Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.273
Filtrar
1.
Anal Chim Acta ; 1316: 342843, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969407

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are important non-coding RNA entities that affect gene expression and function by binding to target mRNAs, leading to degradation of the mRNAs or inhibiting their translation. MiRNAs are widely involved in a variety of biological processes, such as cell differentiation, development, metabolism, and apoptosis. In addition, miRNAs are associated with many diseases, including cancer. However, conventional detection techniques often suffer from shortcomings such as low sensitivity, so we need to develop a rapid and efficient detection strategy for accurate detection of miRNAs. RESULTS: We have developed an innovative homogeneous electrochemiluminescence (ECL) biosensor. This biosensor employs CRISPR/Cas12a gene editing technology for accurate and efficient detection of microRNA (miRNA). Compared to conventional technologies, this biosensor employs a unique homogeneous detection format that eliminates laborious probe fixation steps and greatly simplifies the detection process. By using two amplification techniques - isothermal amplification and T7 RNA polymerase amplification - the biosensor improves the sensitivity and specificity of the assay, providing excellent detection performance in the assay. This makes it possible to evaluate miRNA directly from a variety of biological samples such as cell lysates and diluted human serum. Experimental results convincingly demonstrate the extraordinary performance of this biosensor, including its extremely low detection limit of 1.27 aM, high sensitivity, reproducibility and stability. SIGNIFICANCE: The application of our constructed sensor in distinguishing between cancerous and non-cancerous cell lines highlights its potential for early cancer detection and monitoring. This innovative approach represents a major advancement in the field of miRNA detection, providing a user-friendly, cost-effective, and sensitive solution with broad implications for clinical diagnosis and patient care, especially in point-of-care settings.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Humanos , Técnicas Biossensoriais/métodos , MicroRNAs/análise , MicroRNAs/sangue , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , Técnicas Eletroquímicas/métodos , Limite de Detecção , Proteínas Associadas a CRISPR/genética , Proteínas de Bactérias , Endodesoxirribonucleases
2.
Anal Chim Acta ; 1316: 342838, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969428

RESUMO

The diagnosis of dengue virus (DENV) has been challenging particularly in areas far from clinical laboratories. Early diagnosis of pathogens is a prerequisite for the timely treatment and pathogen control. An ideal diagnostic for viral infections should possess high sensitivity, specificity, and flexibility. In this study, we implemented dual amplification involving Cas13a and Cas12a, enabling sensitive and visually aided diagnostics for the dengue virus. Cas13a recognized the target RNA by crRNA and formed the assembly of the Cas13a/crRNA/RNA ternary complex, engaged in collateral cleavage of nearby crRNA of Cas12a. The Cas12a/crRNA/dsDNA activator ternary complex could not be assembled due to the absence of crRNA of Cas12a. Moreover, the probe, with 5' and 3' termini labeled with FAM and biotin, could not be separated. The probes labeled with FAM and biotin, combined the Anti-FAM and the Anti-Biotin Ab-coated gold nanoparticle, and conformed sandwich structure on the T-line. The red line on the paper strip caused by clumping of AuNPs on the T-line indicated the detection of dengue virus. This technique, utilizing an activated Cas13a system cleaving the crRNA of Cas12a, triggered a cascade that amplifies the virus signal, achieving a low detection limit of 190 fM with fluorescence. Moreover, even at 1 pM, the red color on the T-line was easily visible by naked eyes. The developed strategy, incorporating cascade enzymatic amplification, exhibited good sensitivity and may serve as a field-deployable diagnostic tool for dengue virus.


Assuntos
Vírus da Dengue , Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , Proteínas Associadas a CRISPR/metabolismo , Nanopartículas Metálicas/química , Limite de Detecção , Ouro/química , Proteínas de Bactérias , Endodesoxirribonucleases
3.
Anal Chem ; 96(25): 10443-10450, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38864271

RESUMO

Due to their ability to selectively target pathogen-specific nucleic acids, CRISPR-Cas systems are increasingly being employed as diagnostic tools. "One-pot" assays that combine nucleic acid amplification and CRISPR-Cas systems (NAAT-CRISPR-Cas) in a single step have emerged as one of the most popular CRISPR-Cas biosensing formats. However, operational simplicity comes at a cost, with one-pot assays typically being less sensitive than corresponding two-step NAAT-CRISPR-Cas assays and often failing to detect targets at low concentrations. It is thought that these performance reductions result from the competition between the two enzymatic processes driving the assay, namely, Cas-mediated cis-cleavage and polymerase-mediated amplification of the target DNA. Herein, we describe a novel one-pot RPA-Cas12a assay that circumvents this issue by leveraging in situ complexation of the target-specific sgRNA and Cas12a to purposefully limit the concentration of active Cas12a during the early stages of the assay. Using a clinically relevant assay against a DNA target for HPV-16, we show how this in situ format reduces competition between target cleavage and amplification and engenders significant improvements in detection limit when compared to the traditional one-pot assay format, even in patient-derived samples. Finally, to gain further insight into the assay, we use experimental data to formulate a mechanistic model describing the competition between the Cas enzyme and nucleic acid amplification. These findings suggest that purposefully limiting cis-cleavage rates of Cas proteins is a viable strategy for improving the performance of one-pot NAAT-CRISPR-Cas assays.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Proteínas Associadas a CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Humanos , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Técnicas de Amplificação de Ácido Nucleico , Proteína de Replicação A/metabolismo , Técnicas Biossensoriais/métodos
4.
Mikrochim Acta ; 191(7): 405, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896292

RESUMO

CRISPR-Cas12a with robust trans-cleavage activity were employed to mitigate background fluorescence signal, achieving sensitive detection of miRNA-21. The activation of trans-cleavage activity of Cas12a was achieved by utilizing cDNA as a trigger. Upon the presence of target miRNA-21, cDNA hybridizes with it forming a DNA/RNA double-stranded structure. Exonuclease III (ExoIII) facilitates the degradation of cDNA, releasing the target for subsequent cycles. Due to cDNA degradation, the trans-cleavage activity of Cas12a remains unactivated and does not disrupt the synthesis template of copper nanoparticles. Addition of Cu2+ and AA leads to the formation of highly fluorescent copper nanoparticles. Conversely, in absence of miRNA-21, intact cDNA activates trans-cleavage activity of Cas12a, resulting in degradation of the synthesis template and failure in synthesizing fluorescent copper nanoparticles. This method exhibits excellent selectivity with a low limit of detection (LOD) at 5 pM. Furthermore, we successfully applied this approach to determine miRNA-21 in cell lysates and human serum samples, providing a new approach for sensitive determination of biomarkers in biochemical research and disease diagnosis.


Assuntos
Sistemas CRISPR-Cas , Cobre , Limite de Detecção , Nanopartículas Metálicas , MicroRNAs , Cobre/química , Nanopartículas Metálicas/química , Humanos , MicroRNAs/sangue , MicroRNAs/análise , Sistemas CRISPR-Cas/genética , Fluorometria/métodos , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/química , Técnicas Biossensoriais/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Endodesoxirribonucleases
5.
Bioelectrochemistry ; 159: 108753, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38833812

RESUMO

MiR-1246 in breast cancer-derived exosomes was a promising biomarker for early diagnosis of breast cancer(BC). However, the low abundance, high homology and complex background interference make the accurate quantitative detection of miR-1246 facing great challenges. In this study, we developed an electrochemical biosensor based on the subtly combined of CRISPR/Cas12a, double-stranded specific nuclease(DSN) and magnetic nanoparticles(MNPs) for the detection of miR-1246 in BC-derived exosomes. Ascribed to the good synergistic effect of DSN, Cas12a and MNPs, the developed electrochemical biosensor exhibited excellent performance with the linear range from 500 aM to 5 pM, and the detection limit as low down to about 50 aM. The target-specific triggered enzyme-digest activity of DSN and Cas12a system, as well as the powerful separation ability of MNPs ensure the high specificity of developed electrochemical biosensor which can distinguish single base mismatches. In addition, the developed electrochemical biosensor has been successfully applied to detect miR-1246 in blood-derived exosomes and realize distinguishing the BC patients from the healthy individuals. It is expected that the well-designed biosensing platform will open up new avenues for clinical liquid biopsy and early screening of breast cancer, as well as provide deeper insights into clinical oncology treatment.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Exossomos , MicroRNAs , Exossomos/química , Exossomos/metabolismo , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , MicroRNAs/análise , MicroRNAs/genética , Feminino , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas de Magnetita/química , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
6.
Biosens Bioelectron ; 261: 116464, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861812

RESUMO

Recent findings on CRISPR-Cas enzymes with collateral DNAse/RNAse activity have led to new and innovative methods for pathogen detection. However, many CRISPR-Cas assays necessitate DNA pre-amplification to boost sensitivity, restricting their utility for point-of-care applications. Achieving higher sensitivity without DNA pre-amplification presents a significant challenge. In this study, we introduce a Terminal deoxynucleotidyl Transferase (TdT)-based amplification loop, creating a positive feedback mechanism within the CRISPR-Cas12a pathogen detection system. Upon recognizing pathogenic target DNA, Cas12a triggers trans-cleavage of a FRET reporter and a specific enhancer molecule oligonucleotide, indicated by the acronym POISER (Partial Or Incomplete Sites for crRNA recognition). POISER comprises half of a CRISPR-RNA recognition site, which is subsequently elongated by TdT enzymatic activity. This process, involving pathogen recognition-induced Cas12a cleavage and TdT elongation, results in a novel single-stranded DNA target. This target can subsequently be recognized by a POISER-specific crRNA, activating more Cas12a enzymes. Our study demonstrates that these POISER-cycles enhance the signal strength in fluorescent-based CRISPR-Cas12a assays. Although further refinement is desirable, POISER holds promise as a valuable tool for the detection of pathogens in point-of-care testing, surveillance, and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Técnicas Biossensoriais/métodos , Proteínas Associadas a CRISPR/genética , DNA Bacteriano/genética , DNA Bacteriano/análise , DNA Nucleotidilexotransferase/química , DNA Nucleotidilexotransferase/metabolismo , Endodesoxirribonucleases/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas de Bactérias/genética , Humanos
7.
Biosens Bioelectron ; 260: 116429, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838573

RESUMO

Developing highly sensitive and specific on-site tests is imperative to strengthen preparedness against future emerging infectious diseases. Here, we describe the construction of a Cas12a-mediated DNAzyme actuator capable of converting the recognition of a specific DNA sequence into an amplified colorimetric signal. To address viral RNA extraction challenges for on-site applications, we developed a rapid and efficient method capable of lysing the viral particles, preserving the released viral RNA, and concentrating the viral RNA. Integration of the DNAzyme actuator with the viral RNA extraction method and loop-mediated isothermal amplification enables a streamlined colorimetric assay for highly sensitive colorimetric detection of respiratory RNA viruses in gargle and saliva. This assay can detect as few as 83 viral particles/100 µL in gargle and 166 viral particles/100 µL in saliva. The entire assay, from sample processing to visual detection, was completed within 1 h at a single controlled temperature. We validated the assay by detecting SARS-CoV-2 in 207 gargle and saliva samples, achieving a clinical sensitivity of 96.3 % and specificity of 100%. The assay is adaptable for detecting specific nucleic acid sequences in other pathogens and is suitable for resource-limited settings.


Assuntos
Técnicas Biossensoriais , Colorimetria , DNA Catalítico , Técnicas de Amplificação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , Saliva , Colorimetria/métodos , RNA Viral/isolamento & purificação , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Saliva/virologia , Saliva/química , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , COVID-19/virologia , COVID-19/diagnóstico , Proteínas Associadas a CRISPR/isolamento & purificação , Proteínas Associadas a CRISPR/química , Endodesoxirribonucleases/química , Limite de Detecção , Fezes/virologia , Fezes/química , Proteínas de Bactérias , Técnicas de Diagnóstico Molecular
8.
Chem Commun (Camb) ; 60(52): 6667-6670, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860504

RESUMO

Herein, a universal nucleic acid analysis platform was constructed for sensitive and accurate detection of miRNA-155 and ctDNA using isothermal amplification-assisted CRISPR/Cas12a and a tetrahedral DNA nanostructure (TDN) supported sensing interface. Under the optimal experimental conditions, the prepared sensor achieved specific detection of miRNA-155 and ctDNA at as low as aM levels in 2.6 h. Furthermore, the platform was also successfully applied to human serum sample recovery experiments and cancer cell lysates, demonstrating outstanding reliability and accuracy. We firmly believe that this work provides a universal, sensitive, and practical tool for early clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA , Técnicas Eletroquímicas , MicroRNAs , Humanos , Sistemas CRISPR-Cas/genética , MicroRNAs/análise , MicroRNAs/sangue , DNA/química , Técnicas de Amplificação de Ácido Nucleico , DNA Tumoral Circulante/sangue , Nanoestruturas/química , Limite de Detecção , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
9.
Mikrochim Acta ; 191(7): 386, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867016

RESUMO

The combination of CRISPR/Cas12a and functional DNA provides the possibility of constructing biosensors for detecting non-nucleic-acid targets. In the current study, the duplex protospacer adjacent motif (PAM) in the activator of CRISPR/Cas12a was used as a molecular switch, and a sensitive adenosine triphosphate (ATP) detection biosensor was constructed using an allosteric probe-conjugated PAM site formation in hybridization chain reaction (HCR) integrated with the CRISPR/Cas12a system (APF-CRISPR). In the absence of ATP, an aptamer-containing probe (AP) is in a stem-loop structure, which blocks the initiation of HCR. In the presence of ATP, the structure of AP is changed upon ATP binding, resulting in the release of the HCR trigger strand and the production of long duplex DNA with many PAM sites. Since the presence of a duplex PAM site is crucial for triggering the cleavage activity of CRISPR/Cas12a, the ATP-dependent formation of the PAM site in HCR products can initiate the FQ-reporter cleavage, allowing ATP quantification by measuring the fluorescent signals. By optimizing the sequence elements and detection conditions, the aptasensor demonstrated superior detection performance. The limit of detection (LOD) of the assay was estimated to be 1.16 nM, where the standard deviation of the blank was calculated based on six repeated measurements. The dynamic range of the detection was 25-750 nM, and the whole workflow of the assay was approximately 60 min. In addition, the reliability and practicability of the aptasensor were validated by comparing it with a commercially available chemiluminescence kit for ATP detection in serum. Due to its high sensitivity, specificity, and reliable performance, the APF-CRISPR holds great potential in bioanalytical studies for ATP detection. In addition, we have provided a proof-of-principle for constructing a CRISPR/Cas12a-based aptasensor, in which the PAM is utilized to regulate Cas12a cleavage activity.


Assuntos
Trifosfato de Adenosina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Trifosfato de Adenosina/química , Trifosfato de Adenosina/análise , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Proteínas Associadas a CRISPR/química , Limite de Detecção , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hibridização de Ácido Nucleico , Endodesoxirribonucleases
10.
Nucleic Acids Res ; 52(12): 7384-7396, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38828769

RESUMO

The revolutionary technology of CRISPR/Cas has reshaped the landscape of molecular biology and molecular engineering. This tool is of interest to researchers in multiple fields, including molecular diagnostics, molecular biochemistry circuits, and information storage. As CRISPR/Cas spreads to more niche areas, new application scenarios and requirements emerge. Developing programmability and compatibility of CRISPR/Cas becomes a critical issue in the new phase. Here, we report a redundancy-based modular CRISPR/Cas12a synergistic activation platform (MCSAP). The position, length, and concentration of the redundancy in the split DNA activators can finely regulate the activity of Cas12a. With the redundant structure as an interface, MCSAP serves as a modular plug-in to seamlessly integrate with the upstream molecular network. MCSAP successfully performs three different tasks: nucleic acid detection, enzyme detection, and logic operation. MCSAP can work as an effector for different molecular networks because of its compatibility and programmability. Our platform provides powerful yet easy-to-use tools and strategies for the fields of DNA nanotechnology, molecular engineering, and molecular biology.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , DNA/genética , DNA/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lógica
11.
Mikrochim Acta ; 191(7): 376, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849560

RESUMO

CRISPR/Cas system has been widely applied in the assay of disease-related nucleic acids. However, it is still challenging to use CRISPR/Cas system to detect multiple nucleic acids at the same time. Herein, we combined the preponderance of DNA logic circuit, label-free, and CRISPR/Cas technology to construct a label-free "AND" logical gate for multiple microRNAs detection with high specificity and sensitivity. With the simultaneous input of miRNA-155 and miRNA-141, the logic gate starts, and the activation chain of Cas12a is destroyed; thus, the activity is inhibited and the fluorescence of the signal probe ssDNA-AgNCs is turned on. The detection limit of this method for simultaneous quantitative detection of double target is 84 fmol/L (S/N = 3). In this "AND" logic gate, it is only necessary for the design of a simple DNA hairpin probe, which is inexpensive and easy, and since this method involves only one signal output, the data processing is very simple. What is more important, in this strategy two types of microRNAs can be monitored simultaneously by only using CRISPR/Cas12a and a type of crRNA, which offers a new design concept for the exploitation of single CRISPR/Cas system for multiple nucleic acid assays.


Assuntos
Sistemas CRISPR-Cas , MicroRNAs , MicroRNAs/análise , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , Humanos , Limite de Detecção , Proteínas Associadas a CRISPR/genética , Endodesoxirribonucleases/genética , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Proteínas de Bactérias/genética , DNA/genética , DNA/química
12.
BMC Vet Res ; 20(1): 258, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877537

RESUMO

BACKGROUND: Senecavirus A (SVA), identified in 2002, is known to cause porcine idiopathic vesicular disease (PIVD), which presents with symptoms resembling other vesicular diseases. This similarity complicates field diagnosis. Conventional molecular diagnostic techniques are limited by their cost, sensitivity, and requirement for complicated instrumentation. Therefore, developing an effective and accurate diagnostic method is crucial for timely identification and isolation of affected pigs, thereby preventing further disease spread. METHODS: In this study, we developed a highly-specific and ultra-sensitive SVA detection method powered by CRISPR/Cas12a. To enhance the availability in laboratories with varied equipment conditions, microplate reader and ultraviolet light transilluminator were introduced. Moreover, PCR amplification has also been incorporated into this method to improve sensitivity. The specificity and sensitivity of this method were determined following the preparation of the recombinant Cas12a protein and optimization of the CRISPR/Cas12a-based trans-cleavage system. RESULTS: The method demonstrated no cross-reactivity with ten kinds of viruses of swine. The minimum template concentration required to activate substantial trans-cleavage activity was determined to be 106 copies/µL of SVA templates. However, when PCR amplification was incorporated, the method achieved a detection limit of one copy of SVA templates per reaction. It also exhibited 100% accuracy in simulated sample testing. The complete testing process does not exceed three hours. CONCLUSIONS: Importantly, this method utilizes standard laboratory equipment, making it accessible for use in resource-limited settings and facilitating widespread and ultra-sensitive screening during epidemics. Overall, the development of this method not only broadens the array of tools available for detecting SVA but also holds significant promise for controlling the spread of PIVD.


Assuntos
Sistemas CRISPR-Cas , Picornaviridae , Sensibilidade e Especificidade , Doenças dos Suínos , Animais , Suínos , Picornaviridae/isolamento & purificação , Picornaviridae/genética , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/virologia , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase/métodos , Proteínas Associadas a CRISPR/genética
13.
Mikrochim Acta ; 191(7): 403, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888689

RESUMO

An efficient PEC biosensor is proposed for ATP detection based on exciton energy transfer from CdTe quantum dots (CdTe QDs) to Au nanoparticles (AuNPs), integrating CRISPR/Cas12a trans-cleavage activity and specific recognition of ZIF-67 to ATP. Exciton energy transfer between CdTe QDs and AuNPs system is firstly constructed as photoelectrochemical (PEC) sensing substrate. Then, the activator DNAs, used to activate CRISPR/Cas12a, are absorbed on the surface of ZIF-67. In the presence of ATP, the activator DNAs are released due to more efficient adsorption of ZIF-67 to ATP. The released activator DNA activates trans-cleavage activity of CRISPR/Cas12a to degrade ssDNA on the electrode, leading to the recovery of photocurrent due to the interrupted energy transfer. Benefiting from the specific recognition of ZIF-67 to ATP and CRISPR/Cas12a-modulated amplification strategy, the sensor is endowed with excellent specificity and high sensitivity.


Assuntos
Trifosfato de Adenosina , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Compostos de Cádmio , Técnicas Eletroquímicas , Ouro , Nanopartículas Metálicas , Pontos Quânticos , Técnicas Biossensoriais/métodos , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Compostos de Cádmio/química , Pontos Quânticos/química , Ouro/química , Nanopartículas Metálicas/química , Telúrio/química , Imidazóis/química , Proteínas Associadas a CRISPR/química , Limite de Detecção , Zeolitas/química , Endodesoxirribonucleases/química , Estruturas Metalorgânicas/química , Processos Fotoquímicos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
14.
Cell Chem Biol ; 31(6): 1039-1043, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906108

RESUMO

Velcrins are molecular glues that induce complex formation between PDE3A and SLFN12. The PDE3A-SLFN12 complex activates the SLFN12 RNase, resulting in cleavage of the specific substrate, tRNA-Leu-TAA, global inhibition of translation, and death of cells expressing sufficient levels of both proteins. Here, unanswered questions about the mechanism of action and therapeutic promise of velcrin compounds are discussed.


Assuntos
Endorribonucleases , Humanos , Endorribonucleases/metabolismo , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
15.
J Chem Inf Model ; 64(12): 4897-4911, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38838358

RESUMO

The recent development of CRISPR-Cas technology holds promise to correct gene-level defects for genetic diseases. The key element of the CRISPR-Cas system is the Cas protein, a nuclease that can edit the gene of interest assisted by guide RNA. However, these Cas proteins suffer from inherent limitations such as large size, low cleavage efficiency, and off-target effects, hindering their widespread application as a gene editing tool. Therefore, there is a need to identify novel Cas proteins with improved editing properties, for which it is necessary to understand the underlying features governing the Cas families. In this study, we aim to elucidate the unique protein features associated with Cas9 and Cas12 families and identify the features distinguishing each family from non-Cas proteins. Here, we built Random Forest (RF) binary classifiers to distinguish Cas12 and Cas9 proteins from non-Cas proteins, respectively, using the complete protein feature spectrum (13,494 features) encoding various physiochemical, topological, constitutional, and coevolutionary information on Cas proteins. Furthermore, we built multiclass RF classifiers differentiating Cas9, Cas12, and non-Cas proteins. All the models were evaluated rigorously on the test and independent data sets. The Cas12 and Cas9 binary models achieved a high overall accuracy of 92% and 95% on their respective independent data sets, while the multiclass classifier achieved an F1 score of close to 0.98. We observed that Quasi-Sequence-Order (QSO) descriptors like Schneider.lag and Composition descriptors like charge, volume, and polarizability are predominant in the Cas12 family. Conversely Amino Acid Composition descriptors, especially Tripeptide Composition (TPC), predominate the Cas9 family. Four of the top 10 descriptors identified in Cas9 classification are tripeptides PWN, PYY, HHA, and DHI, which are seen to be conserved across all Cas9 proteins and located within different catalytically important domains of the Streptococcus pyogenes Cas9 (SpCas9) structure. Among these, DHI and HHA are well-known to be involved in the DNA cleavage activity of the SpCas9 protein. Mutation studies have highlighted the significance of the PWN tripeptide in PAM recognition and DNA cleavage activity of SpCas9, while Y450 from the PYY tripeptide plays a crucial role in reducing off-target effects and improving the specificity in SpCas9. Leveraging our machine learning (ML) pipeline, we identified numerous Cas9 and Cas12 family-specific features. These features offer valuable insights for future experimental and computational studies aiming at designing Cas systems with enhanced gene-editing properties. These features suggest plausible structural modifications that can effectively guide the development of Cas proteins with improved editing capabilities.


Assuntos
Proteína 9 Associada à CRISPR , Aprendizado de Máquina , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas
16.
Anal Chem ; 96(25): 10451-10458, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860917

RESUMO

Rapid and sensitive RNA detection is of great value in diverse areas, ranging from biomedical research to clinical diagnostics. Existing methods for RNA detection often rely on reverse transcription (RT) and DNA amplification or involve a time-consuming procedure and poor sensitivity. Herein, we proposed a CRISPR/Cas12a-enabled amplification-free assay for rapid, specific, and sensitive RNA diagnostics. This assay, which we termed T7/G4-CRISPR, involved the use of a T7-powered nucleic acid circuit to convert a single RNA target into numerous DNA activators via toehold-mediated strand displacement reaction and T7 exonuclease-mediated target recycling amplification, followed by activating Cas12a trans-cleavage of the linker strands inhibiting split G-Quadruplex (G4) assembly, thereby inducing fluorescence attenuation proportion to the input RNA target. We first performed step-by-step validation of the entire assay process and optimized the reaction parameters. Using the optimal conditions, T7/G4-CRISPR was capable of detecting as low as 3.6 pM target RNA, obtaining ∼100-fold improvement in sensitivity compared with the most direct Cas12a assays. Meanwhile, its excellent specificity could discriminate single nucleotide variants adjacent to the toehold region and allow species-specific pathogen identification. Furthermore, we applied it for analyzing bacterial 16S rRNA in 40 clinical urine samples, exhibiting a sensitivity of 90% and a specificity of 100% when validated by RT-quantitative PCR. Therefore, we envision that T7/G4-CRISPR will serve as a promising RNA sensing approach to expand the toolbox of CRISPR-based diagnostics.


Assuntos
Sistemas CRISPR-Cas , Quadruplex G , Sistemas CRISPR-Cas/genética , Humanos , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/química , RNA/análise , RNA/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Proteínas Associadas a CRISPR/metabolismo , Proteínas de Bactérias , Endodesoxirribonucleases
17.
PLoS Biol ; 22(6): e3002680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38865309

RESUMO

CRISPR-Cas12a, often regarded as a precise genome editor, still requires improvements in specificity. In this study, we used a GFP-activation assay to screen 14 new Cas12a nucleases for mammalian genome editing, successfully identifying 9 active ones. Notably, these Cas12a nucleases prefer pyrimidine-rich PAMs. Among these nucleases, we extensively characterized Mb4Cas12a obtained from Moraxella bovis CCUG 2133, which recognizes a YYN PAM (Y = C or T). Our biochemical analysis demonstrates that Mb4Cas12a can cleave double-strand DNA across a wide temperature range. To improve specificity, we constructed a SWISS-MODEL of Mb4Cas12a based on the FnCas12a crystal structure and identified 8 amino acids potentially forming hydrogen bonds at the target DNA-crRNA interface. By replacing these amino acids with alanine to disrupt the hydrogen bond, we tested the influence of each mutation on Mb4Cas12a specificity. Interestingly, the F370A mutation improved specificity with minimal influence on activity. Further study showed that Mb4Cas12a-F370A is capable of discriminating single-nucleotide polymorphisms. These new Cas12a orthologs and high-fidelity variants hold substantial promise for therapeutic applications.


Assuntos
Alelos , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Humanos , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , Animais , Engenharia de Proteínas/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Polimorfismo de Nucleotídeo Único , Mutação , DNA/metabolismo , DNA/genética , Células HEK293
18.
Nat Commun ; 15(1): 5014, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866774

RESUMO

Genetic testing is crucial for precision cancer medicine. However, detecting multiple same-site insertions or deletions (indels) is challenging. Here, we introduce CoHIT (Cas12a-based One-for-all High-speed Isothermal Test), a one-pot CRISPR-based assay for indel detection. Leveraging an engineered AsCas12a protein variant with high mismatch tolerance and broad PAM scope, CoHIT can use a single crRNA to detect multiple NPM1 gene c.863_864 4-bp insertions in acute myeloid leukemia (AML). After optimizing multiple parameters, CoHIT achieves a detection limit of 0.01% and rapid results within 30 minutes, without wild-type cross-reactivity. It successfully identifies NPM1 mutations in 30 out of 108 AML patients and demonstrates potential in monitoring minimal residual disease (MRD) through continuous sample analysis from three patients. The CoHIT method is also competent for detecting indels of KIT, BRAF, and EGFR genes. Integration with lateral flow test strips and microfluidic chips highlights CoHIT's adaptability and multiplexing capability, promising significant advancements in clinical cancer diagnostics.


Assuntos
Sistemas CRISPR-Cas , Mutação INDEL , Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas B-raf/genética , Testes Genéticos/métodos , Receptores ErbB/genética , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
19.
CRISPR J ; 7(3): 156-167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922054

RESUMO

CRISPR-Cas technology is a widely utilized gene-editing tool that involves gRNA-guided sequence recognition and Cas nuclease-mediated cleavage. The design and evaluation of gRNA are essential for enhancing CRISPR/Cas editing efficiency. Various assays such as single-strand annealing, in vitro cleavage, and T7 endonuclease I (T7EI) are commonly used to assess gRNA-mediated Cas protein cleavage activity. In this study, a firefly luciferase and Renilla luciferase co-expressed and a cleavage-based single-plasmid dual-luciferase surrogate reporter was built to evaluate the gRNA-mediated Cas12a cleavage efficiency. The cleavage activities of CRISPR-Cas12a can be quantitatively determined by the recovery degree of firefly luciferase activity. The cleavage efficiency of CRISPR-Cas12a can be quantitatively measured by the recovery of firefly luciferase activity. By using this system, the cleavage efficiency of CRISPR-Cas12a on hepatitis B virus (HBV)/D expression plasmid was evaluated, revealing a negative correlation between gRNA cleavage efficiency and HBV gene expression measured using an enzyme-linked immunosorbent assay. This simple, efficient, and quantifiable system only requires the dual-luciferase vector and CRISPR-Cas12a vector, making it a valuable tool for selecting effective gRNAs for gene editing.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Genes Reporter , Luciferases , Plasmídeos , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , Plasmídeos/genética , Humanos , Luciferases/genética , Luciferases/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Vírus da Hepatite B/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
20.
J Biotechnol ; 391: 99-105, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38880387

RESUMO

The CRISPR/Cas12a system is emerging as a promising candidate for next-generation diagnostic biosensing platforms, with the discovery of new activation modes greatly expanding its applications. Here, we have identified two novel CRISPR/Cas12a system activation modes: PAM- and toehold-free DNA hairpins, and DNA-RNA hybrid strands. Utilizing a well-established real-time fluorescence method, we have demonstrated a strong correlation between DNA hairpin structures and Cas12a activation. Compared with previously reported activation modes involving single-stranded DNA and PAM-contained double-stranded DNA, the DNA hairpin activation way exhibits similar specificity and generality. Moreover, our findings indicate that increasing the number of RNA bases in DNA-RNA hybrid strands can decelerate the kinetics of Cas12a-triggered trans-cleavage of reporter probes. These newly discovered CRISPR/Cas12a activation ways hold significant potential for the development of high-performance biosensing strategies.


Assuntos
Sistemas CRISPR-Cas , DNA , RNA , Sistemas CRISPR-Cas/genética , RNA/genética , RNA/química , DNA/genética , DNA/química , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conformação de Ácido Nucleico , Endodesoxirribonucleases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...