Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.419
Filtrar
1.
Biochemistry (Mosc) ; 89(6): 1094-1108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981703

RESUMO

Despite significant progress made over the past two decades in the treatment of chronic myeloid leukemia (CML), there is still an unmet need for effective and safe agents to treat patients with resistance and intolerance to the drugs used in clinic. In this work, we designed 2-arylaminopyrimidine amides of isoxazole-3-carboxylic acid, assessed in silico their inhibitory potential against Bcr-Abl tyrosine kinase, and determined their antitumor activity in K562 (CML), HL-60 (acute promyelocytic leukemia), and HeLa (cervical cancer) cells. Based on the analysis of computational and experimental data, three compounds with the antitumor activity against K562 and HL-60 cells were identified. The lead compound efficiently suppressed the growth of these cells, as evidenced by the low IC50 values of 2.8 ± 0.8 µM (K562) and 3.5 ± 0.2 µM (HL-60). The obtained compounds represent promising basic structures for the design of novel, effective, and safe anticancer drugs able to inhibit the catalytic activity of Bcr-Abl kinase by blocking the ATP-binding site of the enzyme.


Assuntos
Antineoplásicos , Desenho de Fármacos , Proteínas de Fusão bcr-abl , Inibidores de Proteínas Quinases , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Células K562 , Células HeLa , Pirimidinas/farmacologia , Pirimidinas/química , Simulação de Acoplamento Molecular , Células HL-60 , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Simulação por Computador
2.
BMC Med Genomics ; 17(1): 185, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997781

RESUMO

BACKGROUND: Although genome-wide association studies (GWAS) have identified multiple regions conferring genetic risk for juvenile idiopathic arthritis (JIA), we are still faced with the task of identifying the single nucleotide polymorphisms (SNPs) on the disease haplotypes that exert the biological effects that confer risk. Until we identify the risk-driving variants, identifying the genes influenced by these variants, and therefore translating genetic information to improved clinical care, will remain an insurmountable task. We used a function-based approach for identifying causal variant candidates and the target genes on JIA risk haplotypes. METHODS: We used a massively parallel reporter assay (MPRA) in myeloid K562 cells to query the effects of 5,226 SNPs in non-coding regions on JIA risk haplotypes for their ability to alter gene expression when compared to the common allele. The assay relies on 180 bp oligonucleotide reporters ("oligos") in which the allele of interest is flanked by its cognate genomic sequence. Barcodes were added randomly by PCR to each oligo to achieve > 20 barcodes per oligo to provide a quantitative read-out of gene expression for each allele. Assays were performed in both unstimulated K562 cells and cells stimulated overnight with interferon gamma (IFNg). As proof of concept, we then used CRISPRi to demonstrate the feasibility of identifying the genes regulated by enhancers harboring expression-altering SNPs. RESULTS: We identified 553 expression-altering SNPs in unstimulated K562 cells and an additional 490 in cells stimulated with IFNg. We further filtered the SNPs to identify those plausibly situated within functional chromatin, using open chromatin and H3K27ac ChIPseq peaks in unstimulated cells and open chromatin plus H3K4me1 in stimulated cells. These procedures yielded 42 unique SNPs (total = 84) for each set. Using CRISPRi, we demonstrated that enhancers harboring MPRA-screened variants in the TRAF1 and LNPEP/ERAP2 loci regulated multiple genes, suggesting complex influences of disease-driving variants. CONCLUSION: Using MPRA and CRISPRi, JIA risk haplotypes can be queried to identify plausible candidates for disease-driving variants. Once these candidate variants are identified, target genes can be identified using CRISPRi informed by the 3D chromatin structures that encompass the risk haplotypes.


Assuntos
Artrite Juvenil , Predisposição Genética para Doença , Haplótipos , Polimorfismo de Nucleotídeo Único , Humanos , Artrite Juvenil/genética , Células K562 , Estudo de Associação Genômica Ampla
3.
J Cell Mol Med ; 28(14): e18539, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046364

RESUMO

Chronic myeloid leukaemia (CML) is a haematological malignancy characterized by the constitutive tyrosine kinase activity of the BCR-ABL1 fusion protein. Flumatinib, a second-generation tyrosine kinase inhibitor, has exhibited superior clinical efficacy compared to its precursor, imatinib. However, with increased clinical use, resistance to flumatinib has emerged as a significant challenge. To investigate the mechanisms of flumatinib resistance in CML, we induced the human CML cell line K562 using a flumatinib concentration gradient method in vitro, successfully establishing a flumatinib-resistant K562/FLM cell line. This cell line exhibited cross-resistance to imatinib and doxorubicin, but remained sensitive to the antiparasitic agent ivermectin, which possesses antitumoural effects. Through cellular experimentation, we explored the resistance mechanisms, which indicated that K562/FLM cells evade flumatinib cytotoxicity by enhancing autophagy, increasing the expression of membrane transport proteins, particularly P-glycoprotein, ABCC1 and ABCC4, as well as enhancing phosphorylation of p-EGFR, p-ERK and p-STAT3 proteins. Moreover, it was found that ivermectin effectively suppressed the expression of autophagy and transport proteins in K562/FLM cells, reduced the activity of the aforementioned phosphoproteins, and promoted apoptotic cell death. Collectively, the increased autophagy, higher expression of drug-efflux proteins and hyperactivation of the EGFR/ERK/STAT3 signalling pathway were identified as pivotal elements promoting resistance to flumatinib. The significant effects of ivermectin might offer a novel therapeutic strategy to overcome flumatinib resistance and optimize the treatment outcomes of CML.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ivermectina , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ivermectina/farmacologia , Células K562 , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mesilato de Imatinib/farmacologia , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Linhagem Celular Tumoral
4.
Pharmacol Res Perspect ; 12(4): e1214, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031848

RESUMO

In the treatment of chronic myeloid leukemia (CML), resistance to BCR-ABL inhibitors makes it difficult to continue treatment and is directly related to life expectancy. Therefore, asciminib was introduced to the market as a useful drug for overcoming drug resistance. While combining molecular targeted drugs is useful to avoid drug resistance, the new BCR-ABL inhibitor asciminib and conventional BCR-ABL inhibitors should be used as monotherapy in principle. Therefore, we investigated the synergistic effect and mechanism of the combination of asciminib and imatinib. We generated imatinib-resistant cells using the human CML cell line K562, examined the effects of imatinib and asciminib exposure on cell survival using the WST-8 assay, and comprehensively analyzed genetic variation related to drug resistance using RNA-seq and real-time PCR. A synergistic effect was observed when imatinib and asciminib were combined with or without imatinib resistance. Three genes, GRRP1, ESPN, and NOXA1, were extracted as the sites of action of asciminib. Asciminib in combination with BCR-ABL inhibitors may improve the therapeutic efficacy of conventional BCR-ABL inhibitors and prevent the development of resistance. Its dosage may be effective even at minimal doses that do not cause side effects. Further verification of this mechanism of action is needed. Additionally, cross-resistance between BCR-ABL inhibitors and asciminib may occur, which needs to be clarified through further validation as soon as possible.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Proteínas de Fusão bcr-abl , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva , Mesilato de Imatinib/farmacologia , Humanos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antineoplásicos/farmacologia , Niacinamida/análogos & derivados , Pirazóis
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 653-657, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926949

RESUMO

OBJECTIVE: To explore the effect of UV radiation resistance-associated gene (UVRAG) on ferroptosis induced by sorafenib in leukemia K562 cells. METHODS: K562 cells were treated with 0, 0.625, 1.25, 2.5, 5, 10, and 20 µmol/L sorafenib for 24 or 48 hours, and the cell viability was detected by CCK-8 assay. Flow cytometry technology was used to detect the changes of reactive oxygen species (ROS) in K562 cells treated with 0, 5, and 10 µmol/L sorafenib for 24 hours. Western blot was used to detect the protein expression of GPX4 in K562 cells treated with 0, 5, and 10 µmol/L sorafenib and pretreatment with ferroptosis inhibitor. A recombinant lentiviral vector was used to construct UVRAG overexpression cell line in K562 cells. qPCR and Western blot were used to verify UVRAG gene overexpression, and Western blot detected the effect of UVRAG on the protein expression of GPX4 and HMGB1 after treatment with sorafenib. RESULTS: Different concentrations of sorafenib could significantly inhibit the proliferation of K562 cells, and the cell viability gradually decreased with the increase of concentration (r 24 h=-0.9841, r 48 h=-0.9970). The level of ROS was increased (When the concentration was 10 µmol/L, P <0.001), while the expression of GPX4 protein was decreased in the process of 0, 5, 10 µmol/L sorafenib-induced K562 cell death (P <0.05), and the decrease in GPX4 protein could be partially reversed by pretreatment with ferroptosis inhibitor (P <0.05). Compared with NC group and NC-Sorafenib group, the expression of GPX4 protein was significantly decreased (both P <0.05), while HMGB1 protein was significantly increased (both P <0.05). CONCLUSION: Sorafenib can induce ferroptosis in K562 cells, and this process can be promoted by UVRAG.


Assuntos
Ferroptose , Espécies Reativas de Oxigênio , Sorafenibe , Sorafenibe/farmacologia , Humanos , Células K562 , Espécies Reativas de Oxigênio/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proliferação de Células , Sobrevivência Celular , Proteína HMGB1/metabolismo , Proteína HMGB1/genética
6.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930852

RESUMO

Nutraceutical immune support offers potential for designing blends with complementary mechanisms of action for robust support of innate immune alertness. We documented enhanced immune activation when bovine colostrum peptides (BC-Pep) were added to an immune blend (IB) containing ß-glucans from yeast, shiitake, maitake, and botanical non-ß-glucan polysaccharides. Human peripheral blood mononuclear cells (PBMCs) were cultured with IB, BC-Pep, and IB + BC-Pep for 20 h, whereafter expression of the activation marker CD69 was evaluated on NK cells, NKT cells, and T cells. Cytokine levels were tested in culture supernatants. PBMCs were co-cultured with K562 target cells to evaluate T cell-mediated cytotoxicity. IB + BC-Pep triggered highly significant increases in IL-1ß, IL-6, and TNF-α, above that of cultures treated with matching doses of either IB or BC-Pep. NK cell and T cell activation was increased by IB + BC-Pep, reaching levels of CD69 expression several fold higher than either BC-Pep or IB alone. IB + BC-Pep significantly increased T cell-mediated cytotoxic killing of K562 target cells. This synergistic effect suggests unique amplification of signal transduction of NK cells and T cells due to modulation of IB-induced signaling pathways by BC-Pep and is of interest for further pre-clinical and clinical testing of immune defense activity against virally infected and transformed cells.


Assuntos
Colostro , Imunidade Inata , Peptídeos , beta-Glucanas , Animais , Bovinos , Humanos , Colostro/química , Colostro/imunologia , Imunidade Inata/efeitos dos fármacos , beta-Glucanas/farmacologia , beta-Glucanas/química , Peptídeos/farmacologia , Peptídeos/química , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Citocinas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Agaricales/química , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células K562 , Antígenos CD/metabolismo , Lectinas Tipo C
7.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928039

RESUMO

Different developmental genes shape frequent dynamic inter-chromosomal contacts with rDNA units in human and Drosophila cells. In the course of differentiation, changes in these contacts occur, coupled with changes in the expression of hundreds of rDNA-contacting genes. The data suggest a possible role of nucleoli in the global regulation of gene expression. However, the mechanism behind the specificity of these inter-chromosomal contacts, which are rebuilt in every cell cycle, is not yet known. Here, we describe the strong association of rDNA-contacting genes with numerous long intergenic non-coding RNAs (lincRNAs) in HEK293T cells and in initial and differentiated K562 cells. We observed that up to 600 different lincRNAs were preferentially co-expressed with multiple overlapping sets of rDNA-contacting developmental genes, and there was a strong correlation between the genomic positions of rDNA-contacting genes and lincRNA mappings. These two findings suggest that lincRNAs might guide the corresponding developmental genes toward rDNA clusters. We conclude that the inter-chromosomal interactions of rDNA-contacting genes with nucleoli might be guided by lincRNAs, which might physically link particular genomic regions with rDNA clusters.


Assuntos
Nucléolo Celular , DNA Ribossômico , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Células HEK293 , Células K562
8.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928414

RESUMO

Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.


Assuntos
Elétrons , Leucócitos , Telômero , Humanos , Células K562 , Leucócitos/efeitos da radiação , Leucócitos/metabolismo , Telômero/efeitos da radiação , Telômero/genética , Telômero/metabolismo , Leucemia/genética , Leucemia/patologia , Leucemia/radioterapia , Homeostase do Telômero/efeitos da radiação , Hibridização in Situ Fluorescente , Encurtamento do Telômero/efeitos da radiação , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação
9.
Asian Pac J Cancer Prev ; 25(6): 1959-1967, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38918657

RESUMO

BACKGROUND: As one of the main molecules in BCR-ABL signaling, c-Myc acts as a pivotal key in disease progression and disruption of long-term remission in patients with CML. OBJECTIVES: To clarify the effects of c-Myc inhibition in CML, we examined the anti-tumor property of a well-known small molecule inhibitor of c-Myc 10058-F4 on K562 cell line. METHODS: This experimental study was conducted in K562 cell line for evaluation of cytotoxic activity of 10058-F4 using Trypan blue and MTT assays. Flow cytometry and Quantitative RT-PCR analysis were also conducted to determine its mechanism of action. Additionally, Annexin/PI staining was performed for apoptosis assessment. RESULTS: The results of Trypan blue and MTT assay demonstrated that inhibition of c-Myc, as shown by suppression of c-Myc expression and its associated genes PP2A, CIP2A, and hTERT, could decrease viability and metabolic activity of K562 cells, respectively. Moreover, a robust elevation in cell population in G1-phase coupled with up-regulation of p21 and p27 expression shows that 10058-F4 could hamper cell proliferation, at least partly, through induction of G1 arrest. Accordingly, we found that 10058-F4 induced apoptosis via increasing Bax and Bad; In contrast, no significant alterations were observed NF-KB pathway-targeted anti-apoptotic genes in the mRNA levels. Notably, disruption of the NF-κB pathway with bortezomib as a common proteasome inhibitor sensitized K562 cells to the cytotoxic effect of 10058-F4, substantiating the fact that the NF-κB axis functions probably attenuate the K562 cells sensitivity to c-Myc inhibition. CONCLUSIONS: It can be concluded from the results of this study that inhibition of c-Myc induces anti-neoplastic effects on CML-derived K562 cells as well as increases the efficacy of imatinib. For further insight into the safety and effectiveness of 10058-F4 in CML, in vivo studies will be required.


Assuntos
Apoptose , Proliferação de Células , Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Proto-Oncogênicas c-myc , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células K562 , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Células Tumorais Cultivadas , Ácidos Borônicos/farmacologia , RNA Mensageiro/genética , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Telomerase/antagonistas & inibidores
10.
Biochem Biophys Res Commun ; 724: 150221, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38865811

RESUMO

MYB is a key regulator of hematopoiesis and erythropoiesis, and dysregulation of MYB is closely involved in the development of leukemia, however the mechanism of MYB regulation remains still unclear so far. Our previous study identified a long noncoding RNA (lncRNA) derived from the -34 kb enhancer of the MYB locus, which can promote MYB expression, the proliferation and migration of human leukemia cells, and is therefore termed MY34UE-AS. Then the interacting partner proteins of MY34UE-AS were identified and studied in the present study. hnRNPA0 was identified as a binding partner of MY34UE-AS through RNA pulldown assay, which was further validated through RNA immunoprecipitation (RIP). hnRNPA0 interacted with MY34UE-AS mainly through its RRM2 domain. hnRNPA0 overexpression upregulated MYB and increased the proliferation and migration of K562 cells, whereas hnRNPA0 knockdown showed opposite effects. Rescue experiments showed MY34UE-AS was required for above mentioned functions of hnRNPA0. These results reveal that hnRNPA0 is involved in leukemia through upregulating MYB expression by interacting with MY34UE-AS, suggesting that the hnRNPA0/MY34UE-AS axis could serve as a potential target for leukemia treatment.


Assuntos
Proliferação de Células , Leucemia , Proteínas Proto-Oncogênicas c-myb , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Elementos Facilitadores Genéticos , Regulação Leucêmica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Células K562 , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Phytochemistry ; 225: 114191, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901625

RESUMO

Herein, 17 previously undescribed polyacetylenes and 9 known ones were isolated from Tridax procumbens L. Their structures were identified using spectroscopic techniques (NMR, UV, IR, MS and optical rotation), the modified Mosher method, electronic circular dichroism (ECD) data and ECD calculation. The cytotoxicity of polyacetylenes on six human tumour cell lines (K562, K562/ADR, AGS, MGC-803, SPC-A-1 and MDA-MB-231) was evaluated. (3S,10R)-tridaxin B (2a), (3S,10S)-tridaxin B (2b) and tridaxin F (8) demonstrated substantial cytotoxic effects against the K562 cell line, with half-maximal inhibitory concentration (IC50) values of 2.62, 14.43 and 17.91 µM, respectively. Cell and nucleus morphology assessments and Western blot analysis confirmed that the cytotoxicity of the three polyacetylenes on K562 cells was mediated through a dose-dependent apoptosis pathway. Furthermore, (3S,10R)-tridaxin A (1a) and tridaxin G (9) exhibited considerable inhibitory effects on lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages, with IC50 values of 15.92 and 20.35 µM, respectively. Further investigations revealed that 9 exerted anti-inflammatory activities by impeding the nuclear translocation of NF-κB and down-regulating the expression of pro-inflammatory factors, including those of iNOS, COX-2, IL-1ß and IL-6, in a concentration-dependent manner. The study provides evidence that polyacetylenes from T. procumbens may serve as a potential source of anti-tumour or anti-inflammatory agents for treating related diseases.


Assuntos
Anti-Inflamatórios , Antineoplásicos Fitogênicos , Poli-Inos , Humanos , Poli-Inos/farmacologia , Poli-Inos/química , Poli-Inos/isolamento & purificação , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células RAW 264.7 , Estrutura Molecular , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Asteraceae/química , Células K562 , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Linhagem Celular Tumoral
12.
Biomater Adv ; 162: 213924, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875802

RESUMO

Chronic myeloid leukemia is a hematological cancer, where disease relapse and drug resistance are caused by bone-hosted-residual leukemia cells. An innovative resolution is bone-homing and selective-active targeting of anticancer loaded-nanovectors. Herein, ivermectin (IVM) and methyl dihydrojasmonate (MDJ)-loaded nanostructured lipid carriers (IVM-NLC) were formulated then dually decorated by lactoferrin (Lf) and alendronate (Aln) to optimize (Aln/Lf/IVM-NLC) for active-targeting and bone-homing potential, respectively. Aln/Lf/IVM-NLC (1 mg) revealed nano-size (73.67 ± 0.06 nm), low-PDI (0.43 ± 0.06), sustained-release of IVM (62.75 % at 140-h) and MDJ (78.7 % at 48-h). Aln/Lf/IVM-NLC afforded substantial antileukemic-cytotoxicity on K562-cells (4.29-fold lower IC50), higher cellular uptake and nuclear fragmentation than IVM-NLC with acceptable cytocompatibility on oral-epithelial-cells (as normal cells). Aln/Lf/IVM-NLC effectively upregulated caspase-3 and BAX (4.53 and 15.9-fold higher than IVM-NLC, respectively). Bone homing studies verified higher hydroxyapatite affinity of Aln/Lf/IVM-NLC (1 mg; 22.88 ± 0.01 % at 3-h) and higher metaphyseal-binding (1.5-fold increase) than untargeted-NLC. Moreover, Aln/Lf/IVM-NLC-1 mg secured 1.35-fold higher in vivo bone localization than untargeted-NLC, with lower off-target distribution. Ex-vivo hemocompatibility and in-vivo biocompatibility of Aln/Lf/IVM-NLC (1 mg/mL) were established, with pronounced amelioration of hepatic and renal toxicity compared to higher Aln doses. The innovative Aln/Lf/IVM-NLC could serve as a promising nanovector for bone-homing, active-targeted leukemia therapy.


Assuntos
Alendronato , Portadores de Fármacos , Ivermectina , Lactoferrina , Humanos , Animais , Portadores de Fármacos/química , Lactoferrina/química , Lactoferrina/farmacologia , Lactoferrina/administração & dosagem , Alendronato/química , Alendronato/farmacologia , Alendronato/administração & dosagem , Ivermectina/química , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/administração & dosagem , Ivermectina/farmacocinética , Células K562 , Nanopartículas/química , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Lipídeos/química , Apoptose/efeitos dos fármacos
13.
Eur J Med Chem ; 274: 116563, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843586

RESUMO

Chronic myeloid leukemia (CML) is a global issue and the available drugs such as tyrosine kinase inhibitors (TKIs) comprise various toxic effects as well as resistance and cross-resistance. Therefore, novel molecules targeting specific enzymes may unravel a new direction in antileukemic drug discovery. In this context, targeting gelatinases (MMP-2 and MMP-9) can be an alternative option for the development of novel molecules effective against CML. In this article, some D(-)glutamine derivatives were synthesized and evaluated through cell-based antileukemic assays and tested against gelatinases. The lead compounds, i.e., benzyl analogs exerted the most promising antileukemic potential showing nontoxicity in normal cell line including efficacious gelatinase inhibition. Both these lead molecules yielded effective apoptosis and displayed marked reductions in MMP-2 expression in the K562 cell line. Not only that, but both of them also revealed effective antiangiogenic efficacy. Importantly, the most potent MMP-2 inhibitor, i.e., benzyl derivative of p-tosyl D(-)glutamine disclosed stable binding interaction at the MMP-2 active site correlating with the highly effective MMP-2 inhibitory activity. Therefore, such D(-)glutamine derivatives might be explored further as promising MMP-2 inhibitors with efficacious antileukemic profiles for the treatment of CML in the future.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Glutamina , Leucemia Mielogênica Crônica BCR-ABL Positiva , Metaloproteinase 2 da Matriz , Inibidores de Metaloproteinases de Matriz , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Metaloproteinase 2 da Matriz/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Glutamina/química , Glutamina/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Células K562 , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Apoptose/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-38862430

RESUMO

Tandem duplication (TD) is a major type of structural variations (SVs) that plays an important role in novel gene formation and human diseases. However, TDs are often missed or incorrectly classified as insertions by most modern SV detection methods due to the lack of specialized operation on TD-related mutational signals. Herein, we developed a TD detection module for the Pindel tool, referred to as Pindel-TD, based on a TD-specific pattern growth approach. Pindel-TD is capable of detecting TDs with a wide size range at single nucleotide resolution. Using simulated and real read data from HG002, we demonstrated that Pindel-TD outperforms other leading methods in terms of precision, recall, F1-score, and robustness. Furthermore, by applying Pindel-TD to data generated from the K562 cancer cell line, we identified a TD located at the seventh exon of SAGE1, providing an explanation for its high expression. Pindel-TD is available for non-commercial use at https://github.com/xjtu-omics/pindel.


Assuntos
Software , Humanos , Células K562 , Duplicação Gênica , Sequências de Repetição em Tandem/genética , Algoritmos
15.
Biochemistry (Mosc) ; 89(5): 912-922, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880651

RESUMO

Lymphocyte phosphatase-associated phosphoprotein (LPAP) is a binding partner of the phosphatase CD45, but its function remains poorly understood. Its close interaction with CD45 suggests that LPAP may potentially regulate CD45, but direct biochemical evidence for this has not yet been obtained. We found that in the Jurkat lymphoid cells the levels of LPAP and CD45 proteins are interrelated and well correlated with each other. Knockout of LPAP leads to the decrease in the surface expression of CD45, while its overexpression, on the contrary, caused its increase. No such correlation was found in the non-lymphoid K562 cells. We hypothesize that LPAP regulates expression level of CD45 and thus can affect lymphocyte activation.


Assuntos
Antígenos Comuns de Leucócito , Humanos , Antígenos Comuns de Leucócito/metabolismo , Células Jurkat , Células K562 , Estabilidade Proteica , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
16.
Cytometry A ; 105(7): 555-558, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38722042

