Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.255
Filtrar
1.
Nutr Diabetes ; 14(1): 28, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755184

RESUMO

Proglucagon mRNA expression and GLP-1 secretion by cultured human L-cells (NCI-H716) were inhibited following exposure to λ-carrageenan, a commonly used additive in processed foods. Carrageenan is composed of sulfated or unsulfated galactose residues linked in alternating alpha-1,3 and beta-1,4 bonds and resembles the endogenous sulfated glycosaminoglycans. However, carrageenan has unusual alpha-1,3-galactosidic bonds, which are not innate to human cells and are implicated in immune responses. Exposure to carrageenan predictably causes inflammation, and carrageenan impairs glucose tolerance and contributes to insulin resistance. When cultured human L-cells were deprived overnight of glucose and serum and then exposed to high glucose, 10% FBS, and λ-carrageenan (1 µg/ml) for 10 minutes, 1 h, and 24 h, mRNA expression of proglucagon and secretion of GLP-1 were significantly reduced, compared to control cells not exposed to carrageenan. mRNA expression of proglucagon by mouse L-cells (STC-1) was also significantly reduced and supports the findings in the human cells. Exposure of co-cultured human intestinal epithelial cells (LS174T) to the spent media of the carrageenan-treated L-cells led to a decline in mRNA expression of GLUT-2 at 24 h. These findings suggest that ingestion of carrageenan-containing processed foods may impair the production of GLP-1, counteract the effect of GLP-1 receptor agonists and induce secondary effects on intestinal epithelial cells.


Assuntos
Carragenina , Células Enteroendócrinas , Aditivos Alimentares , Peptídeo 1 Semelhante ao Glucagon , Proglucagon , Carragenina/farmacologia , Humanos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Aditivos Alimentares/farmacologia , Proglucagon/metabolismo , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/efeitos dos fármacos , Camundongos , Animais , RNA Mensageiro/metabolismo , Linhagem Celular , Glucose/metabolismo
2.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691390

RESUMO

Enteroendocrine cells (EECs) are specialised cells in the intestinal epithelium that sense nutrients to regulate feeding behaviour. In a new study, Lihua Ye and colleagues demonstrate that the gut microbiota are crucial in supporting EEC maturation and mitochondrial function during early postnatal development in zebrafish. To find out more about the behind the paper story, we caught up with first author Alfahdah Alsudayri and corresponding author Lihua Ye, Assistant Professor at Ohio State University.


Assuntos
Células Enteroendócrinas , Peixe-Zebra , Animais , Células Enteroendócrinas/metabolismo , Humanos , Microbioma Gastrointestinal , História do Século XXI , História do Século XX
3.
Nat Commun ; 15(1): 3514, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664401

RESUMO

Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.


Assuntos
Ingestão de Alimentos , Células Enteroendócrinas , Ácido Glutâmico , Neuropeptídeos , Peptídeo YY , Animais , Células Enteroendócrinas/metabolismo , Feminino , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Ingestão de Alimentos/fisiologia , Peptídeo YY/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Comportamento Alimentar/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Neurônios Dopaminérgicos/metabolismo , Dieta
4.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38577841

RESUMO

Enteroendocrine cells (EECs) are crucial for sensing ingested nutrients and regulating feeding behavior. How gut microbiota regulate the nutrient-sensing EEC activity is unclear. Our transcriptomic analysis demonstrates that commensal microbiota colonization significantly increases the expression of many genes associated with mitochondrial function. Using new methods to image EEC cytoplasmic and mitochondrial Ca2+ activity in live zebrafish, our data revealed that it is dynamically regulated during the EEC development process. Mature EECs display an increased mitochondrial-to-cytoplasmic Ca2+ ratio. Mitochondria are evenly distributed in the cytoplasm of immature EECs. As EECs mature, their mitochondria are highly localized at the basal membrane where EEC vesicle secretion occurs. Conventionalized (CV) EECs, but not germ-free (GF) EECs, exhibit spontaneous low-amplitude Ca2+ fluctuation. The mitochondrial-to-cytoplasmic Ca2+ ratio is significantly higher in CV EECs. Nutrient stimulants, such as fatty acid, increase cytoplasmic Ca2+ in a subset of EECs and promote a sustained mitochondrial Ca2+ and ATP increase. However, the nutrient-induced EEC mitochondrial activation is nearly abolished in GF zebrafish. Together, our study reveals that commensal microbiota are crucial in supporting EEC mitochondrial function and maturation.


Assuntos
Cálcio , Células Enteroendócrinas , Microbioma Gastrointestinal , Mitocôndrias , Peixe-Zebra , Animais , Peixe-Zebra/microbiologia , Células Enteroendócrinas/metabolismo , Mitocôndrias/metabolismo , Microbioma Gastrointestinal/fisiologia , Cálcio/metabolismo , Nutrientes/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Nature ; 627(8003): 347-357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374256

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Assuntos
Diabetes Mellitus Tipo 2 , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Adipócitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Células Endoteliais/metabolismo , Células Enteroendócrinas , Epigenômica , Predisposição Genética para Doença/genética , Ilhotas Pancreáticas/metabolismo , Herança Multifatorial/genética , Doença Arterial Periférica/complicações , Doença Arterial Periférica/genética , Análise de Célula Única
6.
Peptides ; 174: 171168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320643

RESUMO

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Receptores dos Hormônios Gastrointestinais , Humanos , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Glicemia/metabolismo , Duodeno/metabolismo , Peptídeos/uso terapêutico , Células Enteroendócrinas/metabolismo , Receptores Acoplados a Proteínas G , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
7.
EMBO Rep ; 25(1): 304-333, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177905

RESUMO

The gastrointestinal epithelium constitutes a chemosensory system for microbiota-derived metabolites such as short-chain fatty acids (SCFA). Here, we investigate the spatial distribution of Olfr78, one of the SCFA receptors, in the mouse intestine and study the transcriptome of colon enteroendocrine cells expressing Olfr78. The receptor is predominantly detected in the enterochromaffin and L subtypes in the proximal and distal colon, respectively. Using the Olfr78-GFP and VilCre/Olfr78flox transgenic mouse lines, we show that loss of epithelial Olfr78 results in impaired enterochromaffin cell differentiation, blocking cells in an undefined secretory lineage state. This is accompanied by a reduced defense response to bacteria in colon crypts and slight dysbiosis. Using organoid cultures, we further show that maintenance of enterochromaffin cells involves activation of the Olfr78 receptor via the SCFA ligand acetate. Taken together, our work provides evidence that Olfr78 contributes to colon homeostasis by promoting enterochromaffin cell differentiation.


Assuntos
Células Enterocromafins , Receptores Odorantes , Camundongos , Animais , Células Enterocromafins/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Diferenciação Celular , Células Enteroendócrinas/metabolismo , Colo
8.
Cells ; 13(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38201306

RESUMO

Enteroendocrine cells (EECs) constitute only a small proportion of Villin-1 (Vil1)-expressing intestinal epithelial cells (IECs) of the gastrointestinal tract; yet, in sum, they build the largest endocrine organ of the body, with each of them storing and releasing a distinct set of peptides for the control of feeding behavior, glucose metabolism, and gastrointestinal motility. Like all IEC types, EECs are continuously renewed from intestinal stem cells in the crypt base and terminally differentiate into mature subtypes while moving up the crypt-villus axis. Interestingly, EECs adjust their hormonal secretion according to their migration state as EECs receive altering differentiation signals along the crypt-villus axis and thus undergo functional readaptation. Cell-specific targeting of mature EEC subtypes by specific promoters is challenging because the expression of EEC-derived peptides and their precursors is not limited to EECs but are also found in other organs, such as the brain (e.g., Cck and Sst) as well as in the pancreas (e.g., Sst and Gcg). Here, we describe an intersectional genetic approach that enables cell type-specific targeting of functionally distinct EEC subtypes by combining a newly generated Dre-recombinase expressing mouse line (Vil1-2A-DD-Dre) with multiple existing Cre-recombinase mice and mouse strains with rox and loxP sites flanked stop cassettes for transgene expression. We found that transgene expression in triple-transgenic mice is highly specific in I but not D and L cells in the terminal villi of the small intestine. The targeting of EECs only in terminal villi is due to the integration of a defective 2A separating peptide that, combined with low EEC intrinsic Vil1 expression, restricts our Vil1-2A-DD-Dre mouse line and the intersectional genetic approach described here only applicable for the investigation of mature EEC subpopulations.


Assuntos
Duodeno , Intestino Delgado , Camundongos , Animais , Células Enteroendócrinas , Camundongos Transgênicos , Peptídeos
9.
Food Funct ; 15(3): 1237-1249, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38227487

RESUMO

Gut hormones are produced by enteroendocrine cells (EECs) found along the intestinal epithelium, and these cells play a crucial role in regulating intestinal function, nutrient absorption and food intake. A hydrolyzed casein diet has been reported to promote the secretion of gut hormones through the regulation of EEC development, but the underlying mechanism remains unclear. Therefore, this study was conducted to investigate whether the hydrolyzed casein diet can regulate EEC differentiation by employing mouse and organoid models. Mice were fed diets containing either casein (casein group) or hydrolyzed casein (hydrolyzed casein group) as the sole protein source. The hydrolyzed casein diet upregulated the expression of transcription factors, induced EEC differentiation, increased fasting serum ghrelin concentrations and promoted gastrointestinal (GI) motility in the duodenum compared to the casein diet. Interestingly, these differences could be abolished when there is addition of antibiotics to the drinking water, suggesting a significant role of gut microbiota in the hydrolyzed casein-mediated EEC function. Further investigation showed that the hydrolyzed casein diet led to reduced microbial diversity, especially the abundance of Akkermansia muciniphila (A. muciniphila) on the duodenal mucosa. In contrast, gavage with A. muciniphila impaired EEC differentiation through attenuated neurog3 transcription factor (Ngn3) expression, mediated through the promotion of Notch signaling. Moreover, pasteurized A. muciniphila showed similar effects to enter organoids in vitro. Overall, we found that a hydrolyzed casein diet reduced the abundance of A. muciniphila and promoted Ngn3 controlling EEC differentiation and this pathway is associated with increased GI motility in mice. The findings provide new insights into the role of hydrolyzed casein in gut transit and guidelines for using hydrolyzed casein in safe formula milk.


Assuntos
Caseínas , Hormônios Gastrointestinais , Camundongos , Animais , Caseínas/metabolismo , Diferenciação Celular , Células Enteroendócrinas , Dieta , Fatores de Transcrição/metabolismo , Hormônios Gastrointestinais/metabolismo , Motilidade Gastrointestinal
10.
Gastroenterology ; 166(3): 437-449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995867

RESUMO

BACKGROUND & AIMS: RET tyrosine kinase is necessary for enteric nervous system development. Loss-of-function RET mutations cause Hirschsprung disease (HSCR), in which infants are born with aganglionic bowel. Despite surgical correction, patients with HSCR often experience chronic defecatory dysfunction and enterocolitis, suggesting that RET is important after development. To test this hypothesis, we determined the location of postnatal RET and its significance in gastrointestinal (GI) motility. METHODS: RetCFP/+ mice and human transcriptional profiling data were studied to identify the enteric neuronal and epithelial cells that express RET. To determine whether RET regulates gut motility in vivo, genetic, and pharmacologic approaches were used to disrupt RET in all RET-expressing cells, a subset of enteric neurons, or intestinal epithelial cells. RESULTS: Distinct subsets of enteric neurons and enteroendocrine cells expressed RET in the adult intestine. RET disruption in the epithelium, rather than in enteric neurons, slowed GI motility selectively in male mice. RET kinase inhibition phenocopied this effect. Most RET+ epithelial cells were either enterochromaffin cells that release serotonin or L-cells that release peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), both of which can alter motility. RET kinase inhibition exaggerated PYY and GLP-1 release in a nutrient-dependent manner without altering serotonin secretion in mice and human organoids. PYY receptor blockade rescued dysmotility in mice lacking epithelial RET. CONCLUSIONS: RET signaling normally limits nutrient-dependent peptide release from L-cells and this activity is necessary for normal intestinal motility in male mice. These effects could contribute to dysmotility in HSCR, which predominantly affects males, and uncovers a mechanism that could be targeted to treat post-prandial GI dysfunction.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Lactente , Humanos , Masculino , Camundongos , Animais , Peptídeo YY , Serotonina , Doença de Hirschsprung/genética , Células Enteroendócrinas , Intestino Delgado , Peptídeo 1 Semelhante ao Glucagon , Proteínas Proto-Oncogênicas c-ret/genética
11.
J Neurochem ; 167(6): 719-732, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037432

RESUMO

While visceral pain is commonly associated with disorders of the gut-brain axis, underlying mechanisms are not fully understood. Dorsal root ganglion (DRG) neurons innervate visceral structures and undergo hypersensitization in inflammatory models. The characterization of peripheral DRG neuron terminals is an active area of research, but recent work suggests that they communicate with enteroendocrine cells (EECs) in the gut. EECs sense stimuli in the intestinal lumen and communicate information to the brain through hormonal and electrical signaling. In that context, EECs are a target for developing therapeutics to treat visceral pain. Linaclotide is an FDA-approved treatment for chronic constipation that activates the intestinal membrane receptor guanylyl cyclase C (GUCY2C). Clinical trials revealed that linaclotide relieves both constipation and visceral pain. We recently demonstrated that the analgesic effect of linaclotide reflects the overexpression of GUCY2C on neuropod cells, a specialized subtype of EECs. While this brings some clarity to the relationship between linaclotide and visceral analgesia, questions remain about the intracellular signaling mechanisms and neurotransmitters mediating this communication. In this Fundamental Neurochemistry Review, we discuss what is currently known about visceral nociceptors, enteroendocrine cells, and the gut-brain axis, and ongoing areas of research regarding that axis and visceral pain.


Assuntos
Neuroquímica , Dor Visceral , Humanos , Constipação Intestinal/tratamento farmacológico , Transdução de Sinais , Células Enteroendócrinas , Receptores de Enterotoxina
12.
Diabetes Metab Syndr ; 17(12): 102907, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980723

RESUMO

AIMS: Glucagon-like peptide 1 (GLP-1) is produced by the L subtype of enteroendocrine cells (EECs). Patients with type 2 diabetes (T2D) exhibit reduced incretin effect, but the pathophysiology and functional change of the L-cells remain unclear. Deciphering the mechanisms of the biological changes in L-cells under T2D conditions may assist in the research of gut-based strategies for T2D therapy. METHODS: We investigated the fasting serum GLP-1 levels and the distribution of colonic L-cells in young and aged participants with and without T2D. Additionally, we established an aged male T2D Wistar rat model subjected to a long-term high-fat and high-fructose (HFHF) diet. Histological investigations and single-cell RNA sequencing (scRNA-seq) analyses were performed to explore the mechanisms underlying functional changes in the colonic EECs. RESULTS: We observed a decline in circulating GLP-1 levels and a reduced number of colonic L-cells in elderly patients with T2D. The mechanisms underlying impaired L-cell formation and disturbed GLP-1 production were revealed using aged T2D rats induced by a long-term HFHF diet. The scRNA-seq results showed that the transcription factors that regulate L-cell commitment, such as Foxa1, were downregulated, and the expression of genes that participate in encoding GLP-1, GLP-1 posttranslational processing, hormone secretion, and nutrient sensing was disturbed. CONCLUSIONS: Taken together, the reduced L-cell lineage commitment and disturbed L-cell functions might be the major cause of the reduced GLP-1 production in aged populations with T2D. Our study provides new insights for identifying novel targets in colonic L-cells for improving endogenous GLP-1 production.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Humanos , Camundongos , Idoso , Masculino , Ratos , Animais , Células L , Ratos Wistar , Células Enteroendócrinas/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/farmacologia
13.
Cell Rep ; 42(11): 113370, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37924517

RESUMO

Most epithelial tissues are maintained by stem cells that produce the different cell lineages required for proper tissue function. Constant communication between different cell types ensures precise regulation of stem cell behavior and cell fate decisions. These cell-cell interactions are often disrupted during tumorigenesis, but mechanisms by which they are co-opted to support tumor growth in different genetic contexts are poorly understood. Here, we introduce PromoterSwitch, a genetic platform we established to generate large, transformed clones derived from individual adult Drosophila intestinal stem/progenitor cells. We show that cancer-driving genetic alterations representing common colon tumor genome landscapes disrupt cell fate decisions within transformed tissue and result in the emergence of abnormal cell fates. We also show that transformed enteroendocrine cells, a differentiated, hormone-secreting cell lineage, support tumor growth by regulating intestinal stem cell proliferation through multiple genotype-dependent mechanisms, which represent potential vulnerabilities that could be exploited for therapy.


Assuntos
Proteínas de Drosophila , Neoplasias , Animais , Drosophila/metabolismo , Transdução de Sinais , Intestinos , Diferenciação Celular/fisiologia , Células Enteroendócrinas/metabolismo , Linhagem da Célula , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias/metabolismo
14.
Sci Rep ; 13(1): 16902, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803037

RESUMO

Patients with spinal cord injury (SCI) suffer from major bowel dysfunction, whose exact pathophysiology, particularly the involvement of the enteric nervous system or epithelial dysfunction is poorly understood. Herein, we aimed to characterize the mucosal biopsies of the right and left colon in SCI patients vs controls (CT): (1) remodeling of key enteric neurotransmitters, (2) remodeling of enteroendocrine cells, and (3) mucosal inflammation compared to those in controls. In SCI, mucosal ACh concentration was lower in the right colon as compared to CT, but no change was observed in the left colon, and AChE expression was lower in both the right and left colons than in CT. While the VIP concentration was similar in the right and left colons, VIP mRNA expression was increased in the right colon and decreased in the left colon, in SCI patients as compared to CT. Interestingly, 5-HT concentration was reduced in the left colon but not in the right colon in SCI patients. Moreover, in SCI patients, as compared to CT, SERT mRNA expression was selectively increased in the left colon while TPH1 mRNA expression was increased in the right and left colons. Although mucosal TNFα and IL-1ß mRNA expression did not significantly differ between SCI and CT groups, we identified a significant positive correlation between TNFα and IL-1ß mRNA expression and left colon transit time in the SCI group. In conclusion, region-specific changes occur in the enteric neurotransmitter, serotonergic, and inflammatory pathways in the colon of SCI patients. The significant correlations between these pathways and clinical parameters in the left colon further set a scientific basis for designing therapeutic targets to improve colonic motor dysfunction in patients.Biobank information: Spinal cord injury patients: PHRC ConstiCAPE-clinical trial NCT02566746. Controls: Anosain-clinical trial NCT03054415 and biobank of the "Institut des Maladies de l'Appareil Digestif (IMAD)" registered under number DC-2008-402.


Assuntos
Sistema Nervoso Entérico , Traumatismos da Medula Espinal , Humanos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Colo/patologia , Sistema Nervoso Entérico/metabolismo , Células Enteroendócrinas , Neurotransmissores/metabolismo , RNA Mensageiro/metabolismo , Medula Espinal
15.
Science ; 382(6669): 451-458, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883554

RESUMO

Enteroendocrine cells (EECs) are hormone-producing cells residing in the epithelium of stomach, small intestine (SI), and colon. EECs regulate aspects of metabolic activity, including insulin levels, satiety, gastrointestinal secretion, and motility. The generation of different EEC lineages is not completely understood. In this work, we report a CRISPR knockout screen of the entire repertoire of transcription factors (TFs) in adult human SI organoids to identify dominant TFs controlling EEC differentiation. We discovered ZNF800 as a master repressor for endocrine lineage commitment, which particularly restricts enterochromaffin cell differentiation by directly controlling an endocrine TF network centered on PAX4. Thus, organoid models allow unbiased functional CRISPR screens for genes that program cell fate.


Assuntos
Sistemas CRISPR-Cas , Linhagem da Célula , Células Enteroendócrinas , Regulação da Expressão Gênica , Proteínas Repressoras , Dedos de Zinco , Humanos , Diferenciação Celular/genética , Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Organoides , Adulto , Linhagem da Célula/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
16.
Biosci Biotechnol Biochem ; 87(12): 1505-1513, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37667511

RESUMO

This study investigated the glucagon-like peptide-1 (GLP-1)-releasing activity of an aqueous extract (ZeinS) from corn zein protein and aimed to identify the active compounds responsible for this activity. Glucagon-like peptide-1-releasing activity was evaluated using a murine enteroendocrine cell line (GLUTag). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed on purified fractions of ZeinS to identify active molecules. ZeinS stimulated more GLP-1 secretion from GLUTag cells compared to zein hydrolysate. Fractions displaying biological activity were determined by solid-phase extraction and high-performance liquid chromatography (HPLC) fractionation. Subsequent LC-MS/MS analysis identified several amino acids in the active fractions of ZeinS. In particular, γ-aminobutyric acid (GABA) exhibited significant GLP-1-releasing activity both alone and synergistically with L-phenylalanine (Phe). Moreover, ZeinS-induced GLP-1 secretion was attenuated by antagonists for the GABA receptor and calcium sensing receptor. These results demonstrate that GABA and Phe identified in ZeinS synergistically stimulate GLP-1 secretion in enteroendocrine cells.


Assuntos
Células Enteroendócrinas , Peptídeo 1 Semelhante ao Glucagon , Zeína , Animais , Camundongos , Cromatografia Líquida , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fenilalanina/metabolismo , Proteínas/metabolismo , Espectrometria de Massas em Tandem , Zea mays/química , Zeína/metabolismo
17.
Dev Cell ; 58(18): 1764-1781.e10, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37689060

RESUMO

Post-developmental organ resizing improves organismal fitness under constantly changing nutrient environments. Although stem cell abundance is a fundamental determinant of adaptive resizing, our understanding of its underlying mechanisms remains primarily limited to the regulation of stem cell division. Here, we demonstrate that nutrient fluctuation induces dedifferentiation in the Drosophila adult midgut to drive adaptive intestinal growth. From lineage tracing and single-cell RNA sequencing, we identify a subpopulation of enteroendocrine (EE) cells that convert into functional intestinal stem cells (ISCs) in response to dietary glucose and amino acids by activating the JAK-STAT pathway. Genetic ablation of EE-derived ISCs severely impairs ISC expansion and midgut growth despite the retention of resident ISCs, and in silico modeling further indicates that EE dedifferentiation enables an efficient increase in the midgut cell number while maintaining epithelial cell composition. Our findings identify a physiologically induced dedifferentiation that ensures ISC expansion during adaptive organ growth in concert with nutrient conditions.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Janus Quinases/metabolismo , Diferenciação Celular/fisiologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , Células Enteroendócrinas , Intestinos
18.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G458-G470, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37698169

RESUMO

Notch signaling regulates gastrointestinal stem cell proliferation and differentiation yet Notch-regulated transcriptional effectors of gastric epithelial cell differentiation are poorly understood. Here we tested the role of the bHLH transcription factor Achaete-Scute homolog 1 (ASCL1) in gastric epithelial cell differentiation, and its regulation by Notch. Newborn Ascl1 null mice showed a loss of expression of markers of neurogenin-3-dependent enteroendocrine cells, with normal expression of enterochromaffin-like cells, mucous cells, chief cells, and parietal cells. In adult mice, Ascl1 gene expression was observed in the stomach, but not the intestine, with higher expression in antral than corpus epithelium. Lineage tracing in Ascl1-CreERT2; Rosa26-LSL-tdTomato mice revealed single, scattered ASCL1+ cells in the gastric epithelium, demonstrating expression in antral gastrin- and serotonin-producing endocrine cells. ASCL1-expressing endocrine cells persisted for several weeks posttamoxifen labeling with a half-life of approximately 2 months. Lineage tracing in Gastrin-CreERT2 mice demonstrated a similar lifespan for gastrin-producing cells, confirming that gastric endocrine cells are long-lived. Finally, treatment of Ascl1-CreERT2; Rosa26-LSL-tdTomato mice with the pan-Notch inhibitor dibenzazepine increased the number of lineage-labeled cells in the gastric antrum, suggesting that Notch signaling normally inhibits Ascl1 expression. Notch regulation of Ascl1 was also demonstrated in a genetic mouse model of Notch activation, as well as Notch-manipulated antral organoid cultures, thus suggesting that ASCL1 is a key downstream Notch pathway effector promoting endocrine cell differentiation in the gastric epithelium.NEW & NOTEWORTHY Although Notch signaling is known to regulate cellular differentiation in the stomach, downstream effectors are poorly described. Here we demonstrate that the bHLH transcription factor ASCL1 is expressed in endocrine cells in the stomach and is required for formation of neurogenin-3-dependent enteroendocrine cells but not enterochromaffin-like cells. We also demonstrate that Ascl1 expression is inhibited by Notch signaling, suggesting that ASCL1 is a Notch-regulated transcriptional effector directing enteroendocrine cell fate in the mouse stomach.


Assuntos
Gastrinas , Estômago , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Células Enteroendócrinas/metabolismo , Camundongos Knockout
19.
Front Endocrinol (Lausanne) ; 14: 1169624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560311

RESUMO

The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Humanos , Indóis , Ácidos e Sais Biliares/metabolismo , Ecossistema , Células Enteroendócrinas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo , Doenças Metabólicas/terapia , Doenças Metabólicas/metabolismo
20.
Inflamm Bowel Dis ; 29(12): 1981-1989, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542525

RESUMO

Inflammatory bowel disease, whose major forms are Crohn's disease and ulcerative colitis, is characterized by chronic inflammation of the gut due to the loss of tolerance toward antigens normally contained in the gut lumen. G protein-coupled receptor (GPR) 120 has gained considerable attention as a potential therapeutic target for metabolic disorders due to its implication in the production of the incretin hormone glucagon-like peptide 1 and the secretion of cholecystokinin. Recent studies have also highlighted the role of GPR120 in regulating immune system activity and inflammation. GPR120, expressed by intestinal epithelial cells, proinflammatory macrophages, enteroendocrine L cells, and CD4+ T cells, suppresses proinflammatory and enhances anti-inflammatory cytokine production, suggesting that GPR120 might have a pivotal role in intestinal inflammation and represent a possible therapeutic target in inflammatory bowel disease. This narrative review aims at summarizing the role of GPR120 in the maintenance of intestinal homeostasis through the analysis of the most recent studies.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inflamação/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Anti-Inflamatórios , Células Enteroendócrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...