Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106.379
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928155

RESUMO

Polymerase Chain Reaction (PCR) amplification is widely used for retrieving information from DNA storage. During the PCR amplification process, nonspecific pairing between the 3' end of the primer and the DNA sequence can cause cross-talk in the amplification reaction, leading to the generation of interfering sequences and reduced amplification accuracy. To address this issue, we propose an efficient coding algorithm for PCR amplification information retrieval (ECA-PCRAIR). This algorithm employs variable-length scanning and pruning optimization to construct a codebook that maximizes storage density while satisfying traditional biological constraints. Subsequently, a codeword search tree is constructed based on the primer library to optimize the codebook, and a variable-length interleaver is used for constraint detection and correction, thereby minimizing the likelihood of nonspecific pairing. Experimental results demonstrate that ECA-PCRAIR can reduce the probability of nonspecific pairing between the 3' end of the primer and the DNA sequence to 2-25%, enhancing the robustness of the DNA sequences. Additionally, ECA-PCRAIR achieves a storage density of 2.14-3.67 bits per nucleotide (bits/nt), significantly improving storage capacity.


Assuntos
Algoritmos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase/métodos , DNA/genética , Armazenamento e Recuperação da Informação/métodos , Primers do DNA/genética , Sequência de Bases
2.
BMC Genomics ; 25(1): 594, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867172

RESUMO

BACKGROUND: Reverse transcription quantitative PCR (RT-qPCR) with intercalating dyes is one of the main techniques to assess gene expression levels used in basic and applied research as well as in diagnostics. However, primer design for RT-qPCR can be complex due to the high demands on primer quality. Primers are best placed on exon junctions, should avoid polymorphic regions, be specific to the target transcripts and also prevent genomic amplification accurately, among others. Current software tools manage to meet all the necessary criteria only insufficiently. Here, we present ExonSurfer, a novel, user-friendly web-tool for qPCR primer design. RESULTS: ExonSurfer combines the different steps of the primer design process, encompassing target selection, specificity and self-complementarity assessment, and the avoidance of issues arising from polymorphisms. Amplification of potentially contaminating genomic DNA is avoided by designing primers on exon-exon junctions, moreover, a genomic alignment is performed to filter the primers accordingly and inform the user of any predicted interaction. In order to test the whole performance of the application, we designed primer pairs for 26 targets and checked both primer efficiency, amplicon melting temperature and length and confirmed the targeted amplicon by Sanger sequencing. Most of the tested primers accurately and selectively amplified the corresponding targets. CONCLUSION: ExonSurfer offers a comprehensive end-to-end primer design, guaranteeing transcript-specific amplification. The user interface is intuitive, providing essential specificity and amplicon details. The tool can also be used by command line and the source code is available. Overall, we expect ExonSurfer to facilitate RT-qPCR set-up for researchers in many fields.


Assuntos
Primers do DNA , Éxons , Internet , Software , Primers do DNA/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
3.
PLoS One ; 19(6): e0303941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38838001

RESUMO

Areca palm velarivirus 1 (APV1) is one of the main pathogen causing yellow leaf disease, and leading to considerable losses in the Areca palm industry. The detection methods for APV1 are primarily based on phenotype determination and molecular techniques, such as polymerase chain reaction (PCR). However, a single PCR has limitations in accuracy and sensitivity. Therefore, in the present study, we established a dual RT-PCR APV1-detection system with enhanced accuracy and sensitivity using two pairs of specific primers, YLDV2-F/YLDV2-R and YLDV4-F/YLDV4-R. Moreover, two cDNA fragments covering different regions of the viral genome were simultaneously amplified, with PCR amplicon of 311 and 499 bp, respectively. The dual RT-PCR detection system successfully amplified the two target regions of the APV1, demonstrating high specificity and sensitivity and compensating for the limitations of single-primer detection methods. We tested 60 Areca palm samples from different geographical regions, highlighting its advantages in that the dual RT-PCR system efficiently and accurately detected APV1 in samples across diverse areas. The dual RT-PCR APV1 detection system provides a rapid, accurate, and sensitive method for detecting the virus and offers valuable technical support for research in preventing and managing yellow leaf diseases caused by APV1 in Areca palms. Moreover, the findings of this study can serve as a reference for establishing similar plants viral detection systems in the future.


Assuntos
Doenças das Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Doenças das Plantas/virologia , Arecaceae/virologia , Sensibilidade e Especificidade , Primers do DNA/genética , RNA Viral/genética , RNA Viral/análise
4.
Parasit Vectors ; 17(1): 260, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880909

RESUMO

BACKGROUND: The Anopheles dirus complex plays a significant role as a malaria vector in the Greater Mekong Subregion (GMS), with varying degrees of vector competence among species. Accurate identification of sibling species in this complex is essential for understanding malaria transmission dynamics and deploying effective vector control measures. However, the original molecular identification assay, Dirus allele-specific polymerase chain reaction (AS-PCR), targeting the ITS2 region, has pronounced nonspecific amplifications leading to ambiguous results and misidentification of the sibling species. This study investigates the underlying causes of these inconsistencies and develops new primers to accurately identify species within the Anopheles dirus complex. METHODS: The AS-PCR reaction and thermal cycling conditions were modified to improve specificity for An. dirus member species identification. In silico analyses with Benchling and Primer-BLAST were conducted to identify problematic primers and design a new set for Dirus complex species identification PCR (DiCSIP). DiCSIP was then validated with laboratory and field samples of the An. dirus complex. RESULTS: Despite several optimizations by reducing primer concentration, decreasing thermal cycling time, and increasing annealing temperature, the Dirus AS-PCR continued to produce inaccurate identifications for Anopheles dirus, Anopheles scanloni, and Anopheles nemophilous. Subsequently, in silico analyses pinpointed problematic primers with high Guanine-Cytosine (GC) content and multiple off-target binding sites. Through a series of in silico analyses and laboratory validation, a new set of primers for Dirus complex species identification PCR (DiCSIP) has been developed. DiCSIP primers improve specificity, operational range, and sensitivity to identify five complex member species in the GMS accurately. Validation with laboratory and field An. dirus complex specimens demonstrated that DiCSIP could correctly identify all samples while the original Dirus AS-PCR misidentified An. dirus as other species when used with different thermocyclers. CONCLUSIONS: The DiCSIP assay offers a significant improvement in An. dirus complex identification, addressing challenges in specificity and efficiency of the previous ITS2-based assay. This new primer set provides a valuable tool for accurate entomological surveys, supporting effective vector control strategies to reduce transmission and prevent malaria re-introducing in the GMS.


Assuntos
Anopheles , Reação em Cadeia da Polimerase , Anopheles/genética , Anopheles/classificação , Animais , Reação em Cadeia da Polimerase/métodos , Primers do DNA/genética , Mosquitos Vetores/genética , Mosquitos Vetores/classificação , Malária/transmissão , Malária/prevenção & controle , Sudeste Asiático , Sensibilidade e Especificidade
5.
Appl Microbiol Biotechnol ; 108(1): 376, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884656

RESUMO

Mushroom poisoning contributes significantly to global foodborne diseases and related fatalities. Amanita mushrooms frequently cause such poisonings; however, identifying these toxic species is challenging due to the unavailability of fresh and intact samples. It is often necessary to analyze residues, vomitus, or stomach extracts to obtain DNA sequences for the identification of species responsible for causing food poisoning. This usually proves challenging to obtain usable DNA sequences that can be analyzed using conventional molecular biology techniques. Therefore, this study aimed to develop a DNA mini-barcoding method for the identification of Amanita species. Following the evaluation and optimization of universal primers for DNA mini-barcoding in Amanita mushrooms, we found that the internal transcribed spacer (ITS) gene sequence primer ITS-a was the most suitable DNA barcode primer for identifying Amanita species. Forty-three Amanita samples were subsequently amplified and sequenced. The sequences obtained were analyzed for intra- and inter-species genetic distances, and a phylogenetic tree was constructed. The findings indicated that the designed primers had strong universality among the Amanita samples and could accurately identify the target gene fragment with a length of 290 bp. Notably, the DNA mini-barcode accurately identified the 43 Amanita samples, demonstrating high consistency with the conventional DNA barcode. Furthermore, it effectively identified DNA from digested samples. In summary, this DNA mini-barcode is a promising tool for detecting accidental ingestion of toxic Amanita mushrooms. It may be used as an optimal barcode for species identification and traceability in events of Amanita-induced mushroom poisoning. KEY POINTS: • Development of a DNA mini-barcoding method for Amanita species identification without fresh samples. • The ITS-a primer set was optimized for robust universality in Amanita samples. • The mini-barcode is suitable for screening toxic mushroom species in mushroom poisoning cases.


Assuntos
Amanita , Código de Barras de DNA Taxonômico , DNA Fúngico , Intoxicação Alimentar por Cogumelos , Filogenia , Intoxicação Alimentar por Cogumelos/diagnóstico , Amanita/genética , DNA Fúngico/genética , Primers do DNA/genética , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA , Humanos
6.
J Med Virol ; 96(6): e29744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874258

RESUMO

Ebolavirus disease (EVD) is an often-lethal disease caused by the genus Ebolavirus (EBOV). Although vaccines are being developed and recently used, outbreak control still relies on a combination of various factors, including rapid identification of EVD cases. This allows rapid patient isolation and control measure implementation. Ebolavirus diagnosis is performed in treatment centers or reference laboratories, which usually takes a few hours to days to confirm the outbreak or deliver a clear result. A fast and field-deployable molecular detection method, such as the isothermal amplification recombinase-aided amplification (RAA), could significantly reduce sample-to-result time. In this study, a RT-RAA assay was evaluated for EBOV detection. Various primer and probe combinations were screened; analytical sensitivity and cross-specificity were tested. A total of 40 archived samples from the 2014 to 2016 Ebola outbreak in West Africa were tested with both the reference method real-time RT-PCR and the established RT-RAA assay. The assay could detect down to 22.6 molecular copies per microliter. No other pathogens were detected with the Ebolavirus RT-RAA assay. Testing 40 samples yield clinical sensitivity and specificity of 100% each. This rapid isothermal RT-RAA assay can replace the previous RT-RPA and continue to offer rapid EBOV diagnostics.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Sensibilidade e Especificidade , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Recombinases/metabolismo , Técnicas de Diagnóstico Molecular/métodos , África Ocidental/epidemiologia , Surtos de Doenças , RNA Viral/genética , Primers do DNA/genética
7.
J Virol Methods ; 328: 114960, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823586

RESUMO

Canine Infectious Respiratory Disease Complex (CIRDC) is a highly infectious diseases. Canine respiratory coronavirus (CRCoV), Canine influenza virus (CIV), Canine distemper virus (CDV), and Canine parainfluenza virus (CPiV) are crucial pathogens causing CIRDC. Due to the similar clinical symptoms induced by these viruses, differential diagnosis based solely on symptoms can be challenging. In this study, a multiplex real-time PCR assay was developed for detecting the four RNA viruses of CIRDC. Specific primers and probes were designed to target M gene of CRCoV, M gene of CIV, N gene of CDV and NP gene of CPiV. The detection limit is 10 copies/µL for CIV or CRCoV, while the detection limit of CDV or CPiV is 100 copies/µL. Intra-group and inter-group repeatability coefficient of variation (CV) were both less than 2 %. A total of 341 clinical canine samples were analyzed, and the results indicated that the method developed in our study owns a good consistency and better specificity compared with the conventional reverse transcription PCR. This study provides a new method to enable the simultaneous detection of all four pathogens in a single reaction, improving the efficiency for monitoring the prevalence of four viruses in CIRDC, which benefits the control of CIRDC.


Assuntos
Doenças do Cão , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Animais , Cães , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/virologia , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/isolamento & purificação , Coronavirus Canino/genética , Coronavirus Canino/isolamento & purificação , Primers do DNA/genética , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia
8.
Forensic Sci Int Genet ; 71: 103064, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833777

RESUMO

SE33 or ACTBP2 is the most polymorphic locus in many national DNA databases and in the commercial STR kits used to type both crime scene samples and reference samples to populate these databases. We describe the molecular reason for a three band pattern of SE33 seen in several samples. A SNP in the flanking SE33 region causes the binding of the unlabelled D3S1358 primer. As a result, a "chimeric" PCR product of the labelled SE33 primer and the D3S1358 primer is generated that is smaller than the regular SE33 amplicon. We call this "Type 3 three band pattern" as the genetic base differs from the Type 1 three band pattern caused by somatic mosaicism and the Type 2 that results from copy number variation.


Assuntos
Repetições de Microssatélites , Reação em Cadeia da Polimerase , Humanos , Polimorfismo de Nucleotídeo Único , Impressões Digitais de DNA , Primers do DNA , Variações do Número de Cópias de DNA
9.
Physiol Plant ; 176(3): e14398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894544

RESUMO

RNA-seq data is currently generated in numerous non-model organisms that lack a reference genome. Nevertheless, the confirmation of gene expression levels using RT-qPCR remains necessary, and the existing techniques do not seamlessly interface with the omics pipeline workflow. Developing primers for many targets by utilising orthologous genes can be a laborious, imprecise, and subjective process, particularly for plant species that are not commonly studied and do not have a known genome. We have developed a primer design tool, named PABLOG, that analyses the alignments generated from long or short RNA-seq reads and a reference orthologous gene. PABLOG scans, much like a bee searching several flowers for pollen, and presents a sorted list of potential exon-exon junction locations, ranked according to their reliability. Through computational analysis across the whole genomes of several non-model species, we demonstrate that PABLOG performs more effectively than other methods in identifying exon-exon junctions since it generates significantly fewer false-positive results. Examination of candidate regions at the gene level, in conjunction with laboratory studies, shows that the suggested primers successfully amplified particular targets in non-model plants without any presence of genomic contamination. Our tool includes a consensus sequence feature that enables the complete process of primer design, from aligning with the target gene to determining amplification parameters. The utility can be accessed via the GitHub repository located at: https://github.com/tools4plant-omics/PABLOG.


Assuntos
Primers do DNA , Abelhas/genética , Primers do DNA/genética , Éxons/genética , Software , Animais , Genes de Plantas/genética , Genoma de Planta/genética , Biologia Computacional/métodos
10.
Appl Microbiol Biotechnol ; 108(1): 396, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922447

RESUMO

The human gut microbiota refers to a diverse community of microorganisms that symbiotically exist in the human intestinal system. Altered microbial communities have been linked to many human pathologies. However, there is a lack of rapid and efficient methods to assess gut microbiota signatures in practice. To address this, we established an appraisal system containing 45 quantitative real-time polymerase chain reaction (qPCR) assays targeting gut core microbes with high prevalence and/or abundance in the population. Through comparative genomic analysis, we selected novel species-specific genetic markers and primers for 31 of the 45 core microbes with no previously reported specific primers or whose primers needed improvement in specificity. We comprehensively evaluated the performance of the qPCR assays and demonstrated that they showed good sensitivity, selectivity, and quantitative linearity for each target. The limit of detection ranged from 0.1 to 1.0 pg/µL for the genomic DNA of these targets. We also demonstrated the high consistency (Pearson's r = 0.8688, P < 0.0001) between the qPCR method and metagenomics next-generation sequencing (mNGS) method in analyzing the abundance of selected bacteria in 22 human fecal samples. Moreover, we quantified the dynamic changes (over 8 weeks) of these core microbes in 14 individuals using qPCR, and considerable stability was demonstrated in most participants, albeit with significant individual differences. Overall, this study enables the simple and rapid quantification of 45 core microbes in the human gut, providing a promising tool to understand the role of gut core microbiota in human health and disease. KEY POINTS: • A panel of original qPCR assays was developed to quantify human gut core microbes. • The qPCR assays were evaluated and compared with mNGS using real fecal samples. • This method was used to dynamically profile the gut core microbiota in individuals.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , Reação em Cadeia da Polimerase em Tempo Real , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sensibilidade e Especificidade , Primers do DNA/genética , DNA Bacteriano/genética
11.
J Parasitol ; 110(3): 221-231, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897603

RESUMO

Environmental DNA (eDNA) surveys promise to be a sensitive and powerful tool for the detection of trematodes. This can contribute to the limited studies on trematode ecology, specifically in aquatic ecosystems. Here, we developed species-specific primer and probe sets for Moliniella anceps, Opisthioglyphe ranae, and Plagiorchis multiglandularis cercariae and applied a novel eDNA qPCR assay to detect larval trematodes quantitatively. We evaluated the effectiveness of the assays using filtered lake water samples collected from different sites of Lake Fadikha and Kargat River Estuary in Lake Chany, Russia, showing high species specificity and sensitivity in all 3 assays. Further, all 3 assays had high efficiencies ranging from 94.9 to 105.8%. Moliniella anceps, O. ranae, and P. multiglandularis were detected in the environmental water samples through real-time PCR. Thus, we anticipate that our approach will be beneficial for biomonitoring, measuring, and managing ecological systems.


Assuntos
DNA Ambiental , DNA de Helmintos , Lagos , Reação em Cadeia da Polimerase em Tempo Real , Trematódeos , Animais , Lagos/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Trematódeos/genética , Trematódeos/classificação , Trematódeos/isolamento & purificação , DNA de Helmintos/isolamento & purificação , DNA de Helmintos/análise , Federação Russa , DNA Ambiental/isolamento & purificação , DNA Ambiental/análise , Especificidade da Espécie , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/diagnóstico , Infecções por Trematódeos/veterinária , Sensibilidade e Especificidade , Primers do DNA , Caramujos/parasitologia
12.
PLoS One ; 19(6): e0305201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935635

RESUMO

Alternative splicing (AS) is a universal phenomenon in eukaryotes, and it is still challenging to identify AS events. Several methods have been developed to identify AS events, such as expressed sequence tags (EST), microarrays and RNA-seq. However, EST has limitations in identifying low-abundance genes, while microarray and RNA-seq are high-throughput technologies, and PCR-based technology is needed for validation. To overcome the limitations of EST and shortcomings of high-throughput technologies, we established a method to identify AS events, especially for low-abundance genes, by reverse transcription (RT) PCR with gene-specific primers (GSPs) followed by nested PCR. This process includes two major steps: 1) the use of GSPs to amplify as long as the specific gene segment and 2) multiple rounds of nested PCR to screen the AS and confirm the unknown splicing variants. With this method, we successfully identified three new splicing variants, namely, GenBank Accession No. HM623886 for the bdnf gene (GenBank GeneID: 12064), GenBank Accession No. JF417977 for the trkc gene (GenBank GeneID: 18213) and GenBank Accession No. HM623888 for the glb-18 gene (GenBank GeneID: 172485). In addition to its reliability and simplicity, the method is also cost-effective and labor-intensive. In conclusion, we developed an RT-nested PCR method using gene-specific primers to efficiently identify known and novel AS variants. This approach overcomes the limitations of existing methods for detecting rare transcripts. By enabling the discovery of new isoforms, especially for low-abundance genes, this technique can aid research into aberrant splicing in disease. Future studies can apply this method to uncover AS variants involved in cancer, neurodegeneration, and other splicing-related disorders.


Assuntos
Processamento Alternativo , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Primers do DNA/genética
13.
Front Cell Infect Microbiol ; 14: 1349063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938885

RESUMO

Background: The rapid detection of Mycobacterium tuberculosis (MTB) is essential for controlling tuberculosis. Methods We designed a portable thermocycler-based real-time fluorescence loop-mediated isothermal amplification assay (cyp141-RealAmp) using six oligonucleotide primers derived from cyp141 to detect MTB. A combined number of 213 sputum samples (169 obtained from clinically diagnosed cases of pulmonary TB and 44 from a control group without tuberculosis) underwent Acid-fast bacillus (AFB) smear, culture, Xpert MTB/RIF assays, and cyp141-RealAmp assay. Results: By targeting MTB cyp141, this technique could detect as low as 10 copies/reaction within 30 min, and it was successfully rejected by other mycobacteria and other bacterial species tested. Of the 169 patients, there was no statistical difference between the detection rate of cyp141-RealAmp (92.90%, 95% CI: 89.03-96.07) and that of Xpert MTB/RIF (94.67%, 95% CI: 91.28-98.06) (P > 0.05), but both were statistically higher than that of culture (65.68%, 95% CI: 58.52-72.84) (P< 0.05) and AFB (57.40%, 95% CI: 49.94-64.86) (P< 0.05). Both cyp141-RealAmp and Xpert MTB/RIF had a specificity of 100%. Furthermore, a high concordance between cyp141-RealAmp and Xpert MTB/RIF was found (Kappa = 0.89). Conclusion: The cyp141-RealAmp assay was shown to be effective, responsive, and accurate in this study. This method offers a prospective strategy for the speedy and precise detection of MTB.


Assuntos
Técnicas de Diagnóstico Molecular , Mycobacterium tuberculosis , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Escarro , Tuberculose Pulmonar , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Primers do DNA/genética , Feminino , Fluorescência , Adulto , Masculino , Tuberculose/diagnóstico , Tuberculose/microbiologia , Pessoa de Meia-Idade
14.
J Virol Methods ; 327: 114947, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703833

RESUMO

Rubella virus infection during early pregnancy sometimes causes severe birth defects termed congenital rubella syndrome. Although there are safe and effective live-attenuated vaccines, rubella has only been certified as eliminated in the Americas within the six World Health Organization regions. Rubella remains an endemic disease in many regions, and outbreaks occur wherever population immunity is insufficient. There are two main methods for diagnosis of rubella: detection of anti-rubella IgM antibodies by enzyme immunoassay and detection of the viral genome by real-time RT-PCR. Both of these methods require substantial time and effort. In the present study, a rapid rubella detection assay using real-time fluorescent reverse transcription loop-mediated isothermal amplification with quenching primers was developed. The time required for the new assay was one-half that required for a real-time RT-PCR assay. The assay had 93.6% positive percent agreement and 100% negative percent agreement for clinical specimens compared with the real-time RT-PCR assay. The new assay is considered useful for diagnosis of rubella in areas where rubella is endemic.


Assuntos
Primers do DNA , Técnicas de Amplificação de Ácido Nucleico , Vírus da Rubéola , Rubéola (Sarampo Alemão) , Vírus da Rubéola/genética , Vírus da Rubéola/isolamento & purificação , Rubéola (Sarampo Alemão)/diagnóstico , Rubéola (Sarampo Alemão)/virologia , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Primers do DNA/genética , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Fatores de Tempo , Feminino
15.
BMC Ecol Evol ; 24(1): 73, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822255

RESUMO

Monitoring mollusk biodiversity is a great challenge due to their large diversity and broad distribution. Environmental DNA (eDNA) technology is increasingly applied for biodiversity monitoring, but relevant studies on marine mollusks are still limited. Although previous studies have developed several pairs of primers for mollusk eDNA analyses, most of them targeted only a small group of mollusks. In this study, seven primers were designed for the mollusk community and validated and compared with eight pairs of published primers to select the best candidates. After in silico test, MollCOI154 and MollCOI255 primers showed non-specific amplification, and same results were also obtained in published primers (COI204, Sepi, and veneroida). Moll12S100, Moll12S195 and Moll16S primers failed to amplify across all genomic DNA from selected mollusk. Except Moll16S, all developed and two published (unionoida and veneroida) primers were successfully amplified on four eDNA samples from Yangtze River estuary. After annotation of the amplified sequences, MollCOI253 showed higher annotation of the amplification results than the other primers. In conclusion, MollCOI253 had better performance in terms of amplification success and specificity, and can provide technical support for eDNA-based research, which will be beneficial for molluscan biodiversity investigation and conservation.


Assuntos
Código de Barras de DNA Taxonômico , Primers do DNA , DNA Ambiental , Moluscos , Moluscos/genética , Animais , Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/análise , DNA Ambiental/genética , Primers do DNA/genética , Biodiversidade
16.
Arch Virol ; 169(6): 119, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753197

RESUMO

Porcine circovirus (PCV) has become a major pathogen, causing major economic losses in the global pig industry, and PCV type 2 (PCV2) and 3 (PCV3) are distributed worldwide. We designed specific primer and probe sequences targeting PCV2 Cap and PCV3 Rap and developed a multiplex crystal digital PCR (cdPCR) method after optimizing the primer concentration, probe concentration, and annealing temperature. The multiplex cdPCR assay permits precise and differential detection of PCV2 and PCV3, with a limit of detection of 1.39 × 101 and 1.27 × 101 copies/reaction, respectively, and no cross-reaction with other porcine viruses was observed. The intra-assay and interassay coefficients of variation (CVs) were less than 8.75%, indicating good repeatability and reproducibility. To evaluate the practical value of this assay, 40 tissue samples and 70 feed samples were tested for both PCV2 and PCV3 by cdPCR and quantitative PCR (qPCR). Using multiplex cdPCR, the rates of PCV2 infection, PCV3 infection, and coinfection were 28.45%, 1.72%, and 12.93%, respectively, and using multiplex qPCR, they were 25.00%, 0.86%, and 4.31%, respectively This highly specific and sensitive multiplex cdPCR thus allows accurate simultaneous detection of PCV2 and PCV3, and it is particularly well suited for applications that require the detection of small amounts of input nucleic acid or samples with intensive processing and complex matrices.


Assuntos
Infecções por Circoviridae , Circovirus , Reação em Cadeia da Polimerase Multiplex , Doenças dos Suínos , Circovirus/genética , Circovirus/isolamento & purificação , Circovirus/classificação , Suínos , Animais , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Infecções por Circoviridae/diagnóstico , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Primers do DNA/genética , DNA Viral/genética
17.
Anal Biochem ; 692: 115548, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38697593

RESUMO

Oviductus Ranae is the dried oviduct from Rana dybowskii, a forest frog species with medicinal, tonic, and cosmetic properties. Due to the high price and resource shortage, counterfeit varieties of Oviductus Ranae often appear in the market. However, traditional identification methods cannot accurately differentiate between Oviductus Ranae and its adulterants. In this study, a rapid molecular identification method has been established. The method involves extracting genomic DNA in just 30 s using filter paper purification, species-specific rapid polymerase chain reaction (PCR) amplification, and finally, fluorescence detection of the products. It can accurately identify Oviductus Ranae and its three common adulterants in about 30 min, making the process simple, fast, and highly specific.


Assuntos
Primers do DNA , Reação em Cadeia da Polimerase , Ranidae , Especificidade da Espécie , Animais , Ranidae/genética , Reação em Cadeia da Polimerase/métodos , Feminino , Oviductos/metabolismo , DNA/análise , DNA/genética , DNA/isolamento & purificação
18.
J Virol Methods ; 328: 114955, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768869

RESUMO

Infectious bronchitis (IB) is an acute, highly contagious contact respiratory disease of chickens caused by infectious bronchitis virus (IBV). IBV is very prone to mutation, which brings great difficulties to the prevention and control of the disease. Therefore, there is a pressing need for a method that is fast, sensitive, specific, and convenient for detecting IBV. In this study, a real-time fluorescence-based recombinase-aided amplification (RF-RAA) method was established. Primers and probe were designed based on the conserved regions of the IBV M gene and the reaction concentrations were optimized, then the specificity, sensitivity, and reproducibility of this assay were tested. The results showed that the RF-RAA method could be completed at 39℃ within 20 min, during which the results could be interpreted visually in real-time. The RF-RAA method had good specificity, no cross-reaction with common poultry pathogens, and it detected a minimum concentration of template of 2 copies/µL for IBV. Besides, its reproducibility was stable. A total of 144 clinical samples were tested by RF-RAA and real-time quantitative PCR (qPCR), 132 samples of which were positive and 12 samples were negative, and the coincidence rate of the two methods was 100 %. In conclusion, the developed RF-RAA detection method is rapid, specific, sensitive, reproducible, and convenient, which can be utilized for laboratory detection and clinical diagnosis of IBV.


Assuntos
Galinhas , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Técnicas de Amplificação de Ácido Nucleico , Doenças das Aves Domésticas , Recombinases , Sensibilidade e Especificidade , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/isolamento & purificação , Animais , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Recombinases/metabolismo , Recombinases/genética , Reprodutibilidade dos Testes , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Primers do DNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Fluorescência , Técnicas de Diagnóstico Molecular/métodos
19.
J Virol Methods ; 328: 114958, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801834

RESUMO

In this report, a multiplex PCR method was developed for the detection of three diarrhea-associated viruses in mink, including circovirus (MCV), bocavirus (MBoV), and enteritis virus (MEV). Three compatible sets of primers specific for each virus were designed respectively based on their conserved sequences. After optimization of the crucial factors such as primer concentration and annealing temperature in single and multiple amplification, three specific fragments were simultaneously amplified with the highest sensitivity and specificity in one PCR reaction. The fragments amplified were 259 bp (MCV),455 bp (MBoV) and 671 bp (MEV). The sensibility of this one-step multiplex PCR is about 10 times lower than that of regular singleplex PCR. There were no cross-reactions with some relevant pathogens like mink coronavirus, canine distemper virus, and aleutian mink disease virus. In our study we analyzed viral DNA in mink fecal samples by multiplex PCR assay from China, which revealed the occurrence of MCV, MBoV, and MEV as 3.1 %, 5.7 %, and 9.8 %, respectively. The testing results of multiplex PCR agreed with the singleplex PCR results with a coincidence rate of 100 %. These results indicated that the method could provide technical support for rapid detection of the three diarrhea-associated viruses, and epidemiological investigation of mink viral diarrhea.


Assuntos
Primers do DNA , Diarreia , Fezes , Vison , Reação em Cadeia da Polimerase Multiplex , Sensibilidade e Especificidade , Animais , Vison/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/veterinária , China , Diarreia/virologia , Diarreia/veterinária , Diarreia/diagnóstico , Primers do DNA/genética , Fezes/virologia , Circovirus/genética , Circovirus/isolamento & purificação , Bocavirus/genética , Bocavirus/isolamento & purificação , Vírus da Enterite do Vison/genética , Vírus da Enterite do Vison/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/veterinária
20.
Microb Pathog ; 192: 106718, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815777

RESUMO

Sri Lankan cassava mosaic virus (SLCMV) is a major cause for mosaic infections in cassava leaves, resulting in significant economic losses in southern India. SLCMV leads to growth retardation, leaf curl, and chlorosis in the host, with rapid transmission through whitefly insect vectors. Detecting SLCMV promptly is crucial, and the study introduces a novel and efficient colorimetric Loop-mediated isothermal amplification (LAMP) assay for successful detection in 60 min. Three primer sets were designed to target the conserved region of the SLCMV genome, specifically the coat protein gene, making the assay highly specific. The LAMP assay offers rapid and sensitive detection, completing within 60 min in a temperature-controlled water bath or thermal cycler. Compared to PCR techniques, it demonstrates 100 times superior sensitivity. The visual inspection of LAMP tube results using a nucleic acid dye and observing ladder-like pattern bands in a 2 % agarose gel confirms the presence of SLCMV. The assay is specific to SLCMV, showing no false positives or contaminations when tested against other virus. The standardized SLCMV LAMP assay proves technically efficient, providing a rapid, specific, simple, and low-cost solution, streamlining the detection and management of SLCMV.


Assuntos
Begomovirus , Colorimetria , Primers do DNA , Manihot , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Sensibilidade e Especificidade , Manihot/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Índia , Colorimetria/métodos , Doenças das Plantas/virologia , Primers do DNA/genética , Técnicas de Diagnóstico Molecular/métodos , Begomovirus/genética , Begomovirus/isolamento & purificação , Folhas de Planta/virologia , Proteínas do Capsídeo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...