Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.282
Filtrar
1.
Nat Commun ; 15(1): 2957, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580646

RESUMO

Nonsense mutations - the underlying cause of approximately 11% of all genetic diseases - prematurely terminate protein synthesis by mutating a sense codon to a premature stop or termination codon (PTC). An emerging therapeutic strategy to suppress nonsense defects is to engineer sense-codon decoding tRNAs to readthrough and restore translation at PTCs. However, the readthrough efficiency of the engineered suppressor tRNAs (sup-tRNAs) largely varies in a tissue- and sequence context-dependent manner and has not yet yielded optimal clinical efficacy for many nonsense mutations. Here, we systematically analyze the suppression efficacy at various pathogenic nonsense mutations. We discover that the translation velocity of the sequence upstream of PTCs modulates the sup-tRNA readthrough efficacy. The PTCs most refractory to suppression are embedded in a sequence context translated with an abrupt reversal of the translation speed leading to ribosomal collisions. Moreover, modeling translation velocity using Ribo-seq data can accurately predict the suppression efficacy at PTCs. These results reveal previously unknown molecular signatures contributing to genotype-phenotype relationships and treatment-response heterogeneity, and provide the framework for the development of personalized tRNA-based gene therapies.


Assuntos
Códon sem Sentido , RNA de Transferência , Códon sem Sentido/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Códon/genética , Ribossomos/metabolismo , Terapia Genética , Biossíntese de Proteínas/genética , Códon de Terminação
2.
Genes (Basel) ; 15(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674367

RESUMO

Inherited defects in the genes of blood coagulation essentially express the severity of the clinical phenotype that is directly correlated to the number of mutated alleles of the candidate leader gene (e.g., heterozygote vs. homozygote) and of possible additional coinherited traits. The F5 gene, which codes for coagulation factor V (FV), plays a two-faced role in the coagulation cascade, exhibiting both procoagulant and anticoagulant functions. Thus, defects in this gene can be predisposed to either bleeding or thrombosis. A Sanger sequence analysis detected a premature stop-codon in exon 13 of the F5 gene (c.3481C>T; p.R1161Ter) in several members of a family characterised by low circulating FV levels and contrasting clinical phenotypes. The propositus, a 29 y.o. male affected by recurrent haemorrhages, was homozygous for the F5 stop-codon and for the F5 c.1691G>A (p.R506Q; FV-Leiden) inherited from the heterozygous parents, which is suggestive of combined cis-segregation. The homozygous condition of the stop-codon completely abolished the F5 gene expression in the propositus (FV:Ag < 1%; FV:C < 1%; assessed by ELISA and PT-based one-stage clotting assay respectively), removing, in turn, any chance for FV-Leiden to act as a prothrombotic molecule. His father (57 y.o.), characterised by severe recurrent venous thromboses, underwent a complete molecular thrombophilic screening, revealing a heterozygous F2 G20210A defect, while his mother (56 y.o.), who was negative for further common coagulation defects, reported fully asymptomatic anamnesis. To dissect these conflicting phenotypes, we performed the ProC®Global (Siemens Helthineers) coagulation test aimed at assessing the global pro- and anticoagulant balance of each family member, investigating the responses to the activated protein C (APC) by means of an APC-sensitivity ratio (APC-sr). The propositus had an unexpectedly poor response to APC (APC-sr: 1.09; n.v. > 2.25), and his father and mother had an APC-sr of 1.5 and 2.0, respectively. Although ProC®Global prevalently detects the anticoagulant side of FV, the exceptionally low APC-sr of the propositus and his discordant severe-moderate haemorrhagic phenotype could suggest a residual expression of mutated FV p.506QQ through a natural readthrough or possible alternative splicing mechanisms. The coagulation pathway may be physiologically rebalanced through natural and induced strategies, and the described insights might be able to track the design of novel treatment approaches and rebalancing molecules.


Assuntos
Fator V , Hemorragia , Fenótipo , Trombose , Humanos , Masculino , Trombose/genética , Fator V/genética , Adulto , Hemorragia/genética , Dosagem de Genes , Feminino , Linhagem , Códon de Terminação/genética , Heterozigoto
3.
PLoS One ; 19(4): e0299701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683788

RESUMO

Recombinant Francisella tularensis universal stress protein with a C-terminal histidine-tag (rUsp/His6) was expressed in Escherichia coli. Endogenous F. tularensis Usp has a predicted molecular mass of 30 kDa, but rUsp/His6 had an apparent molecular weight of 33 kDa based on Western blot analyses. To determine the source of the higher molecular weight for rUsp/His6, post translational modifications were examined. Tryptic peptides of purified rUsp/His6 were subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) and fragmentation spectra were searched for acetylated lysines and polyaminated glutamines. Of the 24 lysines in rUsp/His6, 10 were acetylated (K63, K68, K72, K129, K175, K201, K208, K212, K233, and K238) and three of the four glutamines had putrescine, spermidine and spermine adducts (Q55, Q60 and Q267). The level of post-translational modification was substoichiometric, eliminating the possibility that these modifications were the sole contributor to the 3 kDa extra mass of rUsp/His6. LC-MS/MS revealed that stop codon readthrough had occurred resulting in the unexpected addition of 20 extra amino acids at the C-terminus of rUsp/His6, after the histidine tag. Further, the finding of polyaminated glutamines in rUsp/His6 indicated that E. coli is capable of transglutaminase activity.


Assuntos
Proteínas de Bactérias , Códon de Terminação , Escherichia coli , Francisella tularensis , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Acetilação , Códon de Terminação/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Francisella tularensis/genética , Francisella tularensis/metabolismo , Espectrometria de Massas em Tandem , Histidina/metabolismo , Sequência de Aminoácidos
4.
J Mol Med (Berl) ; 102(5): 641-653, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430393

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder resulting from genetic mutations in the methyl CpG binding protein 2 (MeCP2) gene. Specifically, around 35% of RTT patients harbor premature termination codons (PTCs) within the MeCP2 gene due to nonsense mutations. A promising therapeutic avenue for these individuals involves the use of aminoglycosides, which stimulate translational readthrough (TR) by causing stop codons to be interpreted as sense codons. However, the effectiveness of this treatment depends on several factors, including the type of stop codon and the surrounding nucleotides, collectively referred to as the stop codon context (SCC). Here, we develop a high-content reporter system to precisely measure TR efficiency at different SCCs, assess the recovery of the full-length MeCP2 protein, and evaluate its subcellular localization. We have conducted a comprehensive investigation into the intricate relationship between SCC characteristics and TR induction, examining a total of 14 pathogenic MeCP2 nonsense mutations with the aim to advance the prospects of personalized therapy for individuals with RTT. Our results demonstrate that TR induction can successfully restore full-length MeCP2 protein, albeit to varying degrees, contingent upon the SCC and the specific position of the PTC within the MeCP2 mRNA. TR induction can lead to the re-establishment of nuclear localization of MeCP2, indicating the potential restoration of protein functionality. In summary, our findings underscore the significance of SCC-specific approaches in the development of tailored therapies for RTT. By unraveling the relationship between SCC and TR therapy, we pave the way for personalized, individualized treatment strategies that hold promise for improving the lives of individuals affected by this debilitating neurodevelopmental disorder. KEY MESSAGES: The efficiency of readthrough induction at MeCP2 premature termination codons strongly depends on the stop codon context. The position of the premature termination codon on the transcript influences the readthrough inducibility. A new high-content dual reporter assay facilitates the measurement and prediction of readthrough efficiency of specific nucleotide stop contexts. Readthrough induction results in the recovery of full-length MeCP2 and its re-localization to the nucleus. MeCP2 requires only one of its annotated nuclear localization signals.


Assuntos
Códon sem Sentido , Códon de Terminação , Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células HEK293
5.
Nat Commun ; 15(1): 2486, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509072

RESUMO

Protein synthesis terminates when a stop codon enters the ribosome's A-site. Although termination is efficient, stop codon readthrough can occur when a near-cognate tRNA outcompetes release factors during decoding. Seeking to understand readthrough regulation we used a machine learning approach to analyze readthrough efficiency data from published HEK293T ribosome profiling experiments and compared it to comparable yeast experiments. We obtained evidence for the conservation of identities of the stop codon, its context, and 3'-UTR length (when termination is compromised), but not the P-site codon, suggesting a P-site tRNA role in readthrough regulation. Models trained on data from cells treated with the readthrough-promoting drug, G418, accurately predicted readthrough of premature termination codons arising from CFTR nonsense alleles that cause cystic fibrosis. This predictive ability has the potential to aid development of nonsense suppression therapies by predicting a patient's likelihood of improvement in response to drugs given their nonsense mutation sequence context.


Assuntos
Códon sem Sentido , Biossíntese de Proteínas , Humanos , Códon de Terminação/genética , Códon sem Sentido/genética , Células HEK293 , Biossíntese de Proteínas/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
6.
EMBO Rep ; 25(4): 2118-2143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499809

RESUMO

Stop codon readthrough (SCR) is the process where translation continues beyond a stop codon on an mRNA. Here, we describe a strategy to enhance or induce SCR in a transcript-selective manner using a CRISPR-dCas13 system. Using specific guide RNAs, we target dCas13 to the region downstream of canonical stop codons of mammalian AGO1 and VEGFA mRNAs, known to exhibit natural SCR. Readthrough assays reveal enhanced SCR of these mRNAs (both exogenous and endogenous) caused by the dCas13-gRNA complexes. This effect is associated with ribosomal pausing, which has been reported for several SCR events. Our data show that CRISPR-dCas13 can also induce SCR across premature termination codons (PTCs) in the mRNAs of green fluorescent protein and TP53. We demonstrate the utility of this strategy in the induction of readthrough across the thalassemia-causing PTC in HBB mRNA and hereditary spherocytosis-causing PTC in SPTA1 mRNA. Thus, CRISPR-dCas13 can be programmed to enhance or induce SCR in a transcript-selective and stop codon-specific manner.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Sistemas CRISPR-Cas , Animais , Códon de Terminação/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Códon sem Sentido/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas , Mamíferos/genética , Mamíferos/metabolismo
7.
Nucleic Acids Res ; 52(7): 3870-3885, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452217

RESUMO

The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.


Assuntos
Núcleo Celular , Genoma Mitocondrial , Edição de RNA , RNA de Transferência , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosomatina/genética , Trypanosomatina/metabolismo , Códon/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Códon de Terminação/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Código Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
Exp Dermatol ; 33(3): e15042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459626

RESUMO

In the context of rare genetic diseases caused by nonsense mutations, the concept of induced stop codon readthrough (SCR) represents an attractive avenue in the ongoing search for improved treatment options. Epidermolysis bullosa (EB)-exemplary for this group of diseases-describes a diverse group of rare, blistering genodermatoses. Characterized by extreme skin fragility upon minor mechanical trauma, the most severe forms often result from nonsense mutations that lead to premature translation termination and loss of function of essential proteins at the dermo-epidermal junction. Since no curative interventions are currently available, medical care is mainly limited to alleviating symptoms and preventing complications. Complementary to attempts of gene, cell and protein therapy in EB, SCR represents a promising medical alternative. While gentamicin has already been examined in several clinical trials involving EB, other potent SCR inducers, such as ataluren, may also show promise in treating the hitherto non-curative disease. In addition to the extensively studied aminoglycosides and their derivatives, several other substance classes-non-aminoglycoside antibiotics and non-aminoglycoside compounds-are currently under investigation. The extensive data gathered in numerous in vitro experiments and the perspectives they reveal in the clinical setting will be discussed in this review.


Assuntos
Códon sem Sentido , Epidermólise Bolhosa , Humanos , Códon de Terminação , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/terapia
9.
Sci Rep ; 14(1): 6883, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519558

RESUMO

We developed a reporter system based on simultaneous expression of two fluorescent proteins: GFP as a reporter of the capacity of protein synthesis and mutated mScarlet-I as a reporter of translational errors. Because of the unique stop codons or frameshift mutations introduced into the mScarlet-I gene, red fluorescence was produced only after a mistranslation event. These reporters allowed us to estimate mistranslation at a single cell level using either flow cytometry or fluorescence microscopy. We found that laboratory strains of Escherichia coli are more prone to mistranslation compared to the clinical isolates. As relevant for uropathogenic E. coli, growth in human urine elevated translational frameshifting compared to standard laboratory media, whereas different standard media had a small effect on translational fidelity. Antibiotic-induced mistranslation was studied by using amikacin (aminoglycoside family) and azithromycin (macrolide family). Bactericidal amikacin induced preferably stop-codon readthrough at a moderate level. Bacteriostatic azithromycin on the other hand induced both frameshifting and stop-codon readthrough at much higher level. Single cell analysis revealed that fluorescent reporter-protein signal can be lost due to leakage from a fraction of bacteria in the presence of antibiotics, demonstrating the complexity of the antimicrobial activity.


Assuntos
Antibacterianos , Mutação da Fase de Leitura , Humanos , Antibacterianos/farmacologia , Azitromicina/farmacologia , Amicacina , Escherichia coli/genética , Códon de Terminação/genética , Biossíntese de Proteínas
10.
Exp Eye Res ; 241: 109859, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467175

RESUMO

It is known that the actin cytoskeleton and its associated cellular interactions in the trabecular meshwork (TM) and juxtacanalicular tissues mainly contribute to the formation of resistance to aqueous outflow of the eye. Fibulin-3, encoded by EFEMP1 gene, has a role in extracellular matrix (ECM) modulation, and interacts with enzymatic ECM regulators, but the effects of fibulin-3 on TM cells has not been explored. Here, we report a stop codon variant (c.T1480C, p.X494Q) of EFEMP1 that co-segregates with primary open angle glaucoma (POAG) in a Chinese pedigree. In the human TM cells, overexpression of wild-type fibulin-3 reduced intracellular actin stress fibers formation and the extracellular fibronectin levels by inhibiting Rho/ROCK signaling. TGFß1 up-regulated fibulin-3 protein levels in human TM cells by activating Rho/ROCK signaling. In rat eyes, overexpression of wild-type fibulin-3 decreased the intraocular pressure and the fibronectin expression of TM, however, overexpression of mutant fibulin-3 (c.T1480C, p.X494Q) showed opposite effects in cells and rat eyes. Taken together, the EFEMP1 variant may impair the regulatory capacity of fibulin-3 which has a role for modulating the cell contractile activity and ECM synthesis in TM cells, and in turn may maintain normal resistance of aqueous humor outflow. This study contributes to the understanding of the important role of fibulin-3 in TM pathophysiology and provides a new possible POAG therapeutic approach.


Assuntos
Humor Aquoso , Glaucoma de Ângulo Aberto , Humanos , Humor Aquoso/metabolismo , Fibronectinas/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Códon de Terminação/metabolismo , Malha Trabecular/metabolismo , Pressão Intraocular , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
11.
BMC Genomics ; 25(1): 285, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500026

RESUMO

BACKGROUND: 'Taishuu' has a crisp texture, abundant juice, and sweet flavor with hints of cantaloupe. The availability of mitochondrial genome data of Diospyros species is far from the known number of species. RESULTS: The sequencing data were assembled into a closed circular mitochondrial chromosome with a 421,308 bp length and a 45.79% GC content. The mitochondrial genome comprised 40 protein-coding, 24 tRNA, and three rRNA genes. The most common codons for arginine (Arg), proline (Pro), glycine (Gly), tryptophan (Trp), valine (Val), alanine (Ala), and leucine (Leu) were AGA, CCA, GGA, UGG, GUA, GCA, and CUA, respectively. The start codon for cox1 and nad4L protein-coding genes was ACG (ATG), whereas the remaining protein-coding genes started with ATG. There are four types of stop codons: CGA, TAA, TAG, and TGA, with TAA being the most frequently used stop codon (45.24%). In the D. kaki Thunb. 'Taishuu' mitochondrial genome, a total of 645 repeat sequences were identified, including 125 SSRs, 7 tandem repeats, and 513 dispersed repeats. Collinearity analysis revealed a close relationship between D. kaki Thunb. 'Taishuu' and Diospyros oleifera, with conserved homologous gene fragments shared among these species in large regions of the mitochondrial genome. The protein-coding genes ccmB and nad4L were observed to undergo positive selection. Analysis of homologous sequences between chloroplasts and mitochondria identified 28 homologous segments, with a total length of 24,075 bp, accounting for 5.71% of the mitochondrial genome. These homologous segments contain 8 annotated genes, including 6 tRNA genes and 2 protein-coding genes (rrn18 and ccmC). There are 23 homologous genes between chloroplasts and nuclei. Mitochondria, chloroplasts, and nuclei share two homologous genes, which are trnV-GAC and trnW-CCA. CONCLUSION: In conclusion, a high-quality chromosome-level draft genome for D. kaki was generated in this study, which will contribute to further studies of major economic traits in the genus Diospyros.


Assuntos
Diospyros , Genoma Mitocondrial , Diospyros/genética , Sequências Repetitivas de Ácido Nucleico , Códon de Terminação , RNA de Transferência/genética , Filogenia
12.
Proc Natl Acad Sci U S A ; 121(11): e2321700121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442159

RESUMO

Ribosomes are often used in synthetic biology as a tool to produce desired proteins with enhanced properties or entirely new functions. However, repurposing ribosomes for producing designer proteins is challenging due to the limited number of engineering solutions available to alter the natural activity of these enzymes. In this study, we advance ribosome engineering by describing a novel strategy based on functional fusions of ribosomal RNA (rRNA) with messenger RNA (mRNA). Specifically, we create an mRNA-ribosome fusion called RiboU, where the 16S rRNA is covalently attached to selenocysteine insertion sequence (SECIS), a regulatory RNA element found in mRNAs encoding selenoproteins. When SECIS sequences are present in natural mRNAs, they instruct ribosomes to decode UGA codons as selenocysteine (Sec, U) codons instead of interpreting them as stop codons. This enables ribosomes to insert Sec into the growing polypeptide chain at the appropriate site. Our work demonstrates that the SECIS sequence maintains its functionality even when inserted into the ribosome structure. As a result, the engineered ribosomes RiboU interpret UAG codons as Sec codons, allowing easy and site-specific insertion of Sec in a protein of interest with no further modification to the natural machinery of protein synthesis. To validate this approach, we use RiboU ribosomes to produce three functional target selenoproteins in Escherichia coli by site-specifically inserting Sec into the proteins' active sites. Overall, our work demonstrates the feasibility of creating functional mRNA-rRNA fusions as a strategy for ribosome engineering, providing a novel tool for producing Sec-containing proteins in live bacterial cells.


Assuntos
Magnoliopsida , Selenocisteína , RNA Mensageiro/genética , RNA Ribossômico 16S , Selenoproteínas/genética , Ribossomos/genética , Códon de Terminação/genética , Escherichia coli/genética
13.
Sci Rep ; 14(1): 5112, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429360

RESUMO

Calophyllum soulattri Burm.f. is traditionally used to treat skin infections and reduce rheumatic pain, yet genetic and genomic studies are still limited. Here, we present the first complete mitochondrial genome of C. soulattri. It is 378,262 bp long with 43.97% GC content, containing 55 genes (30 protein-coding, 5 rRNA, and 20 tRNA). Repeat analysis of the mitochondrial genome revealed 194 SSRs, mostly mononucleotides, and 266 pairs of dispersed repeats ( ≥ 30 bp) that were predominantly palindromic. There were 23 homologous fragments found between the mitochondrial and plastome genomes. We also predicted 345 C-to-U RNA editing sites from 30 protein-coding genes (PCGs) of the C. soulatrii mitochondrial genome. These RNA editing events created the start codon of nad1 and the stop codon of ccmFc. Most PCGs of the C. soulattri mitochondrial genome underwent negative selection, but atp4 and ccmB experienced positive selection. Phylogenetic analyses showed C. soulattri is a sister taxon of Garcinia mangostana. This study has shed light on C. soulattri's evolution and Malpighiales' phylogeny. As the first complete mitochondrial genome in Calophyllaceae, it can be used as a reference genome for other medicinal plant species within the family for future genetic studies.


Assuntos
Calophyllum , Genoma Mitocondrial , Malpighiales , Genoma Mitocondrial/genética , Filogenia , Códon de Iniciação , Códon de Terminação
14.
BMC Genomics ; 25(1): 184, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365628

RESUMO

BACKGROUND: Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS: We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS: In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.


Assuntos
Parasitos , Trypanosoma brucei brucei , Trypanosomatina , Animais , Códon de Terminação , Eucariotos/genética , Código Genético , Parasitos/genética , Trypanosoma brucei brucei/genética , Trypanosomatina/genética
15.
Mol Genet Genomic Med ; 12(2): e2402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400599

RESUMO

BACKGROUND: Recurrent miscarriage (RM) affects 1% to 5% of couples trying to conceive. Despite extensive clinical and laboratory testing, half of the RM cases remain unexplained. We report the genetic analysis of a couple with eight miscarriages and the search for their potential genetic etiology. METHODS: Short tandem repeat (STR) markers, single nucleotide polymorphic (SNP) microarray, and human DNA methylation microarray were used to analyze the genotypes of two miscarriages. Exomes sequencing was performed on DNA from the two partners and identified variants were validated by Sanger sequencing. RESULTS: STR marker genotyping demonstrated that the two available miscarriages are triploid digynic and resulted from the failure of Meiosis II. SNP microarray analysis revealed an additional Meiosis I abnormality that is the segregation of the two maternal homologous chromosomes in one triploid miscarriage. Whole-exome sequencing on DNA from the two partners identified candidate variants only in the female partner in two genes with roles in female reproduction, a missense in EIF4ENIF1 (OMIM 607445) and a stop gain in HORMAD2 (OMIM 618842). EIF4ENIF1 is a eukaryotic translation initiation factor 4E nuclear import factor required for the oocyte germinal vesicle breakdown, and HORMAD2 is part of the synaptonemal complex that was hypothesized to act as a checkpoint mechanism to eliminate oocytes with asynapsis during meiotic prophase I in mice. CONCLUSION: While both genes may contribute to the phenotype, the Meiosis I abnormalities in the conceptions favor the causal role of HORMAD2 in the etiology of RM in this couple. This report illustrates the importance of comprehensively analyzing the products of conception to guide the search for the genetic causation of RM.


Assuntos
Aborto Habitual , Meiose , Feminino , Humanos , Gravidez , Aborto Habitual/genética , Códon de Terminação , DNA , Meiose/genética , Triploidia , Masculino
16.
BMC Bioinformatics ; 25(1): 82, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389044

RESUMO

BACKGROUND: One of the stranger phenomena that can occur during gene translation is where, as a ribosome reads along the mRNA, various cellular and molecular properties contribute to stalling the ribosome on a slippery sequence and shifting the ribosome into one of the other two alternate reading frames. The alternate frame has different codons, so different amino acids are added to the peptide chain. More importantly, the original stop codon is no longer in-frame, so the ribosome can bypass the stop codon and continue to translate the codons past it. This produces a longer version of the protein, a fusion of the original in-frame amino acids, followed by all the alternate frame amino acids. There is currently no automated software to predict the occurrence of these programmed ribosomal frameshifts (PRF), and they are currently only identified by manual curation. RESULTS: Here we present PRFect, an innovative machine-learning method for the detection and prediction of PRFs in coding genes of various types. PRFect combines advanced machine learning techniques with the integration of multiple complex cellular properties, such as secondary structure, codon usage, ribosomal binding site interference, direction, and slippery site motif. Calculating and incorporating these diverse properties posed significant challenges, but through extensive research and development, we have achieved a user-friendly approach. The code for PRFect is freely available, open-source, and can be easily installed via a single command in the terminal. Our comprehensive evaluations on diverse organisms, including bacteria, archaea, and phages, demonstrate PRFect's strong performance, achieving high sensitivity, specificity, and an accuracy exceeding 90%. The code for PRFect is freely available and installs with a single terminal command. CONCLUSION: PRFect represents a significant advancement in the field of PRF detection and prediction, offering a powerful tool for researchers and scientists to unravel the intricacies of programmed ribosomal frameshifting in coding genes.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Biossíntese de Proteínas , Códon de Terminação/genética , Genoma Viral , Aminoácidos
17.
Cell Rep ; 43(2): 113723, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38300801

RESUMO

Stop codon readthrough (SCR) has important biological implications but remains largely uncharacterized. Here, we identify 1,009 SCR events in plants using a proteogenomic strategy. Plant SCR candidates tend to have shorter transcript lengths and fewer exons and splice variants than non-SCR transcripts. Mass spectrometry evidence shows that stop codons involved in SCR events can be recoded as 20 standard amino acids, some of which are also supported by suppressor tRNA analysis. We also observe multiple functional signals in 34 maize extended proteins and characterize the structural and subcellular localization changes in the extended protein of basic transcription factor 3. Furthermore, the SCR events exhibit non-conserved signature, and the extensions likely undergo protein-coding selection. Overall, our study not only characterizes that SCR events are commonly present in plants but also identifies the recoding plasticity of stop codons, which provides important insights into the flexibility of genetic decoding.


Assuntos
Biossíntese de Proteínas , Proteínas , Códon de Terminação/genética , Proteínas/genética , Aminoácidos/genética , RNA de Transferência/genética
18.
Genes Cells ; 29(4): 347-355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351722

RESUMO

CdsA is a CDP-diacylglycerol synthase essential for phospholipid and glycolipid MPIase biosynthesis, and therefore for growth. The initiation codon of CdsA has been assigned as "TTG," while methionine at the 37th codon was reported to be an initiation codon in the original report. Since a vector containing the open reading frame starting with "TTG" under a controllable promoter complemented the cdsA knockout, "TTG" could function as an initiation codon. However, no evidence supporting that this "TTG" is the sole initiation codon has been reported. We determined the initiation codon by examining the ability of mutants around the N-terminal region to complement cdsA mutants. Even if the "TTG" was substituted with a stop codon, the clear complementation was observed. Moreover, the clones with multiple mutations of stop codons complemented the cdsA mutant up to the 37th codon, indicating that cdsA possesses multiple codons that can function as initiation codons. We constructed an experimental system in which the chromosomal expression of cdsA can be analyzed. By means of this system, we found that the cdsA mutant with substitution of "TTG" with a stop codon is fully functional. Thus, we concluded that CdsA contains multiple initiation codons.


Assuntos
Diacilglicerol Colinofosfotransferase , Glicolipídeos , Fosfolipídeos , Diacilglicerol Colinofosfotransferase/metabolismo , Códon de Iniciação/genética , Códon de Terminação/genética , Biossíntese de Proteínas
19.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339043

RESUMO

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Retroelementos/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo
20.
J Pharm Sci ; 113(6): 1498-1505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342339

RESUMO

Stop codon readthroughs were examined in 48 recombinant therapeutic protein candidates produced from multiple clones of Chinese hamster ovary cells, using peptide mapping with LC-MS/MS detection. We found that stop codon readthrough is a common phenomenon occurring in most of these candidates, with levels varying from below the detection limit of ∼0.001 % to ∼1 %. The readthrough propensity depends on the stop codon being used, as well as the nucleotides surrounding it. The amino acids misincorporated into the stop position can be well-predicted by a third-base wobble mismatch and a first-base U/G mismatch during codon recognition, i.e., tyrosine or glutamine insertion for the UAA and UAG stop codons, and tryptophan, cysteine or arginine insertion for the UGA stop codon. Data shown in this report demonstrate the importance of optimizing the DNA sequence near the stop codon, and the importance of detecting stop codon readthroughs during the development of a therapeutic product.


Assuntos
Códon de Terminação , Cricetulus , Proteínas Recombinantes , Células CHO , Animais , Códon de Terminação/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem , Cricetinae , Mapeamento de Peptídeos/métodos , Biossíntese de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...