Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.329
Filtrar
1.
Nat Commun ; 15(1): 4841, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844783

RESUMO

Kaposi sarcoma associated herpesvirus (KSHV) is associated with around 1% of all human tumors, including the B cell malignancy primary effusion lymphoma (PEL), in which co-infection with the Epstein Barr virus (EBV) can almost always be found in malignant cells. Here, we demonstrate that KSHV/EBV co-infection of mice with reconstituted human immune systems (humanized mice) leads to IgM responses against both latent and lytic KSHV antigens, and expansion of central and effector memory CD4+ and CD8+ T cells. Among these, KSHV/EBV dual-infection allows for the priming of CD8+ T cells that are specific for the lytic KSHV antigen K6 and able to kill KSHV/EBV infected B cells. This suggests that K6 may represent a vaccine antigen for the control of KSHV and its associated pathologies in high seroprevalence regions, such as Sub-Saharan Africa.


Assuntos
Linfócitos B , Linfócitos T CD8-Positivos , Herpesvirus Humano 8 , Animais , Herpesvirus Humano 8/imunologia , Humanos , Linfócitos B/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Coinfecção/imunologia , Coinfecção/virologia , Linfócitos T CD4-Positivos/imunologia , Herpesvirus Humano 4/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Imunoglobulina M/imunologia , Antígenos Virais/imunologia , Camundongos SCID , Linfoma de Efusão Primária/imunologia , Linfoma de Efusão Primária/virologia , Anticorpos Antivirais/imunologia
2.
J Exp Clin Cancer Res ; 43(1): 163, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863037

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. METHODS: Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. RESULTS: BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t1/2, ~8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. CONCLUSIONS: BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteínas Serina-Treonina Quinases , Tolerância a Radiação , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos SCID
3.
Sci Rep ; 14(1): 13741, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877072

RESUMO

Dirofilaria immitis is a mosquito-borne parasitic nematode that causes fatal heartworm disease in canids. The microfilariae are essential for research, including drug screening and mosquito-parasite interactions. However, no reliable methods for maintaining microfilaria long-term are currently available. Therefore, we used severe combined immunodeficiency (SCID) mice to develop a reliable method for maintaining D. immitis microfilaria. SCID mice were injected intravenously with microfilariae isolated from a D. immitis-infected dog. Microfilariae were detected in blood collected from the tail vein 218 days post-inoculation (dpi) and via cardiac puncture 296 dpi. Microfilariae maintained in and extracted from SCID mice showed infectivity and matured into third-stage larvae (L3s) in the vector mosquito Aedes aegypti. L3s can develop into the fourth stage larvae in vitro. Microfilariae from SCID mice respond normally to ivermectin in vitro. The microfilariae in SCID mice displayed periodicity in the peripheral circulation. The SCID mouse model aided in the separation of microfilariae from cryopreserved specimens. The use of SCID mice enabled the isolation and sustained cultivation of microfilariae from clinical samples. These findings highlight the usefulness of the SCID mouse model for studying D. immitis microfilaremia in canine heartworm research.


Assuntos
Dirofilaria immitis , Dirofilariose , Modelos Animais de Doenças , Camundongos SCID , Microfilárias , Animais , Cães , Dirofilariose/parasitologia , Camundongos , Doenças do Cão/parasitologia , Aedes/parasitologia , Larva , Ivermectina/uso terapêutico
4.
Biomed Pharmacother ; 176: 116887, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852511

RESUMO

BACKGROUND: The metastasis of tumors into bone tissue typically leads to intractable pain that is both very disabling and particularly difficult to manage. We investigated here whether riluzole could have beneficial effects for the treatment of prostate cancer-induced bone pain and how it could influence the development of bone metastasis. METHODS: We used a bone pain model induced by intratibial injection of human PC3 prostate cancer cells into male SCID mice treated or not with riluzole administered in drinking water. We also used riluzole in vitro to assess its possible effect on PC3 cell viability and functionality, using patch-clamp. RESULTS: Riluzole had a significant preventive effect on both evoked and spontaneous pain involving the TREK-1 potassium channel. Riluzole did not interfere with PC3-induced bone loss or bone remodeling in vivo. It also significantly decreased PC3 cell viability in vitro. The antiproliferative effect of riluzole is correlated with a TREK-1-dependent membrane hyperpolarization in these cells. CONCLUSION: The present data suggest that riluzole could be very useful to manage evoked and spontaneous hypersensitivity in cancer-induced bone pain and has no significant adverse effect on cancer progression.


Assuntos
Analgésicos , Neoplasias Ósseas , Dor do Câncer , Proliferação de Células , Camundongos SCID , Canais de Potássio de Domínios Poros em Tandem , Riluzol , Riluzol/farmacologia , Animais , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Masculino , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Neoplasias Ósseas/complicações , Humanos , Dor do Câncer/tratamento farmacológico , Dor do Câncer/metabolismo , Analgésicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células PC-3 , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral
5.
Phytomedicine ; 130: 155537, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823344

RESUMO

BACKGROUND: Aberrant activation of autophagy in triple-negative breast cancer (TNBC) has led researchers to investigate potential therapeutic strategies targeting this process. The regulation of autophagy is significantly influenced by METTL3. Our previous research has shown that the Panax ginseng-derived compound, 20(R)-panaxatriol (PT), has potential as an anti-tumor agent. However, it remains unclear whether PT can modulate autophagy through METTL3 to exert its anti-tumor effects. OBJECTIVE: Our objective is to investigate whether PT can regulate autophagy in TNBC cells and elucidate the molecular mechanisms. STUDY DESIGN: For in vitro experiments, we employed SUM-159-PT and MDA-MB-231 cells. While in vivo experiments involved BALB/c nude mice and NOD/SCID mice. METHODS: In vitro, TNBC cells were treated with PT, and cell lines with varying expression levels of METTL3 were established. We assessed the impact on tumor cell activity and autophagy by analyzing autophagic flux, Western Blot (WB), and methylation levels. In vivo, subcutaneous transplantation models were established in BALB/c nude and NOD/SCID mice to observe the effect of PT on TNBC growth. HE staining and immunofluorescence were employed to analyze histopathological changes in tumor tissues. MeRIP-seq and dual-luciferase reporter gene assays were used to identify key downstream targets. Additionally, the silencing of STIP1 Homology And U-Box Containing Protein 1 (STUB1) explored PT's effects. The mechanism of PT's action on STUB1 via METTL3 was elucidated through mRNA stability assays, mRNA alternative splicing analysis, and nuclear-cytoplasmic mRNA separation. RESULTS: In both in vivo and in vitro experiments, it was discovered that PT significantly upregulates the expression of METTL3, leading to autophagy inhibition and therapeutic effects in TNBC. Simultaneously, through MeRIP-seq analysis and dual-luciferase reporter gene assays, we have demonstrated that PT modulates STUB1 via METTL3, influencing autophagy in TNBC cells. Furthermore, intriguingly, PT extends the half-life of STUB1 mRNA by enhancing its methylation modification, thereby enhancing its stability. CONCLUSION: In summary, our research reveals that PT increases STUB1 m6A modification through a METTL3-mediated mechanism in TNBC cells, inhibiting autophagy and further accentuating its anti-tumor properties. Our study provides novel mechanistic insights into TNBC pathogenesis and potential drug targets for TNBC.


Assuntos
Autofagia , Metiltransferases , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias de Mama Triplo Negativas , Ubiquitina-Proteína Ligases , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Humanos , Autofagia/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Metiltransferases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Camundongos SCID , Camundongos Endogâmicos NOD , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Panax/química , Adenosina/análogos & derivados , Adenosina/farmacologia
6.
J Exp Clin Cancer Res ; 43(1): 161, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858661

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a significant role in fueling prostate cancer (PCa) progression by interacting with tumor cells. A previous gene expression analysis revealed that CAFs up-regulate genes coding for voltage-gated cation channels, as compared to normal prostate fibroblasts (NPFs). In this study, we explored the impact of antiarrhythmic drugs, known cation channel inhibitors, on the activated state of CAFs and their interaction with PCa cells. METHODS: The effect of antiarrhythmic treatment on CAF activated phenotype was assessed in terms of cell morphology and fibroblast activation markers. CAF contractility and migration were evaluated by 3D gel collagen contraction and scratch assays, respectively. The ability of antiarrhythmics to impair CAF-PCa cell interplay was investigated in CAF-PCa cell co-cultures by assessing tumor cell growth and expression of epithelial-to-mesenchymal transition (EMT) markers. The effect on in vivo tumor growth was assessed by subcutaneously injecting PCa cells in SCID mice and intratumorally administering the medium of antiarrhythmic-treated CAFs or in co-injection experiments, where antiarrhythmic-treated CAFs were co-injected with PCa cells. RESULTS: Activated fibroblasts show increased membrane conductance for potassium, sodium and calcium, consistently with the mRNA and protein content analysis. Antiarrhythmics modulate the expression of fibroblast activation markers. Although to a variable extent, these drugs also reduce CAF motility and hinder their ability to remodel the extracellular matrix, for example by reducing MMP-2 release. Furthermore, conditioned medium and co-culture experiments showed that antiarrhythmics can, at least in part, reverse the protumor effects exerted by CAFs on PCa cell growth and plasticity, both in androgen-sensitive and castration-resistant cell lines. Consistently, the transcriptome of antiarrhythmic-treated CAFs resembles that of tumor-suppressive NPFs. In vivo experiments confirmed that the conditioned medium or the direct coinjection of antiarrhythmic-treated CAFs reduced the tumor growth rate of PCa xenografts. CONCLUSIONS: Collectively, such data suggest a new therapeutic strategy for PCa based on the repositioning of antiarrhythmic drugs with the aim of normalizing CAF phenotype and creating a less permissive tumor microenvironment.


Assuntos
Antiarrítmicos , Fibroblastos Associados a Câncer , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Camundongos , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fenótipo , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
7.
Front Immunol ; 15: 1362904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855110

RESUMO

Introduction: Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of hematological malignancies. However, its efficacy in solid tumors is limited by the immunosuppressive tumor microenvironment that compromises CAR T cell antitumor function in clinical settings. To overcome this challenge, researchers have investigated the potential of inhibiting specific immune checkpoint receptors, including A2aR (Adenosine A2 Receptor) and Tim3 (T cell immunoglobulin and mucin domain-containing protein 3), to enhance CAR T cell function. In this study, we evaluated the impact of genetic targeting of Tim3 and A2a receptors on the antitumor function of human mesothelin-specific CAR T cells (MSLN-CAR) in vitro and in vivo. Methods: Second-generation anti-mesothelin CAR T cells were produced using standard cellular and molecular techniques. A2aR-knockdown and/or Tim3- knockdown anti-mesothelin-CAR T cells were generated using shRNA-mediated gene silencing. The antitumor function of CAR T cells was evaluated by measuring cytokine production, proliferation, and cytotoxicity in vitro through coculture with cervical cancer cells (HeLa cell line). To evaluate in vivo antitumor efficacy of manufactured CAR T cells, tumor growth and mouse survival were monitored in a human cervical cancer xenograft model. Results: In vitro experiments demonstrated that knockdown of A2aR alone or in combination with Tim3 significantly improved CAR T cell proliferation, cytokine production, and cytotoxicity in presence of tumor cells in an antigen-specific manner. Furthermore, in the humanized xenograft model, both double knockdown CAR T cells and control CAR T cells could effectively control tumor growth. However, single knockdown CAR T cells were associated with reduced survival in mice. Conclusion: These findings highlight the potential of concomitant genetic targeting of Tim3 and A2a receptors to augment the efficacy of CAR T cell therapy in solid tumors. Nevertheless, caution should be exercised in light of our observation of decreased survival in mice treated with single knockdown MSLN-CAR T cells, emphasizing the need for careful efficacy considerations.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Imunoterapia Adotiva , Mesotelina , Receptores de Antígenos Quiméricos , Neoplasias do Colo do Útero , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Feminino , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/genética , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Camundongos SCID
8.
Science ; 384(6702): eadh5548, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900896

RESUMO

The molecular mechanisms that regulate breast cancer cell (BCC) metastasis and proliferation within the leptomeninges (LM) are poorly understood, which limits the development of effective therapies. In this work, we show that BCCs in mice can invade the LM by abluminal migration along blood vessels that connect vertebral or calvarial bone marrow and meninges, bypassing the blood-brain barrier. This process is dependent on BCC engagement with vascular basement membrane laminin through expression of the neuronal pathfinding molecule integrin α6. Once in the LM, BCCs colocalize with perivascular meningeal macrophages and induce their expression of the prosurvival neurotrophin glial-derived neurotrophic factor (GDNF). Intrathecal GDNF blockade, macrophage-specific GDNF ablation, or deletion of the GDNF receptor neural cell adhesion molecule (NCAM) from BCCs inhibits breast cancer growth within the LM. These data suggest integrin α6 and the GDNF signaling axis as new therapeutic targets against breast cancer LM metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Integrina alfa6 , Neoplasias Meníngeas , Meninges , Vias Neurais , Animais , Feminino , Humanos , Camundongos , Membrana Basal/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Integrina alfa6/metabolismo , Laminina/metabolismo , Macrófagos/metabolismo , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/secundário , Meninges/patologia , Invasividade Neoplásica , Moléculas de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Transdução de Sinais , Vias Neurais/metabolismo , Camundongos SCID , Camundongos Knockout
9.
Stem Cell Res Ther ; 15(1): 164, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853275

RESUMO

BACKGROUND: Transplantation of CD34+ hematopoietic stem and progenitor cells (HSPC) into immunodeficient mice is an established method to generate humanized mice harbouring a human immune system. Different sources and methods for CD34+ isolation have been employed by various research groups, resulting in customized models that are difficult to compare. A more detailed characterization of CD34+ isolates is needed for a better understanding of engraftable hematopoietic and potentially non-hematopoietic cells. Here we have performed a direct comparison of CD34+ isolated from cord blood (CB-CD34+) or fetal liver (FL-CD34+ and FL-CD34+CD14-) and their engraftment into immunocompromised NOD/Shi-scid Il2rgnull (NOG) mice. METHODS: NOG mice were transplanted with either CB-CD34+, FL-CD34+ or FL-CD34+CD14- to generate CB-NOG, FL-NOG and FL-CD14--NOG, respectively. After 15-20 weeks, the mice were sacrificed and human immune cell reconstitution was assessed in blood and several organs. Liver sections were pathologically assessed upon Haematoxylin and Eosin staining. To assess the capability of allogenic tumor rejection in CB- vs. FL-reconstituted mice, animals were subcutaneously engrafted with an HLA-mismatched melanoma cell line. Tumor growth was assessed by calliper measurements and a Luminex-based assay was used to compare the cytokine/chemokine profiles. RESULTS: We show that CB-CD34+ are a uniform population of HSPC that reconstitute NOG mice more rapidly than FL-CD34+ due to faster B cell development. However, upon long-term engraftment, FL-NOG display increased numbers of neutrophils, dendritic cells and macrophages in multiple tissues. In addition to HSPC, FL-CD34+ isolates contain non-hematopoietic CD14+ endothelial cells that enhance the engraftment of the human immune system in FL-NOG mice. We demonstrate that these CD14+CD34+ cells are capable of reconstituting Factor VIII-producing liver sinusoidal endothelial cells (LSEC) in FL-NOG. However, CD14+CD34+ also contribute to hepatic sinusoidal dilatation and immune cell infiltration, which may culminate in a graft-versus-host disease (GVHD) pathology upon long-term engraftment. Finally, using an HLA-A mismatched CDX melanoma model, we show that FL-NOG, but not CB-NOG, can mount a graft-versus-tumor (GVT) response resulting in tumor rejection. CONCLUSION: Our results highlight important phenotypical and functional differences between CB- and FL-NOG and reveal FL-NOG as a potential model to study hepatic sinusoidal dilatation and mechanisms of GVT.


Assuntos
Antígenos CD34 , Fígado , Animais , Humanos , Antígenos CD34/metabolismo , Camundongos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos NOD , Transplante de Células-Tronco Hematopoéticas , Camundongos SCID , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/transplante , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Sangue Fetal/citologia , Melanoma/patologia , Melanoma/imunologia
10.
J Med Chem ; 67(10): 8261-8270, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38690886

RESUMO

This study aimed to develop a novel radiotracer using trastuzumab and the long-lived [52Mn]Mn isotope for HER2-targeted therapy selection and monitoring. A new Mn(II) chelator, BPPA, synthesized from a rigid bispyclen platform possessing a picolinate pendant arm, formed a stable and inert Mn(II) complex with favorable relaxation properties. BPPA was converted into a bifunctional chelator (BFC), conjugated to trastuzumab, and labeled with [52Mn]Mn isotope. In comparison to DOTA-GA-trastuzumab, the BPPA-trastuzumab conjugate exhibits a labeling efficiency with [52Mn]Mn approximately 2 orders of magnitude higher. In female CB17 SCID mice bearing 4T1 (HER2-) and MDA-MB-HER2+ (HER2+) xenografts, [52Mn]Mn-BPPA-trastuzumab demonstrated superior uptake in HER2+ cells on day 3, with a 3-4 fold difference observed on day 7. Overall, the hexadentate BPPA chelator proves to be exceptional in binding Mn(II). Upon coupling with trastuzumab as a BFC ligand, it becomes an excellent imaging probe for HER2-positive tumors. [52Mn]Mn-BPPA-trastuzumab enables an extended imaging time window and earlier detection of HER2-positive tumors with superior tumor-to-background contrast.


Assuntos
Manganês , Camundongos SCID , Tomografia por Emissão de Pósitrons , Receptor ErbB-2 , Trastuzumab , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Quelantes/química , Quelantes/síntese química , Manganês/química , Manganês/metabolismo , Camundongos Endogâmicos BALB C , Ácidos Picolínicos/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Trastuzumab/química
11.
J Ovarian Res ; 17(1): 101, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745186

RESUMO

BACKGROUND: Shikonin (SK), a naphthoquinone with anti-tumor effects, has been found to decrease production of tumor-associated exosomes (exo). This study aims to verify the treatment effect of SK on ovarian cancer (OC) cells, especially on the production of exo and their subsequent effect on macrophage polarization. METHODS: OC cells SKOV3 and A2780 were treated with SK. The exo were isolated from OC cells with or without SK treatment, termed OC exo and SK OC exo, respectively. These exo were used to treat PMA-induced THP-1 cells (M0 macrophages). M2 polarization of macrophages was determined by measuring the M2 specific cell surface markers CD163 and CD206 as well as the secretion of M2 cytokine IL-10. The functions of galectin 3 (LGALS3/GAL3) and ß-catenin in macrophage polarization were determined by gain- or loss-of-function assays. CB-17 SCID mice were subcutaneously injected with SKOV3 cells to generate xenograft tumors, followed by OC exo or SK OC exo treatment for in vivo experiments. RESULTS: SK suppressed viability, migration and invasion, and apoptosis resistance of OC cells in vitro. Compared to OC exo, SK OC exo reduced the M2 polarization of macrophages. Regarding the mechanism, SK reduced exo production in cancer cells, and it decreased the protein level of GAL3 in exo and recipient macrophages, leading to decreased ß-catenin activation. M2 polarization of macrophages was restored by LGALS3 overexpression but decreased again by the ß-catenin inhibitor FH535. Compared to OC exo, the SK OC exo treatment reduced the xenograft tumor growth in mice, and it decreased the M2 macrophage infiltration within tumor tissues. CONCLUSION: This study suggests that SK reduces M2 macrophage population in OC by repressing exo production and blocking exosomal GAL3-mediated ß-catenin activation.


Assuntos
Exossomos , Galectina 3 , Macrófagos , Naftoquinonas , Neoplasias Ovarianas , beta Catenina , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Exossomos/metabolismo , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , beta Catenina/metabolismo , Galectina 3/metabolismo , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos SCID
12.
Nat Commun ; 15(1): 4653, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821942

RESUMO

Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Heterogeneidade Genética , Neoplasias Pulmonares , Camundongos Endogâmicos NOD , Camundongos SCID , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Feminino , Sequenciamento do Exoma , Genômica/métodos , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto , Xenoenxertos , Modelos Animais de Doenças , Idoso , Pessoa de Meia-Idade
13.
Cancer Lett ; 592: 216919, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704133

RESUMO

Efforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models. Mechanistic data demonstrate the novel findings that HMGCS2 contributes to gemR and confers metastatic properties in PDAC models, and that HMGCS2 is BRD4 dependent. Further, BET inhibitor JQ1 decreases levels of HMGCS2, sensitizes PDAC cells to gemcitabine, and a combination of gemcitabine and JQ1 induced regressions of gemR tumors in vivo. Our data suggest that decreasing HMGCS2 may reverse gemR, and that HMGCS2 represents a useful therapeutic target for treating gemcitabine resistant PDAC.


Assuntos
Azepinas , Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Hidroximetilglutaril-CoA Sintase , Neoplasias Pancreáticas , Triazóis , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Antimetabólitos Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteínas que Contêm Bromodomínio , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Feminino , Camundongos SCID
14.
Clin Sci (Lond) ; 138(12): 699-709, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38817011

RESUMO

Our previous studies indicated that there is overexpression of MIAT in fibroids and MIAT is a sponge for the miR-29 family in these tumors. The objective of the present study was to determine if the knockdown of MIAT in fibroid xenografts will increase miR-29 levels and reduce the expression of genes targeted by this miRNA such as collagen and cell cycle regulatory proteins in a mouse model for fibroids. Ovariectomized CB-17 SCID/Beige mice bearing estrogen/progesterone pellets were implanted subcutaneously in the flank with equal weight of fibroid explants which had been transduced by lentivirus for either control (empty vector) or MIAT knockdown for four weeks (n=7). Knockdown of MIAT in fibroid xenografts resulted in a 30% reduction of tumor weight and a marked increase in miR-29a, -b, and -c levels in the xenografts. There was reduced cell proliferation and expression of cell cycle regulatory genes CCND1, CDK2, and E2F1 and no significant changes in apoptosis. The xenografts with MIAT knockdown expressed lower mRNA and protein levels of FN1, COL3A1, and TGF-ß3, and total collagen protein. Targeting MIAT, which sponges the pro-fibrotic miR-29 family, is an effective therapy for fibroids by reducing cell proliferation and thereby, tumor growth and accumulation of ECM, which is a hallmark of these benign gynecologic tumors.


Assuntos
Proliferação de Células , Leiomioma , MicroRNAs , RNA Longo não Codificante , Animais , Leiomioma/genética , Leiomioma/terapia , Leiomioma/metabolismo , Leiomioma/patologia , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Neoplasias Uterinas/genética , Neoplasias Uterinas/terapia , Neoplasias Uterinas/patologia , Neoplasias Uterinas/metabolismo , Camundongos SCID , Regulação Neoplásica da Expressão Gênica , Modelos Animais de Doenças , Camundongos , Técnicas de Silenciamento de Genes , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose
15.
J Virol ; 98(6): e0003824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767356

RESUMO

Recent progress on chimeric antigen receptor (CAR)-NK cells has shown promising results in treating CD19-positive lymphoid tumors with minimal toxicities [including graft versus host disease (GvHD) and cytokine release syndrome (CRS) in clinical trials. Nevertheless, the use of CAR-NK cells in combating viral infections has not yet been fully explored. Previous studies have shown that CAR-NK cells expressing S309 single-chain fragment variable (scFv), hereinafter S309-CAR-NK cells, can bind to SARS-CoV-2 wildtype pseudotyped virus (PV) and effectively kill cells expressing wild-type spike protein in vitro. In this study, we further demonstrate that the S309-CAR-NK cells can bind to different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants in vitro. We also show that S309-CAR-NK cells reduce virus loads in the NOD/SCID gamma (NSG) mice expressing the human angiotensin-converting enzyme 2 (hACE2) receptor challenged with SARS-CoV-2 wild-type (strain USA/WA1/2020). Our study demonstrates the potential use of S309-CAR-NK cells for inhibiting infection by SARS-CoV-2 and for the potential treatment of COVID-19 patients unresponsive to otherwise currently available therapeutics. IMPORTANCE: Chimeric antigen receptor (CAR)-NK cells can be "off-the-shelf" products that treat various diseases, including cancer, infections, and autoimmune diseases. In this study, we engineered natural killer (NK) cells to express S309 single-chain fragment variable (scFv), to target the Spike protein of SARS-CoV-2, hereinafter S309-CAR-NK cells. Our study shows that S309-CAR-NK cells are effective against different SARS-CoV-2 variants, including the B.1.617.2 (Delta), B.1.621 (Mu), and B.1.1.529 (Omicron) variants. The S309-CAR-NK cells can (i) directly bind to SARS-CoV-2 pseudotyped virus (PV), (ii) competitively bind to SARS-CoV-2 PV with 293T cells expressing the human angiotensin-converting enzyme 2 (hACE2) receptor (293T-hACE2 cells), (iii) specifically target and lyse A549 cells expressing the spike protein, and (iv) significantly reduce the viral loads of SARS-CoV-2 wild-type (strain USA/WA1/2020) in the lungs of NOD/SCID gamma (NSG) mice expressing hACE2 (hACE2-NSG mice). Altogether, the current study demonstrates the potential use of S309-CAR-NK immunotherapy as an alternative treatment for COVID-19 patients.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Células Matadoras Naturais , Receptores de Antígenos Quiméricos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Carga Viral , Animais , SARS-CoV-2/imunologia , Células Matadoras Naturais/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Camundongos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , COVID-19/imunologia , COVID-19/virologia , COVID-19/terapia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Camundongos SCID , Camundongos Endogâmicos NOD
16.
Front Immunol ; 15: 1395018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799434

RESUMO

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods: The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results: Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion: The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.


Assuntos
Coinfecção , Modelos Animais de Doenças , Infecções por HIV , Mycobacterium tuberculosis , Tuberculose , Animais , Coinfecção/imunologia , Coinfecção/microbiologia , Infecções por HIV/imunologia , Infecções por HIV/complicações , Humanos , Camundongos , Tuberculose/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T CD4-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Carga Viral , HIV-1/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Células-Tronco Hematopoéticas/imunologia , Camundongos SCID
17.
Pathol Oncol Res ; 30: 1611586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689823

RESUMO

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Assuntos
Lipossomos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata , Macrófagos Associados a Tumor , Animais , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Camundongos , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose , Modelos Animais de Doenças , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Selectina E/metabolismo , Microambiente Tumoral/imunologia
18.
Brain Res Bull ; 211: 110950, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631651

RESUMO

The aim of this study was to investigate the expression and function of the transient receptor potential vanilloid 1 (TRPV1) in glioma. We found that the expression of TRPV1 mRNA and protein were upregulated in glioma compared with normal brain by qPCR and western blot analysis. In order to investigate the function of TRPV1 in glioma, short hairpin RNA (shRNA) and the inhibitor of TRPV1 were used. In vitro, the activation of TRPV1 induced cell apoptosis with decreased migration capability and inhibited proliferation, which was abolished upon TRPV1 pharmacological inhibition and silencing. Mechanistically, TRPV1 modulated glioma proliferation through the protein kinase B (Akt) signaling pathway. More importantly, in immunodeficient (NOD-SCID) mouse xenograft models, tumor size was significantly increased when TRPV1 expression was disrupted by a shRNA knockdown approach in vivo. Altogether, our findings indicate that TRPV1 negatively controls glioma cell proliferation in an Akt-dependent manner, which suggests that targeting TRPV1 may be a potential therapeutic strategy for glioma.


Assuntos
Neoplasias Encefálicas , Proliferação de Células , Glioma , Canais de Cátion TRPV , Animais , Humanos , Camundongos , Apoptose/fisiologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética
19.
Sci Rep ; 14(1): 8835, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632341

RESUMO

In this study, we aimed to establish a technique for intraprostatic implantation of prostate cancer (PCa) spheroids and to identify the impact of three-dimensional organization of PCa cells on tumor progression and metastasis in a representative in vivo model. 40,000 LNCaP cells were implanted into the prostate of immunodeficient SCID mice either as single cells (n = 8) or as preformed 3D spheroids (n = 8). For a follow up of 20 weeks, tumor growth was monitored by serum PSA and high-resolution 3D ultrasonography. Eventually, animals were sacrificed and autopsied. The organ dissects were analyzed for the presence of metastases by histology (H&E) and immunohistochemistry (AMACR, AR, Ki-67, CK5, CK8, E-Cadherin, Vimentin). Solid intraprostatic tumors developed in 50% of mice after spheroid implantation and in 50% of mice after implantation of a single cells. Primary tumors of LNCaP spheroids evolved earlier, exhibiting a shorter tumor doubling time whilst developing larger tumor volumes, which was reflected by a higher immunohistochemical expression of Ki-67 and AR, too. Spheroid tumors established lung and lymph node metastases in 75% of mice, in contrast to 50% of mice after single cell implantation. Our technique enables a variety of studies regarding the influence of the tumor microenvironment on PCa progression.


Assuntos
Neoplasias da Próstata , Transplantes , Humanos , Masculino , Animais , Camundongos , Antígeno Ki-67 , Camundongos SCID , Neoplasias da Próstata/patologia , Metástase Linfática , Transplantes/patologia , Microambiente Tumoral
20.
Methods Mol Biol ; 2806: 91-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676798

RESUMO

Pancreatic cancer is associated with a high mortality rate, and there are still very few effective treatment options. Patient-derived xenografts have proven to be invaluable preclinical disease models to study cancer biology and facilitate testing of novel therapeutics. However, the severely immune-deficient mice used to generate standard models lack any functional immune system, thereby limiting their utility as a tool to investigate the tumor-immune cell interface. This chapter will outline a method for establishment of "humanized" patient-derived xenografts, which are reconstituted with human immune cells to imitate the immune-rich microenvironment of pancreatic cancer.


Assuntos
Modelos Animais de Doenças , Neoplasias Pancreáticas , Microambiente Tumoral , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Xenoenxertos , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...