Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.916
Filtrar
1.
Nat Commun ; 15(1): 4673, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824124

RESUMO

Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.


Assuntos
Proliferação de Células , Células-Tronco Hematopoéticas , Inibidor de NF-kappaB alfa , Transdução de Sinais , Tretinoína , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Tretinoína/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/genética , Camundongos , Desenvolvimento Embrionário/genética , Camundongos Knockout , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica no Desenvolvimento , Feminino
2.
Stem Cell Res Ther ; 15(1): 164, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853275

RESUMO

BACKGROUND: Transplantation of CD34+ hematopoietic stem and progenitor cells (HSPC) into immunodeficient mice is an established method to generate humanized mice harbouring a human immune system. Different sources and methods for CD34+ isolation have been employed by various research groups, resulting in customized models that are difficult to compare. A more detailed characterization of CD34+ isolates is needed for a better understanding of engraftable hematopoietic and potentially non-hematopoietic cells. Here we have performed a direct comparison of CD34+ isolated from cord blood (CB-CD34+) or fetal liver (FL-CD34+ and FL-CD34+CD14-) and their engraftment into immunocompromised NOD/Shi-scid Il2rgnull (NOG) mice. METHODS: NOG mice were transplanted with either CB-CD34+, FL-CD34+ or FL-CD34+CD14- to generate CB-NOG, FL-NOG and FL-CD14--NOG, respectively. After 15-20 weeks, the mice were sacrificed and human immune cell reconstitution was assessed in blood and several organs. Liver sections were pathologically assessed upon Haematoxylin and Eosin staining. To assess the capability of allogenic tumor rejection in CB- vs. FL-reconstituted mice, animals were subcutaneously engrafted with an HLA-mismatched melanoma cell line. Tumor growth was assessed by calliper measurements and a Luminex-based assay was used to compare the cytokine/chemokine profiles. RESULTS: We show that CB-CD34+ are a uniform population of HSPC that reconstitute NOG mice more rapidly than FL-CD34+ due to faster B cell development. However, upon long-term engraftment, FL-NOG display increased numbers of neutrophils, dendritic cells and macrophages in multiple tissues. In addition to HSPC, FL-CD34+ isolates contain non-hematopoietic CD14+ endothelial cells that enhance the engraftment of the human immune system in FL-NOG mice. We demonstrate that these CD14+CD34+ cells are capable of reconstituting Factor VIII-producing liver sinusoidal endothelial cells (LSEC) in FL-NOG. However, CD14+CD34+ also contribute to hepatic sinusoidal dilatation and immune cell infiltration, which may culminate in a graft-versus-host disease (GVHD) pathology upon long-term engraftment. Finally, using an HLA-A mismatched CDX melanoma model, we show that FL-NOG, but not CB-NOG, can mount a graft-versus-tumor (GVT) response resulting in tumor rejection. CONCLUSION: Our results highlight important phenotypical and functional differences between CB- and FL-NOG and reveal FL-NOG as a potential model to study hepatic sinusoidal dilatation and mechanisms of GVT.


Assuntos
Antígenos CD34 , Fígado , Animais , Humanos , Antígenos CD34/metabolismo , Camundongos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos NOD , Transplante de Células-Tronco Hematopoéticas , Camundongos SCID , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/transplante , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Sangue Fetal/citologia , Melanoma/patologia , Melanoma/imunologia
3.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857395

RESUMO

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Assuntos
Diferenciação Celular , Fagócitos , Humanos , Fagócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia/genética , Leucemia/patologia , Leucemia/metabolismo , Engenharia de Proteínas/métodos , Fagocitose
4.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 199-205, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836658

RESUMO

The present research aimed to conduct a comprehensive critical analysis of existing literature, focusing on the differentiation of myeloid cells from hematopoietic stem cells within the context of immunological tolerance during pregnancy. A comprehensive systematic review was conducted by searching databases including PubMed, Scopus Biomedicine, EBSCOhost, ScienceDirect, Embase, Cochrane Library, and Web of Science. The focus was on the role of myeloid differentiation from hematopoietic stem cells in modulating immune tolerance, particularly during pregnancy and in certain disease states where they act to suppress the immune response. The quality of the evidence gathered was assessed using the GRADE rating system. Our analysis maintains objectivity and independence from the outcomes presented. The current systematic review offers a synthesis of existing research on the transformation of hematopoietic stem cells into fibroblasts across different tissue types. A thorough search of databases such as PubMed, EBSCOhost, Embase, ScienceDirect, Cochrane Library, and Web of Science was performed in conjunction with a specialist in medical information to identify original research on the derivation of fibroblasts following hematopoietic stem cell transplantation. This search yielded a total of 159 studies, of which 10 met the criteria for inclusion in this review. Reflecting on the constraints of this preliminary review, further in-depth and scientific investigations are warranted to comprehensively assess the impact of varied treatments, with a recommendation for clinicians to proceed with increased circumspection. The myeloid differentiation pathway of hematopoietic stem cells is pivotal in modulating the immune environment during pregnancy, supporting the sustenance of a healthy gestational period. Future research in this domain is expected to advance our understanding of the immunological processes occurring at the maternal-fetal boundary.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas , Tolerância Imunológica , Feminino , Humanos , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/citologia , Gravidez , Diferenciação Celular/imunologia , Células Mieloides/imunologia , Células Mieloides/citologia , Transplante de Células-Tronco Hematopoéticas , Fibroblastos/imunologia , Fibroblastos/citologia
5.
J Transl Med ; 22(1): 526, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822352

RESUMO

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Assuntos
Antígenos CD34 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Neutrófilos/citologia , Antígenos CD34/metabolismo , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Edição de Genes , Degranulação Celular , Células-Tronco/metabolismo , Células-Tronco/citologia , Citocinas/metabolismo , Fenótipo
6.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830768

RESUMO

Hematopoietic stem cells and multipotential progenitors emerge in multiple, overlapping waves of fetal development. Some of these populations seed the bone marrow and sustain adult B- and T-cell development long-term after birth. However, others are present transiently, but whether they are vestigial or generate B and T cells that contribute to the adult immune system is not well understood. We now report that transient fetal progenitors distinguished by expression of low levels of the PU.1 transcription factor generated activated and memory T and B cells that colonized and were maintained in secondary lymphoid tissues. These included the small and large intestines, where they may contribute to the maintenance of gut homeostasis through at least middle age. At least some of the activated/memory cells may have been the progeny of B-1 and marginal zone B cells, as transient PU.1low fetal progenitors efficiently generated those populations. Taken together, our data demonstrate the potential of B- and T-cell progeny of transient PU.1low fetal progenitors to make an early and long-term contribution to the adult immune system.


Assuntos
Linfócitos B , Proteínas Proto-Oncogênicas , Linfócitos T , Transativadores , Transativadores/metabolismo , Transativadores/genética , Animais , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Linfócitos B/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/citologia , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Diferenciação Celular/imunologia , Feminino , Feto/citologia , Células-Tronco Fetais/metabolismo , Células-Tronco Fetais/citologia
7.
Nature ; 630(8016): 412-420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839950

RESUMO

The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.


Assuntos
Endocitose , Sangue Fetal , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Sangue Fetal/citologia , Camundongos , Animais , Análise de Célula Única , Endossomos/metabolismo , Transdução de Sinais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Autorrenovação Celular , Mitocôndrias/metabolismo , Feminino , Transplante de Células-Tronco Hematopoéticas , Fígado/citologia , Fígado/metabolismo , Fígado/embriologia , Masculino , Técnicas de Silenciamento de Genes
8.
Nat Commun ; 15(1): 4965, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862518

RESUMO

Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing ß-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease.


Assuntos
Anemia Falciforme , Edição de Genes , Terapia Genética , Células-Tronco Hematopoéticas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Anemia Falciforme/terapia , Anemia Falciforme/genética , Edição de Genes/métodos , Animais , Células-Tronco Hematopoéticas/metabolismo , Humanos , Feminino , Camundongos , Terapia Genética/métodos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Transplante de Células-Tronco Hematopoéticas , Globinas beta/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Mutação , Talassemia beta/terapia , Talassemia beta/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes
9.
Elife ; 122024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829685

RESUMO

Precision gene editing in primary hematopoietic stem and progenitor cells (HSPCs) would facilitate both curative treatments for monogenic disorders as well as disease modelling. Precise efficiencies even with the CRISPR/Cas system, however, remain limited. Through an optimization of guide RNA delivery, donor design, and additives, we have now obtained mean precise editing efficiencies >90% on primary cord blood HSCPs with minimal toxicity and without observed off-target editing. The main protocol modifications needed to achieve such high efficiencies were the addition of the DNA-PK inhibitor AZD7648, and the inclusion of spacer-breaking silent mutations in the donor in addition to mutations disrupting the PAM sequence. Critically, editing was even across the progenitor hierarchy, did not substantially distort the hierarchy or affect lineage outputs in colony-forming cell assays or the frequency of high self-renewal potential long-term culture initiating cells. As modelling of many diseases requires heterozygosity, we also demonstrated that the overall editing and zygosity can be tuned by adding in defined mixtures of mutant and wild-type donors. With these optimizations, editing at near-perfect efficiency can now be accomplished directly in human HSPCs. This will open new avenues in both therapeutic strategies and disease modelling.


Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas/genética , Sangue Fetal/citologia , Células Cultivadas
12.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874393

RESUMO

Hematopoietic stem cells (HSCs) continuously replenish mature blood cells with limited lifespans. To maintain the HSC compartment while ensuring output of differentiated cells, HSCs undergo asymmetric cell division (ACD), generating two daughter cells with different fates: one will proliferate and give rise to the differentiated cells' progeny, and one will return to quiescence to maintain the HSC compartment. A balance between MEK/ERK and mTORC1 pathways is needed to ensure HSC homeostasis. Here, we show that activation of these pathways is spatially segregated in premitotic HSCs and unequally inherited during ACD. A combination of genetic and chemical perturbations shows that an ERK-dependent mechanism determines the balance between pathways affecting polarity, proliferation, and metabolism, and thus determines the frequency of asymmetrically dividing HSCs. Our data identify druggable targets that modulate HSC fate determination at the level of asymmetric division.


Assuntos
Divisão Celular Assimétrica , Células-Tronco Hematopoéticas , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Diferenciação Celular , Transdução de Sinais , Proliferação de Células , Linhagem da Célula , Camundongos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Polaridade Celular
13.
Stem Cell Res Ther ; 15(1): 167, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872206

RESUMO

BACKGROUND: Stem cell therapy is a promising alternative for inflammatory diseases and tissue injury treatment. Exogenous delivery of mesenchymal stem cells is associated with instant blood-mediated inflammatory reactions, mechanical stress during administration, and replicative senescence or change in phenotype during long-term culture in vitro. In this study, we aimed to mobilize endogenous hematopoietic stem cells (HSCs) using AMD-3100 and provide local immune suppression using FK506, an immunosuppressive drug, for the treatment of inflammatory bowel diseases. METHODS: Reactive oxygen species (ROS)-responsive FK506-loaded thioketal microspheres were prepared by emulsification solvent-evaporation method. Thioketal vehicle based FK506 microspheres and AMD3100 were co-administered into male C57BL6/J mice with dextran sulfate sodium (DSS) induced colitis. The effect of FK506-loaded thioketal microspheres in colitis mice were evaluated using disease severity index, myeloperoxidase activity, histology, flow cytometry, and gene expression by qRT-PCR. RESULTS: The delivery of AMD-3100 enhanced mobilization of HSCs from the bone marrow into the inflamed colon of mice. Furthermore, targeted oral delivery of FK506 in an inflamed colon inhibited the immune activation in the colon. In the DSS-induced colitis mouse model, the combination of AMD-3100 and FK506-loaded thioketal microspheres ameliorated the disease, decreased immune cell infiltration and activation, and improved body weight, colon length, and epithelial healing process. CONCLUSION: This study shows that the significant increase in the percentage of mobilized hematopoietic stem cells in the combination therapy of AMD and oral FK506 microspheres may contribute to a synergistic therapeutic effect. Thus, low-dose local delivery of FK506 combined with AMD3100 could be a promising alternative treatment for inflammatory bowel diseases.


Assuntos
Benzilaminas , Colite , Ciclamos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Tacrolimo , Animais , Colite/induzido quimicamente , Colite/terapia , Colite/tratamento farmacológico , Colite/patologia , Camundongos , Masculino , Ciclamos/farmacologia , Ciclamos/uso terapêutico , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Modelos Animais de Doenças , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Microesferas , Espécies Reativas de Oxigênio/metabolismo
14.
Nat Commun ; 15(1): 4325, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773071

RESUMO

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Epigênese Genética , Células-Tronco Hematopoéticas , Mutação , Proteínas Proto-Oncogênicas , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Humanos , Hematopoese/genética , Camundongos , Diferenciação Celular/genética
15.
Nat Immunol ; 25(6): 1007-1019, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816617

RESUMO

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.


Assuntos
Plaquetas , Diferenciação Celular , Células-Tronco Hematopoéticas , Megacariócitos , Plaquetas/imunologia , Plaquetas/metabolismo , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Diferenciação Celular/imunologia , Megacariócitos/citologia , Linhagem da Célula , Camundongos Endogâmicos C57BL , Hematopoese , Trombopoese , Camundongos Knockout , Humanos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/imunologia
16.
Cell ; 187(11): 2817-2837.e31, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38701783

RESUMO

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.


Assuntos
Células Matadoras Naturais , Proteínas de Membrana , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos B/metabolismo , Linfócitos B/citologia , Medula Óssea/metabolismo , Linhagem da Célula , Células Dendríticas/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Células de Langerhans/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Monócitos/metabolismo , Pele/metabolismo , Camundongos Endogâmicos C57BL
17.
Commun Biol ; 7(1): 615, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777862

RESUMO

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Assuntos
Adenosina Desaminase , Hematopoese , Células-Tronco Hematopoéticas , Inflamação , Peixe-Zebra , Animais , Peixe-Zebra/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adenosina Desaminase/deficiência , Células-Tronco Hematopoéticas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Hematopoese/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Humanos , Transdução de Sinais , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
18.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802246

RESUMO

A continuous supply of energy is an essential prerequisite for survival and represents the highest priority for the cell. We hypothesize that cell differentiation is a process of optimization of energy flow in a changing environment through phenotypic adaptation. The mechanistic basis of this hypothesis is provided by the established link between core energy metabolism and epigenetic covalent modifications of chromatin. This theory predicts that early metabolic perturbations impact subsequent differentiation. To test this, we induced transient metabolic perturbations in undifferentiated human hematopoietic cells using pharmacological inhibitors targeting key metabolic reactions. We recorded changes in chromatin structure and gene expression, as well as phenotypic alterations by single-cell ATAC and RNA sequencing, time-lapse microscopy, and flow cytometry. Our observations suggest that these metabolic perturbations are shortly followed by alterations in chromatin structure, leading to changes in gene expression. We also show that these transient fluctuations alter the differentiation potential of the cells.


Assuntos
Diferenciação Celular , Cromatina , Metabolismo Energético , Células-Tronco Hematopoéticas , Humanos , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Cromatina/metabolismo , Cromatina/genética , Epigênese Genética , Adaptação Fisiológica , Análise de Célula Única/métodos
19.
Front Immunol ; 15: 1395018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799434

RESUMO

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods: The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results: Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion: The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.


Assuntos
Coinfecção , Modelos Animais de Doenças , Infecções por HIV , Mycobacterium tuberculosis , Tuberculose , Animais , Coinfecção/imunologia , Coinfecção/microbiologia , Infecções por HIV/imunologia , Infecções por HIV/complicações , Humanos , Camundongos , Tuberculose/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T CD4-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Carga Viral , HIV-1/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Células-Tronco Hematopoéticas/imunologia , Camundongos SCID
20.
Nature ; 629(8014): 1149-1157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720070

RESUMO

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Assuntos
Cromatina , Epigênese Genética , Genótipo , Mutação , Análise de Célula Única , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética/genética , Epigenoma/genética , Genoma Mitocondrial/genética , Técnicas de Genotipagem , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Inflamação/genética , Inflamação/patologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Megacariócitos/metabolismo , Megacariócitos/patologia , Proteínas de Membrana/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , RNA/genética , Células Clonais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...