Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Arch Cardiovasc Dis ; 117(8-9): 490-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39153877

RESUMO

BACKGROUND: Assessment of the athlete's heart is challenging because of a phenotypic overlap between reactive physiological adaptation and pathological remodelling. The potential value of myocardial deformation remains controversial in identifying early cardiomyopathy. AIM: To identify the echocardiographic phenotype of athletes using advanced two-dimensional speckle tracking imaging, and to define predictive factors of subtle left ventricular systolic dysfunction. METHODS: In total, 191 healthy male athletes who underwent a preparticipation medical evaluation at Nancy University Hospital between 2013 and 2020 were included. Clinical and echocardiographic data were compared with 161 healthy male subjects from the STANISLAS cohort. Borderline global longitudinal strain value was defined as<17.5%. RESULTS: Athletes demonstrated lower left ventricular ejection fraction (57.9±5.3% vs. 62.6±6.4%; P<0.01) and lower global longitudinal strain (17.5±2.2% vs. 21.1±2.1%; P<0.01). No significant differences were found between athletes with and without a borderline global longitudinal strain value regarding clinical characteristics, structural echocardiographic features and exercise capacity. A borderline global longitudinal strain value was associated with a lower endocardial global longitudinal strain (18.8±1.2% vs. 22.7±1.9%; P=0.02), a lower epicardial global longitudinal strain (14.0±1.1% vs. 16.6±1.2%; P<0.01) and a higher endocardial/epicardial global longitudinal strain ratio (1.36±0.07 vs. 1.32±0.06; P<0.01). No significant difference was found regarding mechanical dispersion (P=0.46). CONCLUSIONS: Borderline global longitudinal strain value in athletes does not appear to be related to structural remodelling, mechanical dispersion or exercise capacity. The athlete's heart is characterized by a specific myocardial deformation pattern with a more pronounced epicardial layer strain impairment.


Assuntos
Atletas , Cardiomegalia Induzida por Exercícios , Valor Preditivo dos Testes , Volume Sistólico , Disfunção Ventricular Esquerda , Função Ventricular Esquerda , Humanos , Masculino , Adulto , Adulto Jovem , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos de Casos e Controles , França , Remodelação Ventricular , Contração Miocárdica , Tolerância ao Exercício
2.
Cardiovasc Toxicol ; 24(6): 527-538, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720122

RESUMO

Adolescents commonly co-abuse many drugs including anabolic androgenic steroids either they are athletes or non-athletes. Stanozolol is the major anabolic used in recent years and was reported grouped with cannabis. The current study aimed at evaluating the biochemical and histopathological changes related to the hypertrophic effects of stanozolol and/or cannabis whether in condition of exercise practice or sedentary conditions. Adult male Wistar albino rats received either stanozolol (5 mg/kg, s.c), cannabis (10 mg/kg, i.p.), and a combination of both once daily for two months. Swimming exercise protocol was applied as a training model. Relative heart weight, oxidative stress biomarkers, cardiac tissue fibrotic markers were evaluated. Left ventricular morphometric analysis and collagen quantification was done. The combined treatment exhibited serious detrimental effects on the heart tissues. It increased heart tissue fibrotic markers (Masson's trichrome stain (p < 0.001), cardiac COL3 (p < 0.0001), and VEGF-A (p < 0.05)), lowered heart glutathione levels (p < 0.05) and dramatically elevated oxidative stress (increased malondialdehyde (p < 0.0001) and 8-OHDG (p < 0.0001)). Training was not ameliorating for the observed effects. Misuse of cannabis and stanozolol resulted in more hypertrophic consequences of the heart than either drug alone, which were at least largely assigned to oxidative stress, heart tissue fibrotic indicators, histological alterations, and morphometric changes.


Assuntos
Anabolizantes , Cardiomegalia Induzida por Exercícios , Fibrose , Estresse Oxidativo , Ratos Wistar , Estanozolol , Animais , Estanozolol/toxicidade , Masculino , Estresse Oxidativo/efeitos dos fármacos , Anabolizantes/toxicidade , Cardiomegalia Induzida por Exercícios/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Remodelação Ventricular/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/metabolismo , Dopagem Esportivo , Biomarcadores/metabolismo , Natação , Condicionamento Físico Animal/fisiologia , Ratos , Modelos Animais de Doenças
3.
Curr Probl Cardiol ; 49(9): 102473, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38447749

RESUMO

There are currently 5 million active high school, collegiate, professional, and master athletes in the United States. Regular intense exercise by these athletes can promote structural, electrical and functional remodeling of the heart, which is termed the "athlete's heart." In addition, regular intense exercise can lead to pathological adaptions that promote or worsen cardiac disease. Many of the athletes in the United States seek medical care. Consequently, physicians must be aware of the normal cardiac anatomy and physiology of the athlete, the differentiation of the normal athlete heart from the athlete with cardiomyopathy, and the contemporary care of the athlete with a cardiomyopathy. In athletes with persistent cardiovascular symptoms, investigations should include a detailed history and physical examination, an ECG, a transthoracic echocardiogram, and in athletes in whom the diagnosis is uncertain, a maximal exercise stress test or a continuous ECG recording, and cardiac magnetic resonance imaging or cardiac computed tomography angiography when definition of the coronary anatomy or characterization of the aorta and the aortic great vessels is indicated. This article discusses the differentiation of the normal athlete with physiologic cardiac remodeling from the athlete with hypertrophic, dilated or arrhythmogenic ventricular cardiomyopathy (ACM). The ECG changes in trained athletes that are considered normal, borderline, or abnormal are listed. In addition, the normal echocardiographic measurements for athletes who consistently participate in endurance, power, combined or heterogeneous sports are enumerated and discussed. Algorithms are listed that are useful in the diagnosis of trained athletes with borderline or abnormal echocardiographic measurements suggestive of cardiomyopathies along with the major and minor criteria for the diagnosis of ACM in athletes. Thereafter, the treatment of athletes with hypertrophic, dilated, and arrhythmogenic right ventricular cardiomyopathies are reviewed. The distinction between physiologic changes and pathologic changes in the hearts of athletes has important therapeutic and prognostic implications. Failure by the physician to correctly diagnose an athlete with hypertrophic cardiomyopathy, dilated cardiomyopathy, or ACM, can lead to the sudden cardiac arrest and death of the athlete during training or sports competition. Conversely, an incorrect diagnosis by a physician of cardiac pathology in a normal athlete can lead to an unnecessary restriction of athlete training and competition with resultant significant emotional, psychological, financial, and long-term health consequences in the athlete.


Assuntos
Atletas , Cardiomiopatias , Eletrocardiografia , Remodelação Ventricular , Humanos , Remodelação Ventricular/fisiologia , Cardiomiopatias/diagnóstico , Cardiomiopatias/fisiopatologia , Diagnóstico Diferencial , Cardiomegalia Induzida por Exercícios/fisiologia , Ecocardiografia/métodos
4.
Eur J Prev Cardiol ; 31(4): 470-482, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38198776

RESUMO

The integration of artificial intelligence (AI) technologies is evolving in different fields of cardiology and in particular in sports cardiology. Artificial intelligence offers significant opportunities to enhance risk assessment, diagnosis, treatment planning, and monitoring of athletes. This article explores the application of AI in various aspects of sports cardiology, including imaging techniques, genetic testing, and wearable devices. The use of machine learning and deep neural networks enables improved analysis and interpretation of complex datasets. However, ethical and legal dilemmas must be addressed, including informed consent, algorithmic fairness, data privacy, and intellectual property issues. The integration of AI technologies should complement the expertise of physicians, allowing for a balanced approach that optimizes patient care and outcomes. Ongoing research and collaborations are vital to harness the full potential of AI in sports cardiology and advance our management of cardiovascular health in athletes.


Assuntos
Cardiologia , Cardiomegalia Induzida por Exercícios , Esportes , Humanos , Inteligência Artificial , Cardiologia/métodos , Redes Neurais de Computação
5.
Int J Cardiol ; 400: 131808, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262482

RESUMO

BACKGROUND: Athlete's heart is associated with physiological electrical and structural remodelling. Despite the plethora of data published on male athletes, solid data derived from female athletes, compared to male counterparts or sedentary women, are still scarce. OBJECTIVES: We aimed to analyze the electrical, structural, and functional characteristics of athlete's heart in female and male athletes vs sedentary controls. METHODS: Olympic athletes and sedentary controls were evaluated by resting ECG and echocardiography. Athletes were divided into 4 different sports groups. RESULTS: The study population included 1096 individuals (360 female athletes, 410 male athletes, 130 sedentary women and 196 sedentary men). Female athletes had lower resting heart rate, longer PR interval, higher voltage of R, and T waves and more frequently incomplete RBBB, left ventricular (LV) hypertrophy, early repolarization, and anterior T-wave inversion as compared to controls. Biventricular cavity dimensions and LV wall thickness were greater in female athletes than in female controls. However, women showed a lower degree of training-induced structural remodelling than men. In female athletes, both cavity dimensions and LV wall thickness increased from those engaged in skill and power to mixed and endurance disciplines. However, in female athletes, contrary to males, the ECG changes were not significantly different according to the different types of sport discipline. CONCLUSIONS: Highly-trained women demonstrate relevant training-induced electrical and structural remodelling. However, the type of sport did not influence ECG parameters in women, contrary to men, while it impacted biventricular morphologic remodelling, with endurance athletes showing the greatest degree of adaptation.


Assuntos
Cardiomegalia Induzida por Exercícios , Esportes , Humanos , Masculino , Feminino , Função Ventricular Esquerda/fisiologia , Atletas , Esportes/fisiologia , Ecocardiografia , Hipertrofia Ventricular Esquerda
6.
J Sports Med Phys Fitness ; 64(1): 88-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902808

RESUMO

BACKGROUND: There are various changes in cardiac physiology in athletes compared to the normal population. These physiological changes may differ according to the exercise content. The aim of this study was to compare the effects of different exercise methods on the heart. METHODS: A total of 122 male athletes from various sports were evaluated. Depending on the sorts of sports, these participants were split into aerobic, mixed, and resistance groups. Each athlete had to meet the inclusion criteria of having participated in the present sport for at least a year and having trained for at least 600 minutes per week over the previous three months. Transthoracic echocardiography was used to investigate the effects of different exercise types. RESULTS: The aerobic group's heart rate and ejection fraction were found to be lower than those of the resistance and mixed groups (F(2.105)=23.487, P=0.001). The end-diastolic thicknesses of the interventricular septum (8.7 SD 0.8 vs. 10.0 SD 0.7), interventricular septum (11.3 SD 0.9 vs. 13.0 SD 0.9), left ventricular posterior wall (8.6 SD 0.7 vs. 9.9 SD 0.8), and interventricular septum (11.1 SD 0.9 vs. 13.3 SD 0.9) were all found to be lower in the aerobic group than in the resistance group (P=0.0001). The effect of resistance exercise on heart rate was not observed as clearly as other groups. CONCLUSIONS: Resistance exercise has a more dominant effect on ventricular thickness than aerobic exercise. In mixed exercise groups, this increase in thickness is similar to resistance exercise. The content of the training should be considered in the evaluation of the athlete's heart. Identifying the subgroups of the athlete's heart will be useful in the differentiation of pathologies and also in the follow-up of the athletes.


Assuntos
Cardiomegalia Induzida por Exercícios , Humanos , Masculino , Coração/fisiologia , Exercício Físico/fisiologia , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Atletas
7.
Cardiovasc Ultrasound ; 21(1): 21, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098064

RESUMO

BACKGROUND: Physical activity contributes to changes in cardiac morphology, which are known as "athlete's heart". Therefore, these modifications can be characterized using different imaging modalities such as echocardiography, including Doppler (flow Doppler and Doppler myocardial imaging) and speckle-tracking, along with cardiac magnetic resonance, and cardiac computed tomography. MAIN TEXT: Echocardiography is the most common method for assessing cardiac structure and function in athletes due to its availability, repeatability, versatility, and low cost. It allows the measurement of parameters like left ventricular wall thickness, cavity dimensions, and mass. Left ventricular myocardial strain can be measured by tissue Doppler (using the pulse wave Doppler principle) or speckle tracking echocardiography (using the two-dimensional grayscale B-mode images), which provide information on the deformation of the myocardium. Cardiac magnetic resonance provides a comprehensive evaluation of cardiac morphology and function with superior accuracy compared to echocardiography. With the addition of contrast agents, myocardial state can be characterized. Thus, it is particularly effective in differentiating an athlete's heart from pathological conditions, however, is less accessible and more expensive compared to other techniques. Coronary computed tomography is used to assess coronary artery anatomy and identify anomalies or diseases, but its use is limited due to radiation exposure and cost, making it less suitable for young athletes. A novel approach, hemodynamic forces analysis, uses feature tracking to quantify intraventricular pressure gradients responsible for blood flow. Hemodynamic forces analysis has the potential for studying blood flow within the heart and assessing cardiac function. CONCLUSIONS: In conclusion, each diagnostic technique has its own advantages and limitations for assessing cardiac adaptations in athletes. Examining and comparing the cardiac adaptations resulting from physical activity with the structural cardiac changes identified through different diagnostic modalities is a pivotal focus in the field of sports medicine.


Assuntos
Cardiomegalia Induzida por Exercícios , Humanos , Coração/diagnóstico por imagem , Coração/fisiologia , Ecocardiografia , Miocárdio/patologia , Ventrículos do Coração/diagnóstico por imagem , Atletas
9.
Rev. chil. cardiol ; 42(2): 90-101, ago. 2023. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1515100

RESUMO

Antecedentes: El ejercicio de alta intensidad induce hipertrofia miocárdica necesaria para adaptar al corazón a la mayor demanda de trabajo. Se desconoce si correr una maratón induce de forma aguda factores humorales asociados al desarrollo de hipertrofia miocárdica en atletas. Objetivo: Evaluar cardiotrofina-1 (CT1) y el factor de crecimiento análogo a insulina-1 (IGF-1), conocidos inductores de hipertrofia, en maratonistas previo y justo después de correr una maratón y su relación con hipertrofia cardíaca. Métodos: Estudio prospectivo ciego simple de atletas hombres que corrieron la maratón de Santiago. Se incluyó un grupo control sedentario. En todos los sujetos se realizó un ecocardiograma transtorácico estándar. Los niveles de CT1 e IGF-1 se determinaron en plasma obtenidos antes (basal) y justo después de haber terminado (antes de 15 minutos) la maratón, usando test de ELISA. Resultados: Los atletas tenían frecuencias cardíacas menores que los controles, asociado con una mayor hipertrofia miocárdica, determinado por el grosor del septo y pared posterior del corazón, y volúmenes del ventrículo y aurícula izquierda. Los niveles basales de CT1 e IGF-1 fueron similares entre atletas y controles sedentarios. El correr la maratón aumentó los niveles de estas dos hormonas en un subgrupo de atletas. Solo los atletas que incrementaron los niveles de IGF-1, pero no de CT1, tenían volúmenes de ventrículo izquierdo y derecho más grandes que los otros atletas. Conclusiones: IGF-1 que se incrementa de forma aguda por el ejercicio, pero no CT1, estaría asociado con el aumento de los volúmenes ventriculares observado en los atletas.


Background: High intensity exercise induces the development of myocardial hypertrophy necessary to adapt the heart to the increased work demand. Whether running a marathon is associated with acutely induced humoral factors responsible for the development of myocardial hypertrophy observed in athletes is not known. Objective: To evaluate the levels of cardiotrophin-1 (CT1) and insulin-like growth factor-1 (IGF-1), known hypertrophy inducers, in marathon runners before and just after running a marathon and their relationship with cardiac hypertrophy. Methodology: Single-blind prospective study of male athletes who ran the Santiago's marathon. A sedentary control group was included. All subjects underwent a standard transthoracic echocardiogram. CT1 and IGF-1 levels were determined in plasma obtained before (basal) and just after finishing (within 15 min) the marathon using ELISA assays. Results: Athletes had lower heart rates than controls, associated with greater myocardial hypertrophy, as determined by thickness of the heart's septum and posterior wall, and left atrial and ventricular volumes. Basal CT1 and IGF-1 levels were similar between athletes and sedentary controls. Marathon running increased the levels of these two hormones in a subgroup of athletes. Only the athletes who increased IGF-1 levels, but not CT1, had larger left and right ventricular volumes. Conclusion: IGF-1 acutely increased by exercise, but not CT1, was associated with the augmented ventricular volumes observed in athletes.


Assuntos
Humanos , Masculino , Adolescente , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Fator de Crescimento Insulin-Like I/análise , Citocinas/análise , Atletas , Cardiomegalia Induzida por Exercícios , Fator de Crescimento Insulin-Like I/fisiologia , Ensaio de Imunoadsorção Enzimática , Ecocardiografia , Método Simples-Cego , Estudos Prospectivos , Citocinas/fisiologia
10.
ABC., imagem cardiovasc ; 36(1): e20230002, abr. 2023. ilus, tab
Artigo em Português | LILACS | ID: biblio-1452586

RESUMO

A prática regular de esportes pode induzir adaptações no coração, sendo essa condição comumente chamada de "coração de atleta". As alterações observadas incluem dilatação das câmaras cardíacas, aumento da espessura miocárdica, melhora do enchimento ventricular, aumento da trabeculação do ventrículo esquerdo (VE), dilatação da veia cava inferior, entre outras. Essas alterações também podem ser observadas em algumas doenças cardíacas, como cardiomiopatia (CMP) dilatada, hipertrófica e outras. Dessa forma, os exames de imagem cardíaca são fundamentais na identificação dessas alterações e na diferenciação entre o "coração de atleta" e uma possível cardiopatia.(AU)


Exercise-induced adaptation may occur in amateur and professional athletes. This condition is commonly named "athlete's heart". The alterations observed include dilation of the heart chambers, increased myocardial thickness, improved ventricular filling, increased left ventricular trabeculation, dilation of the inferior vena cava, among others. These changes can also be observed in some heart diseases, such as dilated, hypertrophic and other cardiomyopathies (CMP). Thus, cardiac imaging tests are fundamental in identifying these alterations and in differentiating between "athlete's heart" and possible heart disease. (AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Adulto , Cardiomiopatia Dilatada/diagnóstico , Cardiomegalia Induzida por Exercícios/fisiologia , Coração/anatomia & histologia , Coração/diagnóstico por imagem , Ecocardiografia/métodos , Espectroscopia de Ressonância Magnética/métodos , Radiografia Torácica/métodos , Ecocardiografia Doppler/métodos , Exercício Físico/fisiologia , Eletrocardiografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA