elements. On the other hand, for Ni, Pb and Zn there was a subpopulation of samples above background values. In these cases, we determined the probability of pollution of each sample. Finally, we used indicator kriging to calculate the probability of pollution across the study area, identifying the polluted areas, which for some elements match the distribution of the main industries and highways, indicating that this is a suitable protocol to map elemental pollution in urban areas.


Assuntos
Poluentes Atmosféricos , Briófitas , Metais Pesados , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluição Ambiental
16.
Adv Sci (Weinh) ; 11(20): e2306767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552153

RESUMO

Plant movements for survival are nontrivial. Antheridia in the moss Physcomitrium patens (P. patens) use motion to eject sperm in the presence of water. However, the biological and mechanical mechanisms that actuate the process are unknown. Here, the burst of the antheridium of P. patens, triggered by water, results from elastic instability and is determined by an asymmetric change in cell geometry. The tension generated in jacket cell walls of antheridium arises from turgor pressure, and is further promoted when the inner walls of apex burst in hydration, causing water and cellular contents of apex quickly influx into sperm chamber. The outer walls of the jacket cells are strengthened by NAC transcription factor VNS4 and serve as key morphomechanical innovations to store hydrostatic energy in a confined space in P. patens. However, the antheridium in liverwort Marchantia polymorpha (M. polymorpha) adopts a different strategy for sperm release; like jacket cell outer walls of P. patens, the cells surrounding the antheridium of M. polymorpha appear to play a similar role in the storage of energy. Collectively, the work shows that plants have evolved different ingenious devices for sperm discharge and that morphological innovations can differ.


Assuntos
Bryopsida , Bryopsida/fisiologia , Bryopsida/citologia , Bryopsida/metabolismo , Marchantia/genética , Marchantia/metabolismo , Marchantia/citologia , Marchantia/fisiologia , Briófitas/fisiologia , Briófitas/metabolismo
17.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501480

RESUMO

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Assuntos
Ceras , Ceras/metabolismo , Álcoois/metabolismo , Filogenia , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Vias Biossintéticas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Aciltransferases/metabolismo , Aciltransferases/genética , Evolução Biológica , Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética
18.
Microb Ecol ; 87(1): 49, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427046

RESUMO

Moss-cyanobacteria symbioses were proposed to be based on nutrient exchange, with hosts providing C and S while bacteria provide N, but we still lack understanding of the underlying molecular mechanisms of their interactions. We investigated how contact between the ubiquitous moss Hylocomium splendens and its cyanobiont affects nutrient-related gene expression of both partners. We isolated a cyanobacterium from H. splendens and co-incubated it with washed H. splendens shoots. Cyanobacterium and moss were also incubated separately. After 1 week, we performed acetylene reduction assays to estimate N2 fixation and RNAseq to evaluate metatranscriptomes. Genes related to N2 fixation and the biosynthesis of several amino acids were up-regulated in the cyanobiont when hosted by the moss. However, S-uptake and the biosynthesis of the S-containing amino acids methionine and cysteine were down-regulated in the cyanobiont while the degradation of selenocysteine was up-regulated. In contrast, the number of differentially expressed genes in the moss was much lower, and almost no transcripts related to nutrient metabolism were affected. It is possible that, at least during the early stage of this symbiosis, the cyanobiont receives few if any nutrients from the host in return for N, suggesting that moss-cyanobacteria symbioses encompass relationships that are more plastic than a constant mutualist flow of nutrients.


Assuntos
Briófitas , Bryopsida , Cianobactérias , Simbiose , Fixação de Nitrogênio , Bryopsida/genética , Bryopsida/metabolismo , Bryopsida/microbiologia , Cianobactérias/metabolismo , Aminoácidos/metabolismo
19.
Plant Physiol Biochem ; 208: 108456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417308

RESUMO

Bryophytes, known as poikilohydric plants, possess vegetative desiccation-tolerant (DT) ability to withstand water deficit stress. Consequently, they offer valuable genetic resources for enhancing resistance to water scarcity stress. In this research, we examined the physiological, phytohormonal, and transcriptomic changes in DT mosses Calohypnum plumiforme from two populations, with and without desiccation treatment. Comparative analysis revealed population differentiation at physiological, gene sequence, and expression levels. Under desiccation stress, the activities of superoxide dismutase (SOD) and peroxidase (POD) showed significant increases, along with elevation of soluble sugars and proteins, consistent with the transcriptome changes. Notable activation of the bypass pathway of JA biosynthesis suggested their roles in compensating for JA accumulation. Furthermore, our analysis revealed significant correlations among phytohormones and DEGs in their respective signaling pathway, indicating potential complex interplays of hormones in C plumiforme. Protein phosphatase 2C (PP2C) in the abscisic acid signaling pathway emerged as the pivotal hub in the phytohormone crosstalk regulation network. Overall, this study was one of the first comprehensive transcriptome analyses of moss C. plumiforme under slow desiccation rates, expanding our knowledge of bryophyte transcriptomes and shedding light on the gene regulatory network involved in response to desiccation, as well as the evolutionary processes of local adaptation across moss populations.


Assuntos
Briófitas , Bryopsida , Transcriptoma/genética , Secas , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Bryopsida/genética , Briófitas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
20.
Plant Cell Rep ; 43(3): 63, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340191

RESUMO

KEY MESSAGE: To establish a sterile culture system and protoplast regeneration system for Bryum argenteum, and to establish and apply CRISPR/Cas9 system in Bryum argenteum. Bryum argenteum is a fascinating, cosmopolitan, and versatile moss species that thrives in various disturbed environments. Because of its comprehensive tolerance to the desiccation, high UV and extreme temperatures, it is emerging as a model moss for studying the molecular mechanisms underlying plant responses to abiotic stresses. However, the lack of basic tools such as gene transformation and targeted genome modification has hindered the understanding of the molecular mechanisms underlying the survival of B. argenteum in different environments. Here, we reported the protonema of B. argenteum can survive up to 95.4% water loss. In addition, the genome size of B. argenteum is approximately 313 Mb by kmer analysis, which is smaller than the previously reported 700 Mb. We also developed a simple method for protonema induction and an efficient protoplast isolation and regeneration protocol for B. argenteum. Furthermore, we established a PEG-mediated protoplast transient transfection and stable transformation system for B. argenteum. Two homologues of ABI3(ABA-INSENSITIVE 3) gene were successfully cloned from B. argenteum. To further investigate the function of the ABI3 gene in B. argenteum, we used the CRISPR/Cas9 genetic editing system to target the BaABI3A and BaABI3B gene in B. argenteum protoplasts. This resulted in mutagenesis at the target in about 2-5% of the regenerated plants. The isolated abi3a and abi3b mutants exhibited increased sensitivity to desiccation, suggesting that BaABI3A and BaABI3B play redundant roles in desiccation stress. Overall, our results provide a rapid and simple approach for molecular genetics in B. argenteum. This study contributes to a better understanding of the molecular mechanisms of plant adaptation to extreme environmental.


Assuntos
Briófitas , Bryopsida , Edição de Genes , Bryopsida/genética , Briófitas/genética , Estresse Fisiológico/genética , Transformação Genética , Sistemas CRISPR-Cas/genética , Protoplastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...