Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.097
Filtrar
1.
Comput Methods Programs Biomed ; 254: 108307, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981143

RESUMO

BACKGROUND AND OBJECTIVE: Personalized 3D computer models of atria have been extensively implemented in the last yearsas a tool to facilitate the understanding of the mechanisms underlying different forms of arrhythmia, such as atrial fibrillation (AF). Meanwhile, genetic mutations acting on potassium channel dynamics were demonstrated to induce fibrillatory episodes in asymptomatic patients. This research study aims at assessing the effects and the atrial susceptibility to AF of three gain-of-function mutations - namely, KCNH2 T895M, KCNH2 T436M, and KCNE3-V17M - associated with AF outbreaks, using highly detailed 3D atrial models with realistic wall thickness and heterogenous histological properties. METHODS: The 3D atrial model was generated by reconstructing segmented anatomical structures from CT scans of an AF patient. Modified versions of the Courtemanche human atrial myocyte model were used to reproduce the electrophysiological activity of the WT and of the three mutant cells. Ectopic foci (EF) were simulated in sixteen locations across the atrial mesh using an S1-S2 protocol with two S2 basic cycle lengths (BCL) and eleven coupling intervals in order to induce arrhythmias. RESULTS: The three genetic mutations at 3D level reduced the APD90. The KCNE3-V17M mutation provoked the highest shortening (55 % in RA and LA with respect to WT), followed by KCNH2 T895M (14 % in RA and 18 % LA with respect to WT)and KCNH2 T436M (7 % in RA and 9 % LA with respect to WT). The KCNE3-V17M mutation led to arrhythmia in 67 % of the cases simulated and in 94 % of ectopic foci considered, at S2 BCL equal to 100 ms. The KCNH2 T436M and KCNH2 T895M mutations increased the vulnerability to AF in a similar way, leading to arrhythmic episodes in 7 % of the simulated conditions, at S2 BCL set to 160 ms. Overall, 60 % of the arrhythmic events generated arise in the left atrium. Spiral waves, multiple rotors and disordered electrical pattern were elicited in the presence of the KCNE3-V17M mutation, exhibiting an instantaneous mean frequency of 7.6 Hz with a mean standard deviation of 1.12 Hz. The scroll waves induced in the presence of the KCNH2 T436M and KCNH2 T895M mutations showed steadiness and regularity with an instantaneous mean frequencies in the range of 4.9 - 5.1 Hz and a mean standard deviation within 0.19 - 0.53 Hz. CONCLUSIONS: The pro-arrhythmogenicity of the KCNE3-V17M, KCNH2 T895M and KCNH2 T436M mutations was studied and proved on personalized 3D cardiac models. The three genetic mutations were demonstrated to increase the predisposition of atrial tissue to the formation of AF-susceptible substrate in different ways based on their effects on electrophysiological properties of the atria.


Assuntos
Fibrilação Atrial , Simulação por Computador , Átrios do Coração , Mutação , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/fisiopatologia , Imageamento Tridimensional , Potenciais de Ação , Modelos Cardiovasculares , Predisposição Genética para Doença , Canal de Potássio ERG1/genética
2.
Lab Chip ; 24(12): 3183-3190, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38828904

RESUMO

hERG channel screening has been achieved based on electrical impedance tomography and extracellular voltage activation (EIT-EVA) to improve the non-invasive aspect of drug discovery. EIT-EVA screens hERG channels by considering the change in extracellular ion concentration which modifies the extracellular resistance in cell suspension. The rate of ion passing in cell suspension is calculated from the extracellular resistance Rex, which is obtained from the EIT measurement at a frequency of 500 kHz. In the experiment, non-invasive screening is applied by a novel integrated EIT-EVA printed circuit board (PCB) sensor to human embryonic kidney (HEK) 293 cells transfected with the human ether-a-go-go-related gene (hERG) ion channel, while the E-4031 antiarrhythmic drug is used for hERG channel inhibition. The extracellular resistance Rex of the HEK 293 cells suspension is measured by EIT as the hERG channels are activated by EVA over time. The Rex is reconstructed into extracellular conductivity distribution change Δσ to reflect the extracellular K+ ion concentration change Δc resulting from the activated hERG channel. Δc is increased rapidly during the hERG channel non-inhibition state while Δc is increased slower with increasing drug concentration cd. In order to evaluate the EIT-EVA system, the inhibitory ratio index (IR) was calculated based on the rate of Δc over time. Half-maximal inhibitory concentration (IC50) of 2.7 nM is obtained from the cd and IR dose-response relationship. The IR from EIT-EVA is compared with the results from the patch-clamp method, which gives R2 of 0.85. In conclusion, EIT-EVA is successfully applied to non-invasive hERG channel screening.


Assuntos
Impedância Elétrica , Canais de Potássio Éter-A-Go-Go , Humanos , Células HEK293 , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Tomografia/instrumentação , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Piperidinas/farmacologia , Piperidinas/química , Piridinas/farmacologia , Piridinas/química
3.
Comput Methods Programs Biomed ; 254: 108293, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936153

RESUMO

BACKGROUND AND OBJECTIVE: Assessment of drug cardiotoxicity is critical in the development of new compounds and modeling of drug-binding dynamics to hERG can improve early cardiotoxicity assessment. We previously developed a methodology to generate Markovian models reproducing preferential state-dependent binding properties, trapping dynamics and the onset of IKr block using simple voltage clamp protocols. Here, we test this methodology with real IKr blockers and investigate the impact of drug dynamics on action potential prolongation. METHODS: Experiments were performed on HEK cells stably transfected with hERG and using the Nanion SyncroPatch 384i. Three protocols, P-80, P0 and P 40, were applied to obtain the experimental data from the drugs and the Markovian models were generated using our pipeline. The corresponding static models were also generated and a modified version of the O´Hara-Rudy action potential model was used to simulate the action potential duration. RESULTS: The experimental Hill plots and the onset of IKr block of ten compounds were obtained using our voltage clamp protocols and the models generated successfully mimicked these experimental data, unlike the CiPA dynamic models. Marked differences in APD prolongation were observed when drug effects were simulated using the dynamic models and the static models. CONCLUSIONS: These new dynamic models of ten well-known IKr blockers constitute a validation of our methodology to model dynamic drug-hERG channel interactions and highlight the importance of state-dependent binding, trapping dynamics and the time-course of IKr block to assess drug effects even at the steady-state.


Assuntos
Potenciais de Ação , Humanos , Potenciais de Ação/efeitos dos fármacos , Células HEK293 , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Técnicas de Patch-Clamp , Ligação Proteica , Bloqueadores dos Canais de Potássio/farmacologia
4.
J Pharmacol Toxicol Methods ; 128: 107527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38852685

RESUMO

INTRODUCTION: Cardiovascular safety and the risk of developing the potentially fatal ventricular tachyarrhythmia, Torsades de Pointes (TdP), have long been major concerns of drug development. TdP is associated with a delayed ventricular repolarization represented by QT interval prolongation in the electrocardiogram (ECG), typically due to block of the potassium channel encoded by the human ether-a-go-go related gene (hERG). Importantly however, not all drugs that prolong the QT interval are torsadagenic and not all hERG blockers prolong the QT interval. Recent clinical reports suggest that partitioning the QT interval into early (J to T peak; JTp) and late repolarization (T peak to T end; TpTe) components may be valuable for distinguishing low-risk mixed ion channel blockers (hERG plus calcium and/or late sodium currents) from high-risk pure hERG channel blockers. This strategy, if true for nonclinical animal models, could be used to de-risk QT prolonging compounds earlier in the drug development process. METHODS: To explore this, we investigated JTp and TpTe in ECG data collected from telemetered dogs and/or monkeys administered moxifloxacin or amiodarone at doses targeting relevant clinical exposures. An optimized placement of the Tpeak fiducial mark was utilized, and all intervals were corrected for heart rate (QTc, JTpc, TpTec). RESULTS: Increases in QTc and JTpc intervals with administration of the pure hERG blocker moxifloxacin and an initial QTc and JTpc shortening followed by prolongation with the mixed ion channel blocker amiodarone were detected as expected, aligning with clinical data. However, anticipated increases in TpTec by both standard agents were not detected. DISCUSSION: The inability to detect changes in TpTec reduces the utility of these subintervals for prediction of arrhythmias using continuous single­lead ECGs collected from freely moving dogs and monkeys.


Assuntos
Amiodarona , Eletrocardiografia , Síndrome do QT Longo , Moxifloxacina , Torsades de Pointes , Animais , Moxifloxacina/administração & dosagem , Moxifloxacina/farmacologia , Cães , Amiodarona/administração & dosagem , Amiodarona/farmacologia , Eletrocardiografia/efeitos dos fármacos , Eletrocardiografia/métodos , Torsades de Pointes/induzido quimicamente , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/fisiopatologia , Masculino , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Macaca fascicularis , Fluoroquinolonas/administração & dosagem , Fluoroquinolonas/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/administração & dosagem , Bloqueadores dos Canais de Potássio/farmacologia , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo
5.
J Pharmacol Toxicol Methods ; 128: 107524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38852689

RESUMO

BACKGROUND: Determination of a drug's potency in blocking the hERG channel is an established safety pharmacology study. Best practice guidelines have been published for reliable assessment of hERG potency. In addition, a set of plasma concentration and plasma protein binding fraction data were provided as denominators for margin calculations. The aims of the current analysis were five-fold: provide data allowing creation of consistent denominators for the hERG margin distributions of the key reference agents, explore the variation in hERG margins within and across laboratories, provide a hERG margin to 10 ms QTc prolongation based on several newer studies, provide information to use these analyses for reference purposes, and provide recommended hERG margin 'cut-off' values. METHODS: The analyses used 12 hERG IC50 'best practice' data sets (for the 3 reference agents). A group of 5 data sets came from a single laboratory. The other 7 data sets were collected by 6 different laboratories. RESULTS: The denominator exposure distributions were consistent with the ICH E14/S7B Training Materials. The inter-occasion and inter-laboratory variability in hERG IC50 values were comparable. Inter-drug differences were most important in determining the pooled margin variability. The combined data provided a robust hERG margin reference based on best practice guidelines and consistent exposure denominators. The sensitivity of hERG margin thresholds were consistent with the sensitivity described over the course of the last two decades. CONCLUSION: The current data provide further insight into the sensitivity of the 30-fold hERG margin 'cut-off' used for two decades. Using similar hERG assessments and these analyses, a future researcher can use a hERG margin threshold to support a negative QTc integrated risk assessment.


Assuntos
Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Humanos , Medição de Risco/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Síndrome do QT Longo/induzido quimicamente , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Laboratórios/normas , Animais , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/efeitos adversos , Concentração Inibidora 50
6.
J Biol Chem ; 300(7): 107465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876300

RESUMO

The voltage-gated potassium ion channel KV11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause long QT syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which pharmacological chaperones like E-4031 can rescue. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes of WT KV11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. We identified 572 core KV11.1 protein interactors. Trafficking-deficient variants KV11.1-G601S and KV11.1-G601S-G965∗ had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We confirmed previous findings that the proteasome is critical for KV11.1 degradation. Our report provides the first comprehensive characterization of protein quality control mechanisms of KV11.1. We find extensive interactome remodeling associated with trafficking-deficient KV11.1 variants and with pharmacological chaperone rescue of KV11.1 cell surface expression. The identified protein interactions could be targeted therapeutically to improve KV11.1 trafficking and treat LQTS.


Assuntos
Síndrome do QT Longo , Transporte Proteico , Proteostase , Humanos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/genética , Células HEK293 , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/genética , Animais
7.
J Forensic Leg Med ; 105: 102707, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38908219

RESUMO

Sudden Cardiac Death (SCD) often shows negative anatomy results after a systemic autopsy and the gene mutations of potassium channel play a key role in the etiology of SCD. We established a feasible system to detect SCD-related mutations and investigated the mutations at KCNQ1 and KCNH2 genes in the Chinese population. We established a mutation detection system combined with multiplex PCR, SNaPshot technique, and capillary electrophoresis. We genotyped 101 putative mutations at KCNQ1 and KCNH2 genes in 60 SCD of negative anatomy and 50 controls using the established assay and compared Odd Ratio (OR). Four coding variants were identified in the KCNQ1 gene: S546S, I145I, P448R, and G643S. The mutations of I145I and S546S did not differ significantly in the SCD compared with controls. 21 SCD individuals (35 %) and 1 control individual (2 %) showed a genotype of C/G at P448R (OR = 17.5, 95 % CI [2.40-127.82]). 24 SCD individuals (40 %) and 1 control individual (2 %) showed a genotype of C/G at G643S (OR = 20.0, 95 % CI [2.75-145.25]). We established a robust assay for rapid screening the putative SCD-related mutations in KCNQ1 and KCNH2 genes. The new assay in our study is easily amenable to the majority of laboratories without the need for new specialized equipment. Our method will meet the increasing requirement of mutation screening for SCD in regular DNA laboratories and will help screen mutations in those dead of SCD and their relatives.


Assuntos
Morte Súbita Cardíaca , Canal de Potássio ERG1 , Genótipo , Canal de Potássio KCNQ1 , Mutação , Humanos , Canal de Potássio KCNQ1/genética , Morte Súbita Cardíaca/etiologia , Canal de Potássio ERG1/genética , Masculino , Estudos de Casos e Controles , Feminino , Adulto , Pessoa de Meia-Idade , Eletroforese Capilar , Povo Asiático/genética , Reação em Cadeia da Polimerase Multiplex , Adulto Jovem , Análise Mutacional de DNA , Idoso
8.
Behav Brain Res ; 470: 115069, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797494

RESUMO

Recent clinical studies have highlighted mutations in the voltage-gated potassium channel Kv10.2 encoded by the KCNH5 gene among individuals with autism spectrum disorder (ASD). Our preliminary study found that Kv10.2 was decreased in the hippocampus of valproic acid (VPA) - induced ASD rats. Nevertheless, it is currently unclear how KCNH5 regulates autism-like features, or becomes a new target for autism treatment. We employed KCNH5 knockout (KCNH5-/-) rats and VPA - induced ASD rats in this study. Then, we used behavioral assessments, combined with electrophysiological recordings and hippocampal brain slice, to elucidate the impact of KCNH5 deletion and environmental factors on neural development and function in rats. We found that KCNH5-/- rats showed early developmental delay, neuronal overdevelopment, and abnormal electroencephalogram (EEG) signals, but did not exhibit autism-like behavior. KCNH5-/- rats exposed to VPA (KCNH5-/--VPA) exhibit even more severe autism-like behaviors and abnormal neuronal development. The absence of KCNH5 excessively enhances the activity of the Protein Kinase B (Akt)/Mechanistic Target of Rapamycin (mTOR) signaling pathway in the hippocampus of rats after exposure to VPA. Overall, our findings underscore the deficiency of KCNH5 increases the susceptibility to autism under environmental exposures, suggesting its potential utility as a target for screening and diagnosis in ASD.


Assuntos
Transtorno do Espectro Autista , Hipocampo , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Animais , Masculino , Ratos , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/genética , Modelos Animais de Doenças , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Ácido Valproico/farmacologia
9.
Toxicology ; 505: 153830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754619

RESUMO

The use of tyrosine kinase inhibitors (TKIs) has resulted in significant occurrence of arrhythmias. However, the precise mechanism of the proarrhythmic effect is not fully understood. In this study, we found that nilotinib (NIL), vandetanib (VAN), and mobocertinib (MOB) induced the development of "cellrhythmia" (arrhythmia-like events) in a concentration-dependent manner in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Continuous administration of NIL, VAN, or MOB in animals significantly prolonged the action potential durations (APD) and increased susceptibility to arrhythmias. Using phosphoproteomic analysis, we identified proteins with altered phosphorylation levels after treatment with 3 µM NIL, VAN, and MOB for 1.5 h. Using these identified proteins as substrates, we performed kinase-substrate enrichment analysis to identify the kinases driving the changes in phosphorylation levels of these proteins. MAPK and WNK were both inhibited by NIL, VAN, and MOB. A selective inhibitor of WNK1, WNK-IN-11, induced concentration- and time-dependent cellrhythmias and prolonged field potential duration (FPD) in hiPSC-CMs in vitro; furthermore, administration in guinea pigs confirmed that WNK-IN-11 prolonged ventricular repolarization and increased susceptibility to arrhythmias. Fingding indicated that WNK1 inhibition had an in vivo and in vitro arrhythmogenic phenotype similar to TKIs. Additionally,three of TKIs reduced hERG and KCNQ1 expression at protein level, not at transcription level. Similarly, the knockdown of WNK1 decreased hERG and KCNQ1 protein expression in hiPSC-CMs. Collectively, our data suggest that the proarrhythmic effects of NIL, VAN, and MOB occur through a kinase inhibition mechanism. NIL, VAN, and MOB inhibit WNK1 kinase, leading to a decrease in hERG and KCNQ1 protein expression, thereby prolonging action potential repolarization and consequently cause arrhythmias.


Assuntos
Potenciais de Ação , Arritmias Cardíacas , Miócitos Cardíacos , Piperidinas , Proteômica , Pirimidinas , Quinazolinas , Humanos , Arritmias Cardíacas/induzido quimicamente , Animais , Proteômica/métodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Piperidinas/farmacologia , Piperidinas/toxicidade , Pirimidinas/toxicidade , Pirimidinas/farmacologia , Quinazolinas/toxicidade , Quinazolinas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Fosforilação , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/genética , Cobaias , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/efeitos dos fármacos , Fosfoproteínas/metabolismo , Relação Dose-Resposta a Droga
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732154

RESUMO

The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia.


Assuntos
Biomarcadores , Doenças Cardiovasculares , Vesículas Extracelulares , Proteínas de Choque Térmico HSP47 , Miócitos Cardíacos , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/sangue , Masculino , Doenças Cardiovasculares/metabolismo , Feminino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pessoa de Meia-Idade , Animais , Proteínas de Choque Térmico HSP47/metabolismo , Ratos , Canal de Potássio ERG1/metabolismo , Idoso , Adulto , Canais de Potássio Éter-A-Go-Go/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/sangue
11.
BMC Med Genomics ; 17(1): 126, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715010

RESUMO

BACKGROUND: Long QT syndrome (LQTS) is a cardiac channelopathy characterized by impaired myocardial repolarization that predisposes to life-threatening arrhythmias. This study aimed to elucidate the genetic basis of LQTS in an affected Iranian family using whole exome sequencing (WES). METHODS: A 37-year-old woman with a personal and family history of sudden cardiac arrest and LQTS was referred for genetic study after losing her teenage daughter due to sudden cardiac death (SCD). WES was performed and variants were filtered and prioritized based on quality, allele frequency, pathogenicity predictions, and conservation scores. Sanger sequencing confirmed segregation in the family. RESULTS: WES identified a novel heterozygous frameshift variant (NM_000238.4:c.3257_3258insG; pGly1087Trpfs*32) in the KCNH2 encoding the α-subunit of the rapid delayed rectifier potassium channel responsible for cardiac repolarization. This variant, predicted to cause a truncated protein, is located in the C-terminal region of the channel and was classified as likely pathogenic based on ACMG guidelines. The variant was absent in population databases and unaffected family members. CONCLUSION: This study reports a novel KCNH2 frameshift variant in an Iranian family with LQTS, expanding the spectrum of disease-causing variants in this gene. Our findings highlight the importance of the C-terminal region in KCNH2 for proper channel function and the utility of WES in identifying rare variants in genetically heterogeneous disorders like LQTS. Functional characterization of this variant is warranted to fully elucidate its pathogenic mechanisms and inform personalized management strategies.


Assuntos
Canal de Potássio ERG1 , Sequenciamento do Exoma , Síndrome do QT Longo , Linhagem , Humanos , Síndrome do QT Longo/genética , Canal de Potássio ERG1/genética , Feminino , Adulto , Mutação da Fase de Leitura
12.
J Hazard Mater ; 474: 134724, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805819

RESUMO

The cardiotoxic effects of various pollutants have been a growing concern in environmental and material science. These effects encompass arrhythmias, myocardial injury, cardiac insufficiency, and pericardial inflammation. Compounds such as organic solvents and air pollutants disrupt the potassium, sodium, and calcium ion channels cardiac cell membranes, leading to the dysregulation of cardiac function. However, current cardiotoxicity models have disadvantages of incomplete data, ion channels, interpretability issues, and inability of toxic structure visualization. Herein, an interpretable deep-learning model known as CardioDPi was developed, which is capable of discriminating cardiotoxicity induced by the human Ether-à-go-go-related gene (hERG) channel, sodium channel (Na_v1.5), and calcium channel (Ca_v1.5) blockade. External validation yielded promising area under the ROC curve (AUC) values of 0.89, 0.89, and 0.94 for the hERG, Na_v1.5, and Ca_v1.5 channels, respectively. The CardioDPi can be freely accessed on the web server CardioDPipredictor (http://cardiodpi.sapredictor.cn/). Furthermore, the structural characteristics of cardiotoxic compounds were analyzed and structural alerts (SAs) can be extracted using the user-friendly CardioDPi-SAdetector web service (http://cardiosa.sapredictor.cn/). CardioDPi is a valuable tool for identifying cardiotoxic chemicals that are environmental and health risks. Moreover, the SA system provides essential insights for mode-of-action studies concerning cardiotoxic compounds.


Assuntos
Aprendizado Profundo , Canal de Sódio Disparado por Voltagem NAV1.5 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Cardiotoxicidade/etiologia , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/química , Cardiotoxinas/toxicidade , Cardiotoxinas/química
13.
FEBS Lett ; 598(8): 889-901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563123

RESUMO

BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.


Assuntos
Arginina , Canal de Potássio ERG1 , Simulação de Dinâmica Molecular , Venenos de Escorpião , Animais , Humanos , Arginina/química , Arginina/metabolismo , Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Mutação , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo
14.
Biochemistry (Mosc) ; 89(3): 543-552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648771

RESUMO

Brugada syndrome (BrS) is an inherited disease characterized by right precordial ST-segment elevation in the right precordial leads on electrocardiograms (ECG), and high risk of life-threatening ventricular arrhythmia and sudden cardiac death (SCD). Mutations in the responsible genes have not been fully characterized in the BrS patients, except for the SCN5A gene. We identified a new genetic variant, c.1189C>T (p.R397C), in the KCNH2 gene in the asymptomatic male proband diagnosed with BrS and mild QTc shortening. We hypothesize that this variant could alter IKr-current and may be causative for the rare non-SCN5A-related form of BrS. To assess its pathogenicity, we performed patch-clamp analysis on IKr reconstituted with this KCNH2 mutation in the Chinese hamster ovary cells and compared the phenotype with the wild type. It appeared that the R397C mutation does not affect the IKr density, but facilitates activation, hampers inactivation of the hERG channels, and increases magnitude of the window current suggesting that the p.R397C is a gain-of-function mutation. In silico modeling demonstrated that this missense mutation potentially leads to the shortening of action potential in the heart.


Assuntos
Síndrome de Brugada , Canal de Potássio ERG1 , Mutação com Ganho de Função , Adulto , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Células CHO , Cricetulus , Eletrocardiografia , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação de Sentido Incorreto
16.
Stem Cell Res ; 77: 103400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547667

RESUMO

KCNH2 (Potassium Voltage-Gated Channel Subfamily H Member) encodes a voltage-activated potassium channel role as rapidly activating-delayed rectifier potassium channel that plays an essential role in the final repolarization of the ventricular action potential. Mutations in this gene can cause long QT syndrome and short QT syndrome. Transcript variants encoding distinct isoforms were also identified. In this study, we generated induced pluripotent stem cells (iPSC) from a healthy individual by electroporation of peripheral blood mononuclear cells and generated a KCNH2 heterozygous knockout human iPSC line via CRISPR/Cas9 gene editing. The resulting iPSCs had a normal karyotype, were free of genomically integrated epitomal plasmids, expressed pluripotency markers, and maintained trilineage differentiation potential.


Assuntos
Canal de Potássio ERG1 , Heterozigoto , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/patologia , Linhagem Celular , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Diferenciação Celular , Edição de Genes , Arritmias Cardíacas
17.
Antimicrob Agents Chemother ; 68(5): e0139023, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546223

RESUMO

Dihydroartemisinin-piperaquine is efficacious for the treatment of uncomplicated malaria and its use is increasing globally. Despite the positive results in fighting malaria, inhibition of the Kv11.1 channel (hERG; encoded by the KCNH2 gene) by piperaquine has raised concerns about cardiac safety. Whether genetic factors could modulate the risk of piperaquine-mediated QT prolongations remained unclear. Here, we first profiled the genetic landscape of KCNH2 variability using data from 141,614 individuals. Overall, we found 1,007 exonic variants distributed over the entire gene body, 555 of which were missense. By optimizing the gene-specific parametrization of 16 partly orthogonal computational algorithms, we developed a KCNH2-specific ensemble classifier that identified a total of 116 putatively deleterious missense variations. To evaluate the clinical relevance of KCNH2 variability, we then sequenced 293 Malian patients with uncomplicated malaria and identified 13 variations within the voltage sensing and pore domains of Kv11.1 that directly interact with channel blockers. Cross-referencing of genetic and electrocardiographic data before and after piperaquine exposure revealed that carriers of two common variants, rs1805121 and rs41314375, experienced significantly higher QT prolongations (ΔQTc of 41.8 ms and 61 ms, respectively, vs 14.4 ms in controls) with more than 50% of carriers having increases in QTc >30 ms. Furthermore, we identified three carriers of rare population-specific variations who experienced clinically relevant delayed ventricular repolarization. Combined, our results map population-scale genetic variability of KCNH2 and identify genetic biomarkers for piperaquine-induced QT prolongation that could help to flag at-risk patients and optimize efficacy and adherence to antimalarial therapy.


Assuntos
Antimaláricos , Artemisininas , Canal de Potássio ERG1 , Piperazinas , Quinolinas , Humanos , Canal de Potássio ERG1/genética , Antimaláricos/uso terapêutico , Antimaláricos/efeitos adversos , Quinolinas/uso terapêutico , Quinolinas/efeitos adversos , Artemisininas/uso terapêutico , Artemisininas/efeitos adversos , Masculino , Feminino , Adulto , Malária/tratamento farmacológico , Eletrocardiografia , Síndrome do QT Longo/genética , Síndrome do QT Longo/induzido quimicamente , Polimorfismo de Nucleotídeo Único/genética
18.
Praxis (Bern 1994) ; 113(2): 50-54, 2024 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-38536194

RESUMO

INTRODUCTION: Long QT syndrome (LQTS) is a congenital ion channel disorder causing prolonged ventricular repolarization and presents on surface ECG with a prolonged QTc interval. This condition predisposes to ventricular arrhythmias and also sudden cardiac death. LQTS without appropriate therapy during pregnancy and the postnatal phase poses an additionally increased risk of sudden cardiac death due to physiological changes associated with gestation. We present a case report of a 30-year-old pregnant woman with known long QT syndrome Type 2 (LQT2) and discuss the management in cardiological practice.


Assuntos
Síndrome do QT Longo , Pacientes , Feminino , Gravidez , Humanos , Adulto , Morte Súbita Cardíaca , Canal de Potássio ERG1
20.
BMC Biol ; 22(1): 29, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317233

RESUMO

BACKGROUND: Cyclic Nucleotide-Binding Domain (CNBD)-family channels display distinct voltage-sensing properties despite sharing sequence and structural similarity. For example, the human Ether-a-go-go Related Gene (hERG) channel and the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channel share high amino acid sequence similarity and identical domain structures. hERG conducts outward current and is activated by positive membrane potentials (depolarization), whereas HCN conducts inward current and is activated by negative membrane potentials (hyperpolarization). The structural basis for the "opposite" voltage-sensing properties of hERG and HCN remains unknown. RESULTS: We found the voltage-sensing domain (VSD) involves in modulating the gating polarity of hERG. We identified that a long-QT syndrome type 2-related mutation within the VSD, K525N, mediated an inwardly rectifying non-deactivating current, perturbing the channel closure, but sparing the open state and inactivated state. K525N rescued the current of a non-functional mutation in the pore helix region (F627Y) of hERG. K525N&F627Y switched hERG into a hyperpolarization-activated channel. The reactivated inward current induced by hyperpolarization mediated by K525N&F627Y can be inhibited by E-4031 and dofetilide quite well. Moreover, we report an extracellular interaction between the S1 helix and the S5-P region is crucial for modulating the gating polarity. The alanine substitution of several residues in this region (F431A, C566A, I607A, and Y611A) impaired the inward current of K525N&F627Y. CONCLUSIONS: Our data provide evidence that a potential cooperation mechanism in the extracellular vestibule of the VSD and the PD would determine the gating polarity in hERG.


Assuntos
Canal de Potássio ERG1 , Ativação do Canal Iônico , Humanos , Sequência de Aminoácidos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/genética , Mutação , Nucleotídeos Cíclicos , Canal de Potássio ERG1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA