Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173.317
Filtrar
1.
Dev Cell ; 59(9): 1091-1093, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714155

RESUMO

Polar localization of proteins is important for plant growth and development. Identifying the interactors of polarized proteins provides spatial information and cell-type functions. In this issue of Developmental Cell, Wallner et al. (2024) utilize opposing polarity domain proteins to identify interactors and their functions during cell division in Arabidopsis stomata.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Polaridade Celular , Desenvolvimento Vegetal , Polaridade Celular/fisiologia , Divisão Celular/fisiologia , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Desenvolvimento Vegetal/fisiologia
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612471

RESUMO

Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.


Assuntos
Síndrome da Imunodeficiência Adquirida , HIV-1 , Estados Unidos , Humanos , United States Food and Drug Administration , Apoptose , Divisão Celular
3.
Chemosphere ; 358: 142125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670509

RESUMO

Microcystin-LR (MC-LR) is a harmful cyanotoxin that inhibits 1 and 2A serine-threonine protein phosphatases. This study examines the influence of MC-LR on chloroplast division and the underlying mechanisms and consequences in Arabidopsis. MC-LR increased the frequency of dividing chloroplasts in hypocotyls in a time range of 1-96 h. At short-term exposures to MC-LR, small-sized chloroplasts (longitudinal diameters ≤6 µm) were more sensitive to these stimulatory effects, while both small and large chloroplasts showed stimulations at long-term exposure. After 48 h, the cyanotoxin increased the frequency of small-sized chloroplasts, indicating the stimulation of division. MC-LR inhibited protein phosphatases in whole hypocotyls and isolated chloroplasts, while it did not induce oxidative stress. We show for the first time that total cellular phosphatases play important roles in chloroplast division and that particular chloroplast phosphatases may be involved in these processes. Interestingly, MC-LR has a protective effect on cyanobacterial division during methyl-viologen (MV) treatments in Synechococcus PCC6301. MC-LR production has harmful effects on ecosystems and it may have an ancient cell division regulatory role in stressed cyanobacterial cells, the evolutionary ancestors of chloroplasts. We propose that cytoplasmic (eukaryotic) factors also contribute to the relevant effects of MC-LR in plants.


Assuntos
Arabidopsis , Cloroplastos , Toxinas Marinhas , Microcistinas , Fosfoproteínas Fosfatases , Microcistinas/toxicidade , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis/efeitos dos fármacos , Cianobactérias/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Synechococcus/efeitos dos fármacos
4.
EMBO J ; 43(9): 1822-1842, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565947

RESUMO

A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Divisão Celular , Regulação da Expressão Gênica de Plantas , MicroRNAs , Raízes de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Divisão Celular/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular , Xilema/citologia , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/genética
5.
Plant Sci ; 344: 112090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636812

RESUMO

Vacuoles are the largest membrane-bound organelles in plant cells, critical for development and environmental responses. Vacuolar dynamics indicate reversible changes of vacuoles in morphology, size, or numbers. In this review, we summarize current understandings of vacuolar dynamics in different types of plant cells, biological processes associated with vacuolar dynamics, and regulators controlling vacuolar dynamics. Specifically, we point out the possibility that vacuolar dynamics play key roles in cell division and differentiation, which are controlled by the nucleus. Finally, we propose three routes through which vacuolar dynamics actively participate in nucleus-controlled cellular activities.


Assuntos
Diferenciação Celular , Divisão Celular , Células Vegetais , Vacúolos , Vacúolos/metabolismo , Vacúolos/fisiologia , Divisão Celular/fisiologia , Células Vegetais/fisiologia , Núcleo Celular/fisiologia , Núcleo Celular/metabolismo
6.
Plant Sci ; 344: 112099, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640971

RESUMO

Polyploidization plays a crucial role in plant breeding and genetic improvement. Although the phenomenon of polyploidization affecting the area and number of plant epidermal pavement cells is well described, the underlying mechanism behind this phenomenon is still largely unknown. In this study, we found that the leaves of autotetraploid birch (Betula pendula) stopped cell division earlier and had a larger cell area. In addition, compared to diploids, tetraploids have a smaller stomatal density and fewer stomatal numbers. Genome-wide DNA methylation analysis revealed no significant difference in global DNA methylation levels between diploids and tetraploids. A total of 9154 differential methylation regions (DMRs) were identified between diploids and tetraploids, with CHH-type DMRs accounting for 91.73% of all types of DMRs. Further research has found that there are a total of 2105 differentially methylated genes (DMEGs) with CHH-type DMRs in birch. The GO functional enrichment results of DMEGs showed that differentially methylated genes were mainly involved in terms such as cellular process and metabolic process. The analysis of differentially methylated genes and differentially expressed genes suggests that hyper-methylation in the promoter region may inhibit the gene expression level of BpCYCD3;2 in tetraploids. To investigate the function of BpCYCD3;2 in birch, we obtained overexpression and repressed expression lines of BpCYCD3;2 through genetic transformation. The morphogenesis of both BpCYCD3;2-OE and BpCYCD3;2-RE lines was not affected. However, low expression of BpCYCD3;2 can lead to inhibition of cell division in leaves, and this inhibition of cell proliferation can be compensated for by an increase in cell size. Additionally, we found that the number and density of stomata in the BpCYCD3;2-RE lines were significantly reduced, consistent with the tetraploid. These data indicate that changes in cell division ability and stomatal changes in tetraploid birch can be partially attributed to low expression of the BpCYCD3;2 gene, which may be related to hyper-methylation in its promoter region. These results will provide new insights into the mechanism by which polyploidization affects plant development.


Assuntos
Betula , Divisão Celular , Metilação de DNA , Folhas de Planta , Tetraploidia , Betula/genética , Betula/crescimento & desenvolvimento , Betula/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Divisão Celular/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
7.
Nat Commun ; 15(1): 2890, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570537

RESUMO

DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Saccharomyces cerevisiae , Humanos , Ciclo Celular , Recombinação Homóloga , Divisão Celular , Endonucleases/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , DNA , Reparo do DNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Appl Microbiol Biotechnol ; 108(1): 285, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573360

RESUMO

CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.


Assuntos
Proteínas Oncogênicas , Proteínas de Sinalização YAP , Animais , Cricetinae , Células CHO , Cricetulus , Fatores de Transcrição/genética , Divisão Celular , Serina-Treonina Quinases TOR
9.
Med Oncol ; 41(5): 113, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602586

RESUMO

Leukemia is a malignant disease of the hematopoietic system, in which clonal leukemia cells accumulate and inhibit normal hematopoiesis in the bone marrow and other hematopoietic tissues as a result of uncontrolled proliferation and impaired apoptosis, among other mechanisms. In this study, the anti-leukemic effect of a compound (SGP-17-S) extracted from Chloranthus multistachys, a plant with anti-inflammatory, antibacterial and anti-tumor effects, was evaluated. The effect of SGP-17-S on the viability of leukemic cell was demonstrated by MTT assay, cell cycle, and apoptosis were assessed by flow cytometry using PI staining and Annexin V/PI double staining. Combinations of network pharmacology and cellular thermal shift assay (CETSA) with western blot were used to validate agents that act on leukemia targets. The results showed that SGP-17-S inhibited the growth of leukemia cells in a time- and dose-dependent manner. SGP-17-S blocked HEL cells in the G2 phase, induced apoptosis, decreased Bcl-2 and caspase-8 protein expression, and increased Bax and caspase-3 expression. In addition, CETSA revealed that PARP1 is an important target gene for the inhibition of HEL cell growth, and SGP-17-S exerted its action on leukemia cells by targeting PARP1. Therefore, this study might provide new solutions and ideas for the treatment of leukemia.


Assuntos
Leucemia , Humanos , Leucemia/tratamento farmacológico , Ciclo Celular , Proliferação de Células , Divisão Celular , Anexina A5 , Poli(ADP-Ribose) Polimerase-1
10.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625077

RESUMO

The centromere is a fundamental higher-order structure in chromosomes ensuring their faithful segregation upon cell division. Centromeric transcripts have been described in several species and suggested to participate in centromere function. However, low sequence conservation of centromeric repeats appears inconsistent with a role in recruiting highly conserved centromeric proteins. Here, we hypothesized that centromeric transcripts may function through a secondary structure rather than sequence conservation. Using mouse embryonic stem cells (ESCs), we show that an imbalance in the levels of forward or reverse minor satellite (MinSat) transcripts leads to severe chromosome segregation defects. We further show that MinSat RNA adopts a stem-loop secondary structure, which is conserved in human α-satellite transcripts. We identify an RNA binding region in CENPC and demonstrate that MinSat transcripts function through the structured region of the RNA. Importantly, mutants that disrupt MinSat secondary structure do not cause segregation defects. We propose that the conserved role of centromeric transcripts relies on their secondary RNA structure.


Assuntos
Segregação de Cromossomos , RNA Satélite , Animais , Humanos , Camundongos , Divisão Celular , Células-Tronco Embrionárias Murinas , RNA Satélite/química , RNA Satélite/metabolismo , Centrômero/metabolismo
11.
Oncol Rep ; 51(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577924

RESUMO

Colorectal cancer (CRC) ranks as the second leading cause of cancer­related death worldwide due to its aggressive nature. After surgical resection, >50% of patients with CRC require adjuvant therapy. As a result, eradicating cancer cells with medications is a promising method to treat patients with CRC. In the present study, a novel compound was synthesized, which was termed compound 225#. The inhibitory activity of compound 225# against CRC was determined by MTT assay, EdU fluorescence labeling and colony formation assay; the effects of compound 225# on the cell cycle progression and apoptosis of CRC cells were detected by flow cytometry and western blotting; and the changes in autophagic flux after the administration of compound 225# were detected using the double fluorescence fusion protein mCherry­GFP­LC3B and western blotting. The results demonstrated that compound 225# exhibited antiproliferative properties, inhibiting the proliferation and expansion of CRC cell lines in a time­ and dose­dependent manner. Furthermore, compound 225# triggered G2/M cell cycle arrest by influencing the expression of cell cycle regulators, such as CDK1, cyclin A1 and cyclin B1, which is also closely related to the activation of DNA damage pathways. The cleavage of PARP and increased protein expression levels of PUMA suggested that apoptosis was triggered after treatment with compound 225#. Moreover, the increase in LC3­II expression and stimulation of autophagic flux indicated the activation of an autophagy pathway. Notably, compound 225# induced autophagy, which was associated with endoplasmic reticulum (ER) stress. In accordance with the in vitro findings, the in vivo results demonstrated that compound 225# effectively inhibited the growth of HCT116 tumors in mice without causing any changes in their body weight. Collectively, the present results demonstrated that compound 225# not only inhibited proliferation and promoted G2/M­phase cell cycle arrest and apoptosis, but also initiated cytoprotective autophagy in CRC cells by activating ER stress pathways. Taken together, these findings provide an experimental basis for the evaluation of compound 225# as a novel potential medication for CRC treatment.


Assuntos
Apoptose , Neoplasias Colorretais , Humanos , Animais , Camundongos , Pontos de Checagem do Ciclo Celular , Divisão Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Ciclo Celular
12.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592962

RESUMO

How mutations in mitochondrial electron transport chain (ETC) proteins impact the cell cycle of Candida albicans was investigated in this study. Using genetic null mutants targeting ETC complexes I (CI), III (CIII), and IV (CIV), the cell cycle stages (G0/G1, S phase, and G2/M) were analyzed via fluorescence-activated cell sorting (FACS). Four CI null mutants exhibited distinct alterations, including extended S phase, shortened G2/M population, and a reduction in cells size exceeding 10 µM. Conversely, CIII mutants showed an increased population in G1/G0 phase. Among four CI mutants, ndh51Δ/Δ and goa1Δ/Δ displayed aberrant cell cycle patterns correlated with previously reported cAMP/PKA downregulation. Specifically, nuo1Δ/Δ and nuo2Δ/Δ mutants exhibited increased transcription of RIM15, a central hub linking cell cycle with nutrient-dependent TOR1 and cAMP/PKA pathways and Snf1 aging pathway. These findings suggest that suppression of TOR1 and cAMP/PKA pathways or enhanced Snf1 disrupts cell cycle progression, influencing cell longevity and growth among CI mutants. Overall, our study highlights the intricate interplay between mitochondrial ETC, cell cycle, and signaling pathways.


Assuntos
Candida albicans , Mitocôndrias , Candida albicans/fisiologia , Fase S , Mitocôndrias/metabolismo , Ciclo Celular , Divisão Celular
13.
PLoS Pathog ; 20(4): e1012121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593161

RESUMO

Efflux pumps of the resistance-nodulation-cell division (RND) superfamily, particularly the AcrAB-TolC, and MexAB-OprM, besides mediating intrinsic and acquired resistance, also intervene in bacterial pathogenicity. Inhibitors of such pumps could restore the activities of antibiotics and curb bacterial virulence. Here, we identify pyrrole-based compounds that boost antibiotic activity in Escherichia coli and Pseudomonas aeruginosa by inhibiting their archetype RND transporters. Molecular docking and biophysical studies revealed that the EPIs bind to AcrB. The identified efflux pump inhibitors (EPIs) inhibit the efflux of fluorescent probes, attenuate persister formation, extend post-antibiotic effect, and diminish resistant mutant development. The bacterial membranes remained intact upon exposure to the EPIs. EPIs also possess an anti-pathogenic potential and attenuate P. aeruginosa virulence in vivo. The intracellular invasion of E. coli and P. aeruginosa inside the macrophages was hampered upon treatment with the lead EPI. The excellent efficacy of the EPI-antibiotic combination was evidenced in animal lung infection and sepsis protection models. These findings indicate that EPIs discovered herein with negligible toxicity are potential antibiotic adjuvants to address life-threatening Gram-negative bacterial infections.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Virulência , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Resistência Microbiana a Medicamentos , Bactérias/metabolismo , Divisão Celular , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Escherichia coli/metabolismo
14.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612439

RESUMO

Prostate cancer (PCa) is the most prevalent non-cutaneous cancer in men. Early PCa detection has been made possible by the adoption of screening methods based on the serum prostate-specific antigen and Gleason score (GS). The aim of this study was to correlate gene expression with the differentiation level of prostate adenocarcinomas, as indicated by GS. We used data from The Cancer Genome Atlas (TCGA) and included 497 prostate cancer patients, 52 of which also had normal tissue sample sequencing data. Gene ontology analysis revealed that higher GSs were associated with greater responses to DNA damage, telomere lengthening, and cell division. Positive correlation was found with transcription factor activator of the adenovirus gene E2 (E2F) and avian myelocytomatosis viral homolog (MYC) targets, G2M checkpoints, DNA repair, and mitotic spindles. Immune cell deconvolution revealed high M0 macrophage counts and an increase in M2 macrophages dependent on the GS. The molecular pathways most correlated with GSs were cell cycle, RNA transport, and calcium signaling (depleted). A combinatorial approach identified a set of eight genes able to differentiate by k-Nearest Neighbors (kNN) between normal tissues, low-Gleason tissues, and high-Gleason tissues with high accuracy. In conclusion, our study could be a step forward to better understanding the link between gene expression and PCa progression and aggressiveness.


Assuntos
Redes Reguladoras de Genes , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Ciclo Celular , Divisão Celular , Adenoviridae
15.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612774

RESUMO

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Assuntos
Ciclopentanos , Isoleucina/análogos & derivados , Litchi , Oxilipinas , Litchi/genética , Peróxido de Hidrogênio , Desenvolvimento Embrionário , Poliaminas , Espermidina , Putrescina , Espermina , Arginina , Divisão Celular , Glucosídeos
16.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612909

RESUMO

Skin aging is a complex process involving structural and functional changes and is characterized by a decrease in collagen content, reduced skin thickness, dryness, and the formation of wrinkles. This process is underpinned by multiple mechanisms including the free radical theory, inflammation theory, photoaging theory, and metabolic theory. The skin immune system, an indispensable part of the body's defense mechanism, comprises macrophages, lymphocytes, dendritic cells, and mast cells. These cells play a pivotal role in maintaining skin homeostasis and responding to injury or infection. As age advances, along with various internal and external environmental stimuli, skin immune cells may undergo senescence or accelerated aging, characterized by reduced cell division capability, increased mortality, changes in gene expression patterns and signaling pathways, and altered immune cell functions. These changes collectively impact the overall function of the immune system. This review summarizes the relationship between skin aging and immunity and explores the characteristics of skin aging, the composition and function of the skin immune system, the aging of immune cells, and the effects of these cells on immune function and skin aging. Immune dysfunction plays a significant role in skin aging, suggesting that immunoregulation may become one of the important strategies for the prevention and treatment of skin aging.


Assuntos
Envelhecimento da Pele , Pele , Mastócitos , Divisão Celular
17.
Sci Rep ; 14(1): 8544, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609444

RESUMO

The continuous balance of growth and degradation inside cells maintains homeostasis. Disturbance of this balance by internal or external factors cause state of disease, while effective disease treatments seek to restore this balance. Here, we present a method based on quantitative phase imaging (QPI) based measurements of cell mass and the velocity of mass transport to quantify the balance of growth and degradation within intracellular control volumes. The result, which we call Lagrangian velocimetry for intracellular net growth (LVING), provides high resolution maps of intracellular biomass production and degradation. We use LVING to quantify the growth in different regions of the cell during phases of the cell cycle. LVING can also be used to quantitatively compare the effect of range of chemotherapy drug doses on subcellular growth processes. Finally, we applied LVING to characterize the effect of autophagy on the growth machinery inside cells. Overall, LVING reveals both the structure and distribution of basal growth within cells, as well as the disruptions to this structure that occur during alterations in cell state.


Assuntos
Autofagia , Receptores Proteína Tirosina Quinases , Proliferação de Células , Ciclo Celular , Divisão Celular
18.
Nat Commun ; 15(1): 3355, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637514

RESUMO

Surface layers (S-layers) are proteinaceous, two-dimensional paracrystalline arrays that constitute a major component of the cell envelope in many prokaryotic species. In this study, we investigated S-layer biogenesis in the bacterial model organism Caulobacter crescentus. Fluorescence microscopy revealed localised incorporation of new S-layer at the poles and mid-cell, consistent with regions of cell growth in the cell cycle. Light microscopy and electron cryotomography investigations of drug-treated bacteria revealed that localised S-layer insertion is retained when cell division is inhibited, but is disrupted upon dysregulation of MreB or lipopolysaccharide. We further uncovered that S-layer biogenesis follows new peptidoglycan synthesis and localises to regions of high cell wall turnover. Finally, correlated cryo-light microscopy and electron cryotomographic analysis of regions of S-layer insertion showed the presence of discontinuities in the hexagonal S-layer lattice, contrasting with other S-layers completed by defined symmetric defects. Our findings present insights into how C. crescentus cells form an ordered S-layer on their surface in coordination with the biogenesis of other cell envelope components.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Glicoproteínas de Membrana/metabolismo , Divisão Celular , Membrana Celular/metabolismo
19.
Sci Rep ; 14(1): 9008, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637579

RESUMO

This investigation aimed to explore the prognostic factors in elderly patients with unresected gastric cancer (GC) who have received chemotherapy and to develop a nomogram for predicting their cancer-specific survival (CSS). Elderly gastric cancer patients who have received chemotherapy but no surgery in the Surveillance, Epidemiology, and End Results Database between 2004 and 2015 were included in this study. Cox analyses were conducted to identify prognostic factors, leading to the formulation of a nomogram. The nomogram was validated using receiver operating characteristic (ROC) and calibration curves. The findings elucidated six prognostic factors encompassing grade, histology, M stage, radiotherapy, tumor size, and T stage, culminating in the development of a nomogram. The ROC curve indicated that the area under curve of the nomogram used to predict CSS for 3, 4, and 5 years in the training queue as 0.689, 0.708, and 0.731, and in the validation queue, as 0.666, 0.693, and 0.708. The calibration curve indicated a high degree of consistency between actual and predicted CSS for 3, 4, and 5 years. This nomogram created to predict the CSS of elderly patients with unresected GC who have received chemotherapy could significantly enhance treatment accuracy.


Assuntos
Nomogramas , Neoplasias Gástricas , Idoso , Humanos , Neoplasias Gástricas/tratamento farmacológico , Calibragem , Divisão Celular , Bases de Dados Factuais , Programa de SEER
20.
Physiol Plant ; 176(1): e14182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618986

RESUMO

The molecular mechanisms guiding oriented cell divisions in the root vascular tissues of Arabidopsis thaliana are still poorly characterised. By overlapping bulk and single-cell transcriptomic datasets, we unveiled TETRASPANIN1 (TET1) as a putative regulator in this process. TET1 is expressed in root vascular cells, and loss-of-function mutants contain fewer vascular cell files. We further generated and characterised a CRISPR deletion mutant and showed, unlike previously described mutants, that the full knock out is additionally missing endodermal cells in a stochastic way. Finally, we show that HA-tagged versions of TET1 are functional in contrast to fluorescent TET1 translational fusions. Immunostaining using HA-TET1 lines complementing the mutant phenotype suggested a dual plasma membrane and intracellular localisation in the root vasculature and a polar membrane localisation in the young cortex, endodermal and initial cells. Taken together, we show that TET1 is involved in both vascular proliferation and ground tissue patterning. Our initial results pave the way for future work to decipher its precise mode of action.


Assuntos
Arabidopsis , Arabidopsis/genética , Divisão Celular , Membrana Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...