RESUMO

To achieve high-sensitivity cell measurements (<1 in 105 cells) by flow cytometry (FCM), the minimum number of acquired cells must be considered and conventional immunophenotyping protocols fall short of these numbers. The bulk lysis (BL) assay is a standardized erythrocyte lysing approach that allows the analysis of the millions of cells required for high-sensitivity measurable residual disease (MRD) detection. However, this approach has been associated with significant cell loss, along with potential over or underestimates of rare cells when using this method. The aim of this study was to evaluate bulk lysis protocols and compare them with minimal sample perturbation (MSP) protocols, which are reported to better preserve the native cellular state and avoid significant cell loss due to washing steps. To achieve this purpose, we first generated an MRD model by spiking fresh peripheral blood with K562 cells, stably expressing EGFP, at known percentages of EGFP positive cells to leukocytes. Samples were then prepared with BL and MSP protocols and analyzed using FCM. For all percentages of K562 cells established and evaluated, a significant decrease of this population was detected in BL samples compared with MSP samples, even at low K562 cell percentages. Significant decreases for non-necrotic cells were also observed in BL samples relative to MSP samples. In conclusion, the evaluation of the potential effects of BL protocols in obtaining the final count is of great interest, especially for over- or under-estimation of target cells, as in the case of measurable residual disease. Since conventional flow cytometry or minimal sample perturbation assays fall short in obtaining the minimum numbers required to reach high sensitivity measurements, significant efforts may be needed to improve bulk lysis solution reagents.


Assuntos
Citometria de Fluxo , Humanos , Citometria de Fluxo/métodos , Células K562 , Imunofenotipagem/métodos , Neoplasia Residual , Eritrócitos/citologia , Leucócitos/citologia , Contagem de Células/métodos
17.
Mol Pharmacol ; 106(1): 33-46, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38719474

RESUMO

DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is an essential enzyme for proper chromosome dysjunction by producing transient DNA double-stranded breaks and is an important target for DNA damage-stabilizing anticancer agents, such as etoposide. Therapeutic effects of TOP2α poisons can be limited due to acquired drug resistance. We previously demonstrated decreased TOP2α/170 levels in an etoposide-resistant human leukemia K562 subline, designated K/VP.5, accompanied by increased expression of a C-terminal truncated TOP2α isoform (90 kDa; TOP2α/90), which heterodimerized with TOP2α/170 and was a determinant of resistance by exhibiting dominant-negative effects against etoposide activity. Based on 3'-rapid amplification of cDNA ends, we confirmed TOP2α/90 as the translation product of a TOP2α mRNA in which a cryptic polyadenylation site (PAS) harbored in intron 19 (I19) was used. In this report, we investigated whether the resultant intronic polyadenylation (IPA) would be attenuated by blocking or mutating the I19 PAS, thereby circumventing acquired drug resistance. An antisense morpholino oligonucleotide was used to hybridize/block the PAS in TOP2α pre-mRNA in K/VP.5 cells, resulting in decreased TOP2α/90 mRNA/protein levels in K/VP.5 cells and partially circumventing drug resistance. Subsequently, CRISPR/CRISPR-associated protein 9 with homology-directed repair was used to mutate the cryptic I19 PAS (AATAAA→ACCCAA) to prevent IPA. Gene-edited clones exhibited increased TOP2α/170 and decreased TOP2α/90 mRNA/protein and demonstrated restored sensitivity to etoposide and other TOP2α-targeted drugs. Together, results indicated that blocking/mutating a cryptic I19 PAS in K/VP.5 cells reduced IPA and restored sensitivity to TOP2α-targeting drugs. SIGNIFICANCE STATEMENT: The results presented in this study indicate that CRISPR/CRISPR-associated protein 9 gene editing of a cryptic polyadenylation site (PAS) within I19 of the TOP2α gene results in the reversal of acquired resistance to etoposide and other TOP2-targeted drugs. An antisense morpholino oligonucleotide targeting the PAS also partially circumvented resistance.


Assuntos
DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos , Etoposídeo , Íntrons , Poliadenilação , Humanos , Etoposídeo/farmacologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células K562 , Poliadenilação/efeitos dos fármacos , Poliadenilação/genética , Íntrons/genética , Sistemas CRISPR-Cas
18.
Med Oncol ; 41(6): 149, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739199

RESUMO

Because of the high biocompatibility, self-assembly capability, and CD71-mediated endocytosis, using human heavy chain ferritin (HFn) as a nanocarrier would greatly increase therapeutic effectiveness and reduce possible adverse events. Anti-PD-L1 siRNA can downregulate the level of PD-L1 on tumor cells, resulting in the activation of effector T cells against leukemia. Therefore, this study aimed to produce the tumor-targeting siPD-L1/HFn nanocarrier. Briefly, the HFn coding sequence was cloned into a pET-28a, and the constructed expression plasmid was subsequently transformed into E. coli BL21. After induction of Isopropyl ß-D-1-thiogalactopyranoside (IPTG), HFn was purified with Ni-affinity chromatography and dialyzed against PBS. The protein characteristics were analyzed using SDS-PAGE, Western Blot, and Dynamic light scattering (DLS). The final concentration was assessed using the Bicinchoninic acid (BCA) assay. The encapsulation was performed using the standard pH system. The treatment effects of siPD-L1/HFn were carried out on HL-60 and K-562 cancer cell lines. The RT-PCR was used to determine the mRNA expression of PD-L1. The biocompatibility and excretion of siPD-L1/HFn have also been evaluated. The expression and purity of HFn were well verified through SDS-PAGE, WB, and DLS. RT-PCR analyses also showed significant siRNA-mediated PD-L1 silencing in both HL-60 and K-562 cells. Our study suggested a promising approach for siRNA delivery. This efficient delivery system can pave the way for the co-delivery of siRNAs and multiple chemotherapies to address the emerging needs of cancer combination therapy.


Assuntos
Apoferritinas , Antígeno B7-H1 , Leucemia Mieloide Aguda , RNA Interferente Pequeno , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/administração & dosagem , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/antagonistas & inibidores , Apoferritinas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/terapia , Células HL-60 , Células K562 , Linhagem Celular Tumoral , Nanopartículas/química
19.
Proc Natl Acad Sci U S A ; 121(22): e2219470121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776365

RESUMO

NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células K562 , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Organelas/metabolismo
20.
Blood Cells Mol Dis ; 107: 102855, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703475

RESUMO

BACKGROUND: Circular RNAs (circRNA) are pivotal in hematological diseases. Previous study showed that circ_0014614 (circDAP3) was significantly underexpressed in bone marrow-derived exosomes from essential thrombocythemia (ET) patients, affecting the differentiation of bone marrow lineage cells into megakaryocytes. METHODS: Fluorescence in situ hybridization (FISH) was used to display circ_0014614's primary cytoplasmic location in K562 cells. Cytoscape software was used to predict the circRNA-miRNA-mRNA networks, and their expression at the cellular level was detected by Quantitative reverse transcription-polymerase chain reaction (qRT-PCR). qRT-PCR was utilized to detect the expression levels of circ_0014614,miR-138-5p and caspase3 mRNA. Western blot was used to determine the protein levels of GATA-1, RUNX-1, NF-E2, CD41 and caspase3. The proliferation of K562 cells was assessed using the Cell Counting Kit-8 (CCK-8) Assay. Furthermore, the interplay between miR-138-5p and circ_0014614 or caspase3 was elucidated through a Dual-luciferase reporter assay. RESULTS: FISH assay indicated circ_0014614's primary cytoplasmic location in K562 cells. In ET bone marrow and K562 cells, circ_0014614 and caspase3 were down-regulated, whereas miR-138-5p saw a significant surge. Overexpressing circ_0014614 curtailed K562 cells' proliferation and differentiation. Further, circ_0014614 targeted miR-138-5p, with heightened miR-138-5p levels counteracting circ_0014614's inhibition. MiR-138-5p further targeted caspase3, and caspase3 silencing neutralized suppressed miR-138-5p's effects on K562 cell differentiation. CONCLUSION: Circ_0014614 was down-regulated in ET bone marrow and bone marrow lineage cells, and upregulating circ_0014614 can inhibit bone marrow lineage cells' proliferation and differentiation into megakaryocytes. Mechanistically, circ_0014614 functioned as ceRNA via sponging miR-138-5p and alleviated the inhibitory effect of miR-138-5p on its target caspase3, which potentially deters tumor activity in ET.


Assuntos
Caspase 3 , Diferenciação Celular , Megacariócitos , MicroRNAs , RNA Circular , Trombocitemia Essencial , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Megacariócitos/metabolismo , Megacariócitos/patologia , RNA Circular/genética , Caspase 3/metabolismo , Trombocitemia Essencial/genética , Trombocitemia Essencial/patologia , Trombocitemia Essencial/metabolismo , Células K562 , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Feminino , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA