Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.215
Filtrar
1.
J Gen Physiol ; 156(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051992

RESUMO

Thermosensation requires the activation of a unique collection of ion channels and receptors that work in concert to transmit thermal information. It is widely accepted that transient receptor potential melastatin 8 (TRPM8) activation is required for normal cold sensing; however, recent studies have illuminated major roles for other ion channels in this important somatic sensation. In addition to TRPM8, other TRP channels have been reported to contribute to cold transduction mechanisms in diverse sensory neuron populations, with both leak- and voltage-gated channels being identified for their role in the transmission of cold signals. Whether the same channels that contribute to physiological cold sensing also mediate noxious cold signaling remains unclear; however, recent work has found a conserved role for the kainite receptor, GluK2, in noxious cold sensing across species. Additionally, cold-sensing neurons likely engage in functional crosstalk with nociceptors to give rise to cold pain. This Review will provide an update on our understanding of the relationship between various ion channels in the transduction and transmission of cold and highlight areas where further investigation is required.


Assuntos
Temperatura Baixa , Sensação Térmica , Animais , Humanos , Sensação Térmica/fisiologia , Canais Iônicos/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/metabolismo , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/metabolismo
2.
PLoS Comput Biol ; 20(7): e1012240, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985828

RESUMO

The efficient coding approach proposes that neural systems represent as much sensory information as biological constraints allow. It aims at formalizing encoding as a constrained optimal process. A different approach, that aims at formalizing decoding, proposes that neural systems instantiate a generative model of the sensory world. Here, we put forth a normative framework that characterizes neural systems as jointly optimizing encoding and decoding. It takes the form of a variational autoencoder: sensory stimuli are encoded in the noisy activity of neurons to be interpreted by a flexible decoder; encoding must allow for an accurate stimulus reconstruction from neural activity. Jointly, neural activity is required to represent the statistics of latent features which are mapped by the decoder into distributions over sensory stimuli; decoding correspondingly optimizes the accuracy of the generative model. This framework yields in a family of encoding-decoding models, which result in equally accurate generative models, indexed by a measure of the stimulus-induced deviation of neural activity from the marginal distribution over neural activity. Each member of this family predicts a specific relation between properties of the sensory neurons-such as the arrangement of the tuning curve means (preferred stimuli) and widths (degrees of selectivity) in the population-as a function of the statistics of the sensory world. Our approach thus generalizes the efficient coding approach. Notably, here, the form of the constraint on the optimization derives from the requirement of an accurate generative model, while it is arbitrary in efficient coding models. Moreover, solutions do not require the knowledge of the stimulus distribution, but are learned on the basis of data samples; the constraint further acts as regularizer, allowing the model to generalize beyond the training data. Finally, we characterize the family of models we obtain through alternate measures of performance, such as the error in stimulus reconstruction. We find that a range of models admits comparable performance; in particular, a population of sensory neurons with broad tuning curves as observed experimentally yields both low reconstruction stimulus error and an accurate generative model that generalizes robustly to unseen data.


Assuntos
Biologia Computacional , Modelos Neurológicos , Animais , Células Receptoras Sensoriais/fisiologia , Humanos , Neurônios/fisiologia , Algoritmos , Potenciais de Ação/fisiologia , Simulação por Computador
4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000275

RESUMO

In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor. Using Western blots, we found that IL-6-induced Stat3 activation was reduced by gefitinib in microglial cells of the BV2 cell line, but not in cultured DRG neurons. Immunohistochemistry showed EGFR localization in most DRG neurons from normal rats, but significant downregulation in the acute and most painful arthritis phase. In the spinal cord of mice, EGFR was highly activated mainly in the chronic phase of inflammation, with localization in neurons. These data suggest that spinal IL-6 signaling may activate spinal EGFR signaling. Downregulation of EGFR in DRG neurons in acute arthritis may limit nociception, but pronounced delayed activation of EGFR in the spinal cord may be involved in chronic inflammatory pain.


Assuntos
Receptores ErbB , Interleucina-6 , Células Receptoras Sensoriais , Medula Espinal , Animais , Feminino , Camundongos , Ratos , Artrite/metabolismo , Artrite Experimental/metabolismo , Linhagem Celular , Receptores ErbB/metabolismo , Gânglios Espinais/metabolismo , Gefitinibe/farmacologia , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais , Medula Espinal/metabolismo , Fator de Transcrição STAT3/metabolismo
5.
Exp Dermatol ; 33(7): e15142, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39032085

RESUMO

Frequent itching and incessant scratching are commonly observed in various chronic inflammatory skin conditions, including atopic dermatitis and psoriasis. The persistent and prolonged nature of pruritus can worsen one's quality of life. Keratinocytes (KCs), the predominant cells of the epidermis, have been confirmed to interact with sensory neurons and immune cells and be involved in chronic skin inflammatory diseases associated with pruritus. Initially, KCs and sensory neurons form a unique synapse-like connection within the epidermis, serving as the structural foundation for their interaction. Additionally, several receptors, including toll-like receptors and protease-activated receptor 2, expressed on KCs, become activated in an inflammatory milieu. On the one hand, activated KCs are sources of pro-inflammatory cytokines and neurotrophic factors, such as adenosine triphosphate, thymic stromal lymphopoietin, and nerve growth factor, which directly or indirectly participate in stimulating sensory neurons, thereby contributing to the itch sensations. On the other hand, KCs also function as primary transducers alongside intraepidermal nerve endings, directly initiating pruritic responses. This review summarizes the current literature and highlights the critical role of KCs in the development and persistence of chronic itch in inflammatory skin disorders.


Assuntos
Queratinócitos , Prurido , Humanos , Prurido/etiologia , Prurido/fisiopatologia , Queratinócitos/metabolismo , Doença Crônica , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Dermatite Atópica/complicações , Animais , Citocinas/metabolismo , Psoríase/complicações
6.
J Clin Invest ; 134(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949022

RESUMO

Multiple approaches have targeted voltage-gated sodium (Nav) channels for analgesia. In this issue of the JCI, Shin et al. identified a peptide aptamer, NaViPA1, carrying a short polybasic motif flanked by serine residues in a structurally disordered region of loop 1 in tetrodotoxin-sensitive (TTX-S) but not tetrodotoxin-resistant (TTX-R) channels. NaViPA1h inhibited TTX-S NaV channels and attenuated excitability of sensory neurons. Delivery of NaViPA1 in vivo via adeno-associated virions restricted its expression to peripheral sensory neurons and induced analgesia in rats. Targeting of short linear motifs in this manner may provide a gene therapy modality, with minimal side effects due to its peripherally-restricted biodistribution, which opens up a therapeutic strategy for hyperexcitability disorders, including pain.


Assuntos
Terapia Genética , Animais , Humanos , Ratos , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/química , Células Receptoras Sensoriais/metabolismo , Dor/genética , Dor/metabolismo , Dor/tratamento farmacológico , Motivos de Aminoácidos
7.
Sci Adv ; 10(30): eadj9335, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058787

RESUMO

Mutations in Dystonin (DST), which encodes cytoskeletal linker proteins, cause hereditary sensory and autonomic neuropathy 6 (HSAN-VI) in humans and the dystonia musculorum (dt) phenotype in mice; however, the neuronal circuit underlying the HSAN-VI and dt phenotype is unresolved. dt mice exhibit dystonic movements accompanied by the simultaneous contraction of agonist and antagonist muscles and postnatal lethality. Here, we identified the sensory-motor circuit as a major causative neural circuit using a gene trap system that enables neural circuit-selective inactivation and restoration of Dst by Cre-mediated recombination. Sensory neuron-selective Dst deletion led to motor impairment, degeneration of proprioceptive sensory neurons, and disruption of the sensory-motor circuit. Restoration of Dst expression in sensory neurons using Cre driver mice or a single postnatal injection of Cre-expressing adeno-associated virus ameliorated sensory degeneration and improved abnormal movements. These findings demonstrate that the sensory-motor circuit is involved in the movement disorders in dt mice and that the sensory circuit is a therapeutic target for HSAN-VI.


Assuntos
Modelos Animais de Doenças , Distonina , Neuropatias Hereditárias Sensoriais e Autônomas , Células Receptoras Sensoriais , Animais , Camundongos , Células Receptoras Sensoriais/metabolismo , Distonina/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Distonia/genética , Humanos , Dependovirus/genética , Fenótipo
8.
Sci Rep ; 14(1): 16541, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019908

RESUMO

The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), also known as the Asian palm weevil, is an invasive pest that causes widespread damage to palm trees around the globe. As pheromone communication is crucial for their mass attack and survival on palm trees, the olfactory concept of pest control strategies has been widely explored recently. We aim to understand the molecular basis of olfaction in RPW by studying one of the key olfactory proteins in insect pheromone communication, sensory neuron membrane proteins (SNMPs). SNMPs belong to the CD36 (cluster of differentiation 36) family that perform two distinct olfactory roles in insects, either in pheromone (odorant) transfer to the odorant receptors (SNMP1) or in the pheromone clearing process (SNMP2). In this study, we performed antennal transcriptomic screening and identified six SNMPs, mapping them on the R. ferrugineus genome, and confirmed four distinct SNMPs. Both SNMP1 proteins in RPW, viz., RferSNMPu1 and RferSNMPu2, were mapped onto the same scaffold in different loci in the RPW genome. To further understand the function of these proteins, we first classified them using phylogenetic analysis and checked their tissue-specific expression patterns. Further, we measured the relative transcript abundance of SNMPs in laboratory-reared, field-collected adults and pheromone-exposure experiments, ultimately identifying RferSNMPu1 as a potential candidate for functional analysis. We mapped RferSNMPu1 expression in the antennae and found that expression patterns were similar in both sexes. We used RNAi-based gene silencing to knockdown RferSNMPu1 and tested the changes in the RPW responses to aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferrugineone), and a kairomone, ethyl acetate using electroantennogram (EAG) recordings. We found a significant reduction in the EAG recordings in the RferSNMPu1 knockdown strain of adult RPWs, confirming its potential role in pheromone detection. The structural modelling revealed the key domains in the RferSNMPu1 structure, which could likely be involved in pheromone detection based on the identified ectodomain tunnels. Our studies on RferSNMPu1 with a putative role in pheromone detection provide valuable insight into understanding the olfaction in R. ferrugineus as well as in other Curculionids, as SNMPs are under-explored in terms of its functional role in insect olfaction. Most importantly, RferSNMPu1 can be used as a potential target for the olfactory communication disruption in the R. ferrugineus control strategies.


Assuntos
Proteínas de Insetos , Feromônios , Gorgulhos , Animais , Gorgulhos/metabolismo , Gorgulhos/genética , Feromônios/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Masculino , Feminino , Inativação Gênica , Filogenia , Células Receptoras Sensoriais/metabolismo
9.
PLoS Biol ; 22(7): e3002729, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024405

RESUMO

Sensory neurons specialize in detecting and signaling the presence of diverse environmental stimuli. Neuronal injury or disease may undermine such signaling, diminishing the availability of crucial information. Can animals distinguish between a stimulus not being present and the inability to sense that stimulus in the first place? To address this question, we studied Caenorhabditis elegans nematode worms that lack gentle body touch sensation due to genetic mechanoreceptor dysfunction. We previously showed that worms can compensate for the loss of touch by enhancing their sense of smell, via an FLP-20 neuropeptide pathway. Here, we find that touch-deficient worms exhibit, in addition to sensory compensation, also cautious-like behavior, as if preemptively avoiding potential undetectable hazards. Intriguingly, these behavioral adjustments are abolished when the touch neurons are removed, suggesting that touch neurons are required for signaling the unavailability of touch information, in addition to their conventional role of signaling touch stimulation. Furthermore, we found that the ASE taste neurons, which similarly to the touch neurons, express the FLP-20 neuropeptide, exhibit altered FLP-20 expression levels in a touch-dependent manner, thus cooperating with the touch circuit. These results imply a novel form of neuronal signaling that enables C. elegans to distinguish between lack of touch stimulation and loss of touch sensation, producing adaptive behavioral adjustments that could overcome the inability to detect potential threats.


Assuntos
Comportamento Animal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mecanorreceptores , Tato , Animais , Caenorhabditis elegans/fisiologia , Mecanorreceptores/fisiologia , Mecanorreceptores/metabolismo , Tato/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Comportamento Animal/fisiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Mecanotransdução Celular/fisiologia , Olfato/fisiologia , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/metabolismo
10.
Sci Rep ; 14(1): 17360, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075089

RESUMO

Prostaglandin E2 (PGE2) is a major contributor to inflammatory pain hyperalgesia, however, the extent to which it modulates the activity of nociceptive axons is incompletely understood. We developed and characterized a microfluidic cell culture model to investigate sensitisation of the axons of dorsal root ganglia neurons. We show that application of PGE2 to fluidically isolated axons leads to sensitisation of their responses to depolarising stimuli. Interestingly the application of PGE2 to the DRG axons elicited a direct and persistent spiking activity propagated to the soma. Both the persistent activity and the membrane depolarisation in the axons are abolished by the EP4 receptor inhibitor and a blocker of cAMP synthesis. Further investigated into the mechanisms of the spiking activity showed that the PGE2 evoked depolarisation was inhibited by Nav1.8 sodium channel blockers but was refractory to the application of TTX or zatebradine. Interestingly, the depolarisation of axons was blocked by blocking ANO1 channels with T16Ainh-A01. We further show that PGE2-elicited axonal responses are altered by the changes in chloride gradient within the axons following treatment with bumetanide a Na-K-2Cl cotransporter NKCC1 inhibitor, but not by VU01240551 an inhibitor of potassium-chloride transporter KCC2. Our data demonstrate a novel role for PGE2/EP4/cAMP pathway which culminates in a sustained depolarisation of sensory axons mediated by a chloride current through ANO1 channels. Therefore, using a microfluidic culture model, we provide evidence for a potential dual function of PGE2 in inflammatory pain: it sensitises depolarisation-evoked responses in nociceptive axons and directly triggers action potentials by activating ANO1 and Nav1.8 channels.


Assuntos
Anoctamina-1 , Axônios , Dinoprostona , Gânglios Espinais , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Animais , Dinoprostona/farmacologia , Dinoprostona/metabolismo , Axônios/metabolismo , Axônios/efeitos dos fármacos , Axônios/fisiologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Ratos , Anoctamina-1/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Ratos Sprague-Dawley , Células Cultivadas , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , AMP Cíclico/metabolismo
11.
Open Biol ; 14(7): 240059, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046196

RESUMO

The brain can adapt to changes in the environment through alterations in the number and structure of synapses. During embryonic and early postnatal stages, the synapses in the brain undergo rapid expansion and interconnections to form circuits. However, many of these synaptic connections are redundant or incorrect. Neurite pruning is a conserved process that occurs during both vertebrate and invertebrate development. It requires precise spatiotemporal control of local degradation of cellular components, comprising cytoskeletons and membranes, refines neuronal circuits, and ensures the precise connectivity required for proper function. The Drosophila's class IV dendritic arborization (C4da) sensory neuron has a well-characterized architecture and undergoes dendrite-specific sculpting, making it a valuable model for unravelling the intricate regulatory mechanisms underlie dendritic pruning. In this review, I attempt to provide an overview of the present state of research on dendritic pruning in C4da sensory neurons, as well as potential functional mechanisms in neurodevelopmental disorders.


Assuntos
Dendritos , Células Receptoras Sensoriais , Animais , Dendritos/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/citologia , Plasticidade Neuronal , Sinapses/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster
12.
Cell Commun Signal ; 22(1): 307, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831315

RESUMO

BACKGROUND: Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS: Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS: IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION: Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.


Assuntos
Canais de Cálcio Tipo T , Proteínas Quinases Dependentes de AMP Cíclico , Receptores de Interleucina , Células Receptoras Sensoriais , Transdução de Sinais , Gânglio Trigeminal , Quinases da Família src , Animais , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/genética , Quinases da Família src/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Gânglio Trigeminal/metabolismo , Masculino , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Receptores de Interleucina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Interleucinas/metabolismo
13.
Curr Biol ; 34(12): 2756-2763.e2, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38838665

RESUMO

Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn't require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Vesículas Extracelulares , Células Receptoras Sensoriais , Canais de Cátion TRPP , Animais , Cílios/metabolismo , Cílios/fisiologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Masculino
14.
Elife ; 122024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896465

RESUMO

Spinal pain affects individuals of all ages and is the most common musculoskeletal problem globally. Its clinical management remains a challenge as the underlying mechanisms leading to it are still unclear. Here, we report that significantly increased numbers of senescent osteoclasts (SnOCs) are observed in mouse models of spinal hypersensitivity, like lumbar spine instability (LSI) or aging, compared to controls. The larger population of SnOCs is associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. We show that deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation, and H-type vessel growth in the endplate. We also show that there is significantly increased SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. These findings suggest that pharmacological elimination of SnOCs may be a potent therapy to treat spinal pain.


Assuntos
Senescência Celular , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Senescência Celular/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/metabolismo , Modelos Animais de Doenças , Masculino , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Netrina-1/metabolismo , Netrina-1/genética , Camundongos Endogâmicos C57BL
15.
Biomed Res ; 45(3): 125-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839355

RESUMO

Clary sage essential oil (CSEO) is utilized in perfumery, aromatherapy, and skincare. Linalyl acetate (LA), a primary component of CSEO, possesses sedative, anxiolytic, and analgesic properties. However, the mechanism of its analgesic action is not clearly understood. Transient receptor potential ankyrin 1 (TRPA1) channel, a non-selective cation channel, is mainly expressed in sensory neurons and serves as a sensor of various irritants. In this study, we investigated the effects of LA on TRPA1 channel using heterologous expression system and isolated sensory neurons. To detect channel activity, we employed Ca2+ imaging and the whole-cell patch-clamp technique. The analgesic action of LA was measured in a pain-related behavioral mouse model. In cells that heterologously expressed TRPA1, LA diminished [Ca2+]i and current responses to allylisothiocyanate (AITC) and carvacrol: exogenous TRPA1 agonists, and the inhibitory effects were more pronounced for the former than for the latter. Moreover, LA suppressed [Ca2+] i and current responses to PGJ2: an endogenous TRPA1 agonist. Similar inhibitory actions were observed in native TRPA1 channels expressed in mouse sensory neurons. Furthermore, LA diminished PGJ2-induced nociceptive behaviors in mice. These findings suggest that analgesic effects of LA exert through inhibition of nociceptive TRPA1, making it a potential candidate for novel analgesic development.


Assuntos
Analgésicos , Monoterpenos , Canal de Cátion TRPA1 , Animais , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Camundongos , Analgésicos/farmacologia , Monoterpenos/farmacologia , Humanos , Masculino , Cálcio/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células HEK293 , Modelos Animais de Doenças , Dor/tratamento farmacológico , Dor/metabolismo
16.
Hypertension ; 81(8): 1811-1821, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38841853

RESUMO

BACKGROUND: Clinical trials of renal denervation for the treatment of hypertension have shown a variety of off-target improvements in conditions associated with sympathetic overactivity. This may be due to the ablation of sympathoexcitatory afferent renal nerves, which are overactive under conditions of renal inflammation. Renal IL (interleukin)-1ß is elevated in the deoxycorticosterone acetate-salt model of hypertension, and its activity may be responsible for the elevation in afferent renal nerve activity and arterial pressure. METHODS: Continuous blood pressure recording of deoxycorticosterone acetate-salt mice with IL-1R (IL-1 receptor) knockout or antagonism was used individually and combined with afferent renal denervation (ARDN) to assess mechanistic overlap. Protein quantification and histological analysis of kidneys were performed to characterize renal inflammation. RESULTS: ARDN attenuated deoxycorticosterone acetate-salt hypertension (-20±2-Δmm Hg mean arterial pressure [MAP] relative to control at study end) to a similar degree as total renal denervation (-21±2-Δmm Hg MAP), IL-1R knockout (-16±4-Δmm Hg MAP), or IL-1R antagonism (-20±3-Δmm Hg MAP). The combination of ARDN with knockout (-18±2-Δmm Hg MAP) or antagonism (-19±4-Δmm Hg MAP) did not attenuate hypertension any further than ARDN alone. IL-1R antagonism was found to have an acute depressor effect (-15±3-Δmm Hg MAP, day 10) in animals with intact renal nerves but not those with ARDN. CONCLUSIONS: These findings suggest that IL-1R signaling is partially responsible for the elevated afferent renal nerve activity, which stimulates central sympathetic outflow to drive deoxycorticosterone acetate-salt hypertension.


Assuntos
Pressão Sanguínea , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Hipertensão , Rim , Camundongos Knockout , Animais , Camundongos , Rim/inervação , Rim/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Pressão Sanguínea/fisiologia , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Masculino , Sistema Nervoso Simpático/fisiopatologia , Células Receptoras Sensoriais/metabolismo
17.
Stem Cell Reports ; 19(7): 957-972, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38876108

RESUMO

Induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) from patients with amyotrophic lateral sclerosis (ALS) and the C9ORF72 hexanucleotide repeat expansion (HRE) have multiple cellular phenotypes, but which of these accurately reflect the biology underlying the cell-specific vulnerability of ALS is uncertain. We therefore compared phenotypes due to the C9ORF72 HRE in MNs with sensory neurons (SNs), which are relatively spared in ALS. The iPSC models were able to partially reproduce the differential gene expression seen between adult SNs and MNs. We demonstrated that the typical hallmarks of C9ORF72-ALS, including RNA foci and dipeptide formation, as well as specific axonal transport defects, occurred equally in MNs and SNs, suggesting that these in vitro phenotypes are not sufficient to explain the cell-type selectivity of ALS in isolation.


Assuntos
Esclerose Lateral Amiotrófica , Transporte Axonal , Proteína C9orf72 , Expansão das Repetições de DNA , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Fenótipo , Células Receptoras Sensoriais , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Humanos , Neurônios Motores/metabolismo , Células Receptoras Sensoriais/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Expansão das Repetições de DNA/genética
18.
Ageing Res Rev ; 99: 102372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880342

RESUMO

Understanding the intricate interplay between sensory nerves and bone tissue cells is of paramount significance in the field of bone biology and clinical medicine. The regulatory role of sensory nerves in bone homeostasis offers a novel perspective for the development of targeted therapeutic interventions for a spectrum of bone-related diseases, including osteoarthritis, osteoporosis, and intervertebral disc degeneration. By elucidating the mechanisms through which sensory nerves and their neuropeptides influence the differentiation and function of bone tissue cells, this review aims to shed light on emerging therapeutic targets that harness the neuro-skeletal axis for the treatment and management of debilitating bone disorders. Moreover, a comprehensive understanding of sensory nerve-mediated bone regulation may pave the way for the development of innovative strategies to promote bone health and mitigate the burden of skeletal pathologies in clinical practice.


Assuntos
Doenças Ósseas , Osso e Ossos , Homeostase , Células Receptoras Sensoriais , Humanos , Homeostase/fisiologia , Osso e Ossos/fisiologia , Osso e Ossos/metabolismo , Animais , Células Receptoras Sensoriais/fisiologia , Doenças Ósseas/terapia , Doenças Ósseas/fisiopatologia
19.
Sci Adv ; 10(25): eadj9173, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905344

RESUMO

Sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli to the central nervous system. Single-cell RNA sequencing has provided insights into the diversity of sensory ganglia cell types in rodents, nonhuman primates, and humans, but it remains difficult to compare cell types across studies and species. We thus constructed harmonized atlases of the DRG and TG that describe and facilitate comparison of 18 neuronal and 11 non-neuronal cell types across six species and 31 datasets. We then performed single-cell/nucleus RNA sequencing of DRG from both human and the highly regenerative axolotl and found that the harmonized atlas also improves cell type annotation, particularly of sparse neuronal subtypes. We observed that the transcriptomes of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The resources presented here can guide future studies in comparative transcriptomics, simplify cell-type nomenclature differences across studies, and help prioritize targets for future analgesic development.


Assuntos
Gânglios Espinais , Transcriptoma , Gânglio Trigeminal , Animais , Humanos , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo , Análise de Célula Única/métodos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/citologia , Especificidade da Espécie , Camundongos , Atlas como Assunto , Perfilação da Expressão Gênica , Ratos
20.
Biomed Pharmacother ; 176: 116879, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850666

RESUMO

Cannabinoid CB2 agonists show therapeutic efficacy without unwanted CB1-mediated side effects. The G protein-biased CB2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks development of morphine tolerance in this model. However, the cell types involved in this phenomenon are unknown and whether this therapeutic profile is observed in female mice has never been investigated. We used conditional deletion of CB2 receptors to determine the cell population(s) mediating the anti-allodynic and morphine-sparing effects of CB2 agonists. Anti-allodynic effects of structurally distinct CB2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB2f/f mice and in mice lacking CB2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1CRE/+; CB2f/f), but were absent in mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male, but not female, mice. LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the development of morphine tolerance in male CB2f/f and CX3CR1CRE/+; CB2f/f mice with established paclitaxel-induced neuropathy but was absent in male (or female) AdvillinCRE/+; CB2f/f mice. Co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed morphine tolerance in paclitaxel-treated male CB2f/f mice, but not AdvillinCRE/+; CB2f/f mice of either sex. LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical or cold allodynia in either CB2f/f or CX3CR1CRE/+; CB2f/f mice of either sex. Our findings have potential clinical implications.


Assuntos
Tolerância a Medicamentos , Morfina , Neuralgia , Paclitaxel , Receptor CB2 de Canabinoide , Células Receptoras Sensoriais , Animais , Masculino , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Feminino , Morfina/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Tolerância a Medicamentos/fisiologia , Camundongos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nociceptividade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Camundongos Knockout , Agonistas de Receptores de Canabinoides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA