Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.648
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(19): e9875, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39049483

RESUMO

RATIONALE: 5α-Androstane-3α,17ß-diol (3α,5α-Adiol) is a testosterone-derived neurosteroid and has anxiolytic and analgesic effects via γ-aminobutyric acid type A receptors as with the progesterone-derived neurosteroid, allopregnanolone (AP). Although the psychotropic drug-evoked changes in the brain AP concentration have been intensively studied, those in the brain 3α,5α-Adiol concentration remain poorly understood. One of the causes for this is the limited availability of a validated method for quantifying the brain 3α,5α-Adiol with a sufficient sensitivity and specificity, which is described in this study. METHODS: To enhance the detectability of 3α,5α-Adiol by electrospray ionization-tandem mass spectrometry (ESI-MS/MS), derivatization with 4-dimethylaminobenzoyl azide was employed. The brain sample was purified by solid-phase extraction and the recovered 3α,5α-Adiol and the deuterated internal standard were derivatized, then measured by liquid chromatography (LC)/ESI-MS/MS with selected reaction monitoring. RESULTS: The derivatized 3α,5α-Adiol, i.e., the bis[(4-dimethylamino)phenyl carbamate] derivative, provided the intense doubly-protonated molecule as the precursor ion, then the specific product ion containing the 3α,5α-Adiol-skeleton by collision-induced dissociation. The detectability of 3α,5α-Adiol was eventually increased 1000-fold by derivatization. Separation of the derivatized 3α,5α-Adiol from its stereoisomers and interfering brain components was achieved using a SunShell Biphenyl column with an isopropyl alcohol-containing mobile phase. A good linearity in the sufficient concentration range, acceptable precision and accuracy, and negligible matrix effect were demonstrated by the validation tests. The animal (rat) study using this method revealed that the brain 3α,5α-Adiol levels were unaffected by the administration of fluoxetine (FLX) and clozapine (CLZ), in contrast to the significant increase of the AP levels. CONCLUSION: An LC/ESI-MS/MS method capable of quantifying 3α,5α-Adiol in the rat brain using a 20-mg tissue was developed and validated. The brain levels of 3α,5α-Adiol had an entirely different behavior from those of AP due to FLX and CLZ administration.


Assuntos
Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos , Masculino , Química Encefálica , Cromatografia Líquida/métodos , Limite de Detecção , Androstano-3,17-diol/química , Androstano-3,17-diol/análise , Encéfalo/metabolismo , Reprodutibilidade dos Testes , Carbamatos/química , Carbamatos/análise , Sensibilidade e Especificidade , Cromatografia Líquida de Alta Pressão/métodos
2.
Anal Bioanal Chem ; 416(18): 4207-4218, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822822

RESUMO

Mass spectrometry imaging (MSI) platforms such as infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) are advantageous for a variety of applications, including elucidating the localization of neurotransmitters (NTs) and related molecules with respect to ion abundance across a sample without the need for derivatization or organic matrix application. While IR-MALDESI-MSI conventionally uses a thin exogenous ice matrix to improve signal abundance, it has been previously determined that sucrose embedding without the ice matrix improves detection of lipid species in striatal, coronal mouse brain sections. This work considers components of this workflow to determine the optimal sample preparation and matrix to enhance the detection of NTs and their related metabolites in coronal sections from the striatal region of the mouse brain. The discoveries herein will enable more comprehensive follow-on studies for the investigation of NTs to enrich biological pathways and interpretation related to neurodegenerative diseases and ischemic stroke.


Assuntos
Encéfalo , Neurotransmissores , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Neurotransmissores/análise , Neurotransmissores/metabolismo , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Química Encefálica
3.
Artigo em Inglês | MEDLINE | ID: mdl-38880056

RESUMO

Reactive aldehydes are a class of electrophilic low molecular weight compounds that play an essential role in physiological function and lipid peroxidation. These molecules are implicated in many diseases, especially cardiovascular and neurodegenerative diseases, and are potential endogenous markers of lipid peroxidation. However, there are limited options to accurately quantify multiple reactive aldehydes in brain tissue. This study developed and validated a 3-nitrophenylhydrazine derivatization-based LC-MS/MS method to quantify four reactive aldehydes: malondialdehyde, acrolein, 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal. Method development involved comparing the sensitivity of detection between widely used derivatization reagents: 2,4-dinitrophenylhydrazine and 3-nitrophenylhydrazine. Our data showed that 3-nitrophenylhydrazine resulted in greater sensitivity. Additional method development included evaluation of hydrolysis sample pretreatment, selection of protein precipitation reagent, and optimization of derivatization conditions. The optimized conditions included no hydrolysis and use of 20 % trichloroacetic acid as the protein precipitation reagent. The optimized derivatization condition was 25 mM 3-nitrophenylhydrazine reacted at 20 °C for 30 min. The chromatographic conditions were optimized to reduce matrix effects, ion suppression, and efficient analysis time (<7-minute analytical run). The four aldehyde species were accurately quantified in brain tissue using stable-labeled internal standards. Application of this assay to a traumatic brain injury mouse model revealed significant accumulation of acrolein, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal at 28 days post injury. Overall, a validated method was developed to rapidly quantify the most prominent reactive aldehydes associated with lipid peroxidation during injury progression following acute brain trauma.


Assuntos
Aldeídos , Química Encefálica , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Aldeídos/análise , Aldeídos/química , Camundongos , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Masculino , Modelos Lineares , Encéfalo/metabolismo , Limite de Detecção , Camundongos Endogâmicos C57BL
4.
Forensic Sci Int ; 361: 112117, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908068

RESUMO

Risperidone (Ris) is a second-generation antipsychotic that belongs to the chemical class of benzisoxazole derivatives. 9-Hydroxy (9OH-) Ris is well known among the six reported metabolites of Ris and had been examined using not only blood but also other matrices, but the other five metabolites reported such as benzisoxazole ring-cleaved Ris (c-Ris) and c-9OH-Ris had been detected only in blood, urine and feces. In the present work, large peaks of c-Ris and c-9OH-Ris were detected in the liver, kidney, cerebrum, blood, pericardial fluid, bile and urine obtained from two cadavers. There is a potential that c-Ris and c-9OH-Ris will be good markers to prove Ris consumption in forensic toxicology cases. For example, the peak ratios of c-Ris against the parent Ris in the kidney and blood were as high as 3.9 and 3.6 in cadaver 1; and 7.0 and 7.9 in cadaver 2, respectively. In addition to the previously reported six metabolites, five new metabolites such as dehydrogenated-Ris, 7-keto-Ris and three benzisoxazole ring-cleaved metabolites were disclosed in the present work, and the pathways for the totally eleven metabolites detected in human solid tissues and body fluids have also been proposed, because such pathways were neither reported nor discussed previously.


Assuntos
Antipsicóticos , Bile , Cadáver , Rim , Líquido Pericárdico , Risperidona , Espectrometria de Massas em Tandem , Humanos , Risperidona/análise , Risperidona/metabolismo , Bile/química , Rim/química , Rim/metabolismo , Masculino , Líquido Pericárdico/química , Líquido Pericárdico/metabolismo , Fígado/química , Fígado/metabolismo , Toxicologia Forense/métodos , Feminino , Distribuição Tecidual , Química Encefálica , Líquidos Corporais/química , Cromatografia Líquida
6.
Mikrochim Acta ; 191(6): 360, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819644

RESUMO

A novel in-tube solid-phase microextraction coupled with an ultra-high performance liquid chromatography-mass spectrometry method has been established for simultaneous quantification of three crucial brain biomarkers N-acetylaspartic acid (NAA), N-acetylglutamic acid (NAG), and N-acetylaspartylglutamic acid (NAAG). A polymer monolith with quaternary ammonium as the functional group was designed and exhibited efficient enrichment of target analytes through strong anion exchange interaction. Under the optimized conditions, the proposed method displayed wide linear ranges (0.1-80 nM for NAA and NAG, 0.2-160 nM for NAAG) with good precision (RSDs were lower than 15%) and low limits of detection (0.019-0.052 nM), which is by far the most sensitive approach for NAA, NAG, and NAAG determination. Furthermore, this approach has been applied to measure the target analytes in mouse brain samples, and endogenous NAA, NAG, and NAAG were successfully detected and quantified from only around 5 mg of cerebral cortex, cerebellum, and hippocampus. Compared with existing methods, the newly developed method in the current study provides highest sensitivity and lowest sample consumption for NAA, NAG, and NAAG measurements, which would potentially be utilized in determining and tracking these meaningful brain biomarkers in diseases or treatment processes, benefiting the investigations of pathophysiology and treatment of brain disorders.


Assuntos
Ácido Aspártico , Encéfalo , Dipeptídeos , Microextração em Fase Sólida , Espectrometria de Massas em Tandem , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Camundongos , Microextração em Fase Sólida/métodos , Encéfalo/metabolismo , Dipeptídeos/análise , Limite de Detecção , Biomarcadores/análise , Masculino , Química Encefálica , Glutamatos
7.
J Am Soc Mass Spectrom ; 35(6): 1227-1236, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38778699

RESUMO

Cholesterol is a primary lipid molecule in the brain that contains one-fourth of the total body cholesterol. Abnormal cholesterol homeostasis is associated with neurodegenerative disorders. Mass spectrometry imaging (MSI) technique is a powerful tool for studying lipidomics and metabolomics. Among the MSI techniques, desorption electrospray ionization-MSI (DESI-MSI) has been used advantageously to study brain lipidomics due to its soft and ambient ionization nature. However, brain cholesterol is poorly ionized. To this end, we have developed a new method for detecting brain cholesterol by DESI-MSI using low-temperature plasma (LTP) pretreatment as an ionization enhancement. In this method, the brain sections were treated with LTP for 1 and 2 min prior to DESI-MSI analyses. Interestingly, the MS signal intensity of cholesterol (at m/z 369.35 [M + H - H2O]+) was more than 2-fold higher in the 1 min LTP-treated brain section compared to the untreated section. In addition, we detected cholesterol, more specifically excluding isomers by targeted-DESI-MSI in multiple reaction monitoring (MRM) mode and similar results were observed: the signal intensity of each cholesterol transition (m/z 369.4 → 95.1, 109.1, 135.1, 147.1, and 161.1) was increased by more than 2-fold due to 1 min LTP treatment. Cholesterol showed characteristic distributions in the fiber tract region, including the corpus callosum and anterior commissure, anterior part of the brain where LTP markedly (p < 0.001) enhanced the cholesterol intensity. In addition, the distributions of some unknown analytes were exclusively detected in the LTP-treated section. Our study revealed LTP pretreatment as a potential strategy to ionize molecules that show poor ionization efficiency in the MSI technique.


Assuntos
Química Encefálica , Colesterol , Espectrometria de Massas por Ionização por Electrospray , Colesterol/análise , Colesterol/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Temperatura Baixa , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Masculino , Camundongos , Gases em Plasma/química , Lipidômica/métodos
8.
J Am Soc Mass Spectrom ; 35(5): 922-934, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602416

RESUMO

DESI-MSI is an ambient ionization technique used frequently for the detection of lipids, small molecules, and drug targets. Until recently, DESI had only limited use for the detection of proteins and peptides due to the setup and needs around deconvolution of data resulting in a small number of species being detected at lower spatial resolution. There are known differences in the ion species detected using DESI and MALDI for nonpeptide molecules, and here, we identify that this extends to proteomic species. DESI MS images were obtained for tissue sections of mouse and rat brain using a precommercial heated inlet (approximately 450 °C) to the mass spectrometer. Ion mobility separation resolved spectral overlap of peptide ions and significantly improved the detection of multiply charged species. The images acquired were of pixel size 100 µm (rat brain) and 50 µm (mouse brain), respectively. Observed tryptic peptides were filtered against proteomic target lists, generated by LC-MS, enabling tentative protein assignment for each peptide ion image. Precise localizations of peptide ions identified by DESI and MALDI were found to be comparable. Some spatially localized peptides ions were observed in DESI that were not found in the MALDI replicates, typically, multiply charged species with a low mass to charge ratio. This method demonstrates the potential of DESI-MSI to detect large numbers of tryptic peptides from tissue sections with enhanced spatial resolution when compared to previous DESI-MSI studies.


Assuntos
Química Encefálica , Espectrometria de Massas por Ionização por Electrospray , Animais , Camundongos , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/análise , Peptídeos/química , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tripsina/metabolismo , Tripsina/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química
9.
J Am Soc Mass Spectrom ; 35(6): 1069-1075, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38603805

RESUMO

Triazolium cyclodextrin click cluster (+CCC) is an ideal scaffold to specifically bind phosphoinositides (PIPs) via multivalent electrostatic interaction. A new enrichment material, triazolium cyclodextrin click cluster-magnetic agarose bead conjugate (+CCC-MAB), was synthesized and applied to the PIP enrichment of brain tissue. The enriched sample was analyzed using MALDI-TOF MS in negative ion mode without any derivatization. The PIP extract of brain tissue is known to contain abundant lipid interferences. By employing magnetic pull-down separation using +CCC-MAB, we effectively removed the weak-binding interferences in the PIP extract, thereby improving the signal-to-noise ratio (S/N) of the PIPs. Our +CCC-MAB-based PIP enrichment enabled us to analyze 16 PIP species in brain tissue. Six species with high S/N were assigned by MS/MS, while the remaining 10 species with low S/N were characterized by an empirical selection guide based on the biological relevance of PIPs. We conclude that +CCC-MAB-based PIP enrichment is a promising MALDI sample preparation method for specific PIP analysis in brain tissue.


Assuntos
Química Encefálica , Fosfatidilinositóis , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fosfatidilinositóis/análise , Fosfatidilinositóis/química , Animais , Ciclodextrinas/química , Encéfalo/metabolismo , Sefarose/química , Espectrometria de Massas em Tandem/métodos , Razão Sinal-Ruído
10.
Biosensors (Basel) ; 14(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38534232

RESUMO

Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.


Assuntos
Técnicas Biossensoriais , Encéfalo , Eletrodos , Química Encefálica , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos
13.
Opt Lett ; 48(16): 4396-4399, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582041

RESUMO

We report on the development of a multi-needle fiberoptic Raman spectroscopy (MNF-RS) technique for simultaneous multi-site deep Raman measurements in brain tissue. The multi-needle fiberoptic Raman probe is designed and fabricated using a number of 100 µm core diameter, aluminum-coated fibers under a coaxial laser excitation and Raman collection scheme, enabling simultaneous collection of deep tissue Raman spectra from a number of tissue sites. We have also developed a Raman retrieval algorithm based on the transformation matrix of each individual needle fiber probe projected to different pixels of a charge-coupled device (CCD) for recovering the tissue Raman spectra collected by each needle fiber probe, allowing simultaneous multi-channel detection by a single Raman spectrometer. High-quality tissue Raman spectra of different tissue types (e.g., muscle, fat, gray matter, and white matter in porcine brain) can be acquired in both the fingerprint (900-1800 cm-1) and high-wavenumber (2800-3300 cm-1) regions within sub-second times using the MNF-RS technique. We also demonstrate that by advancing the multi-needle fiberoptic Raman probe into deep porcine brain, tissue Raman spectra can be acquired simultaneously from different brain regions (e.g., cortex, thalamus, midbrain, and cerebellum). The significant biochemical differences across different brain tissues can also be distinguished, suggesting the promising potential of the MNF-RS technique for label-free neuroscience study at the molecular level.


Assuntos
Encéfalo , Tecnologia de Fibra Óptica , Neurociências , Análise Espectral Raman , Animais , Algoritmos , Encéfalo/fisiologia , Tecnologia de Fibra Óptica/instrumentação , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Suínos , Química Encefálica , Neurociências/instrumentação , Neurociências/métodos
14.
Anal Chim Acta ; 1273: 341524, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423661

RESUMO

Isotope dilution (ID) analysis is considered one of the most accurate quantitative methods. However, it has not been widely applied to the quantitative imaging of trace elements in biological samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), mainly because of difficulties in homogeneously mixing enriched isotopes (the spike) with the sample (e.g., a tissue section). In this study, we present a novel method for the quantitative imaging of trace elements (copper and zinc) in mouse brain sections using ID-LA-ICP-MS. We used an electrospray-based coating device (ECD) to evenly distribute a known amount of the spike (65Cu and 67Zn) on the sections. The optimal conditions for this process involved evenly distributing the enriched isotopes on mouse brain sections mounted on indium tin oxide (ITO) glass slides using the ECD with the 10 mg g-1 ɑ-cyano-4-hydroxycinnamic acid (CHCA) in methanol at 80 °C. The mass of the spiked isotopes and the tissue sections on the ITO slides was calculated by weighing them on an analytical balance. Quantitative images of Cu and Zn in Alzheimer's disease (AD) mouse brain sections were obtained using ID-LA-ICP-MS. These imaging results showed that Cu and Zn concentrations in various brain regions typically ranged from 10 to 25 µg g-1 and 30-80 µg g-1, respectively. But it is worth noting that the hippocampus contained up to 50 µg g-1 of Zn, while the cerebral cortex and hippocampus had Cu contents as high as 150 µg g-1. These results were validated by acid digestion and solution analysis with ICP-MS. The novel ID-LA-ICP-MS method provides an accurate and reliable means for quantitative imaging of biological tissue sections.


Assuntos
Encéfalo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Química Encefálica , Espectrometria de Massas , Cobre/análise , Zinco/análise
15.
J Am Soc Mass Spectrom ; 34(8): 1685-1691, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471497

RESUMO

Matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) generates unique mass spectra in X/Y coordinates across a tissue sample, thus allowing for the spatial detection and relative quantification of biologic compounds in situ. The soft ionization of MALDI-IMS makes it an ideal technique for high-resolution imaging of complex lipid species. Lipid-based spatial chemical maps derived from MALDI-IMS provide critical insight into the unique molecular profiles of a variety of neurologic diseases. Ex vivo brain slice preparations are a prominent alternative to in vivo animal models for studying many different neurologic conditions. For the first time, we present a feasible protocol for achieving reproducible lipidomic MALDI-IMS data from ex vivo rat brain slices and provide evidence that ex vivo brain slices maintain spatiochemical lipidomic profiles representative of an intact whole brain. We conducted a methods comparison assessing the lipid profiles within the neocortex, striatum, and corpus callosum between coronal sections taken from ex vivo brain slices and the current gold standard tissue preparation method, fresh frozen whole brains. For the first time we demonstrate a technique by which 400 µm ex vivo brain slices can be extracted from an imaging chamber and prepared for MALDI-IMS in a way that preserves their lipidomic integrity. We demonstrate the feasibility of MALDI-IMS in ex vivo brain slices and provide a roadmap for MALDI-IMS utilization in uncharted neuroscience fields.


Assuntos
Química Encefálica , Encéfalo , Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Estudos de Viabilidade , Lipídeos
16.
N Engl J Med ; 389(4): 309-321, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37494485

RESUMO

BACKGROUND: Narcolepsy type 1 is caused by severe loss or lack of brain orexin neuropeptides. METHODS: We conducted a phase 2, randomized, placebo-controlled trial of TAK-994, an oral orexin receptor 2-selective agonist, in patients with narcolepsy type 1. Patients with confirmed narcolepsy type 1 according to clinical criteria were randomly assigned to receive twice-daily oral TAK-994 (30 mg, 90 mg, or 180 mg) or placebo. The primary end point was the mean change from baseline to week 8 in average sleep latency (the time it takes to fall asleep) on the Maintenance of Wakefulness Test (range, 0 to 40 minutes; normal ability to stay awake, ≥20 minutes). Secondary end points included the change in the Epworth Sleepiness Scale (ESS) score (range, 0 to 24, with higher scores indicating greater daytime sleepiness; normal, <10) and the weekly cataplexy rate. RESULTS: Of the 73 patients, 17 received TAK-994 at a dose of 30 mg twice daily, 20 received 90 mg twice daily, 19 received 180 mg twice daily, and 17 received placebo. The phase 2 trial and an extension trial were terminated early owing to hepatic adverse events. Primary end-point data were available for 41 patients (56%); the main reason for missing data was early trial termination. Least-squares mean changes to week 8 in average sleep latency on the MWT were 23.9 minutes in the 30-mg group, 27.4 minutes in the 90-mg group, 32.6 minutes in the 180-mg group, and -2.5 minutes in the placebo group (difference vs. placebo, 26.4 minutes in the 30-mg group, 29.9 minutes in the 90-mg group, and 35.0 minutes the 180-mg group; P<0.001 for all comparisons). Least-squares mean changes to week 8 in the ESS score were -12.2 in the 30-mg group, -13.5 in the 90-mg group, -15.1 in the 180-mg group, and -2.1 in the placebo group (difference vs. placebo, -10.1 in the 30-mg group, -11.4 in the 90-mg group, and -13.0 in the 180-mg group). Weekly incidences of cataplexy at week 8 were 0.27 in the 30-mg group, 1.14 in the 90-mg group, 0.88 in the 180-mg group, and 5.83 in the placebo group (rate ratio vs. placebo, 0.05 in the 30-mg group, 0.20 in the 90-mg group, and 0.15 in the 180-mg group). A total of 44 of 56 patients (79%) receiving TAK-994 had adverse events, most commonly urinary urgency or frequency. Clinically important elevations in liver-enzyme levels occurred in 5 patients, and drug-induced liver injury meeting Hy's law criteria occurred in 3 patients. CONCLUSIONS: In a phase 2 trial involving patients with narcolepsy type 1, an orexin receptor 2 agonist resulted in greater improvements on measures of sleepiness and cataplexy than placebo over a period of 8 weeks but was associated with hepatotoxic effects. (Funded by Takeda Development Center Americas; TAK-994-1501 and TAK-994-1504 ClinicalTrials.gov numbers, NCT04096560 and NCT04820842.).


Assuntos
Narcolepsia , Receptores de Orexina , Orexinas , Humanos , Cataplexia/complicações , Cataplexia/tratamento farmacológico , Cataplexia/epidemiologia , Método Duplo-Cego , Narcolepsia/tratamento farmacológico , Narcolepsia/complicações , Narcolepsia/epidemiologia , Receptores de Orexina/agonistas , Receptores de Orexina/uso terapêutico , Sonolência/efeitos dos fármacos , Resultado do Tratamento , Orexinas/análise , Orexinas/deficiência , Orexinas/farmacologia , Química Encefálica/efeitos dos fármacos , Administração Oral , Doença Hepática Induzida por Substâncias e Drogas/etiologia
17.
Physiol Behav ; 269: 114261, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290607

RESUMO

The round goby (Neogobius melanostomus) is a fish native to the Ponto-Caspian region that is highly invasive through freshwater and brackish habitats in northern Europe and North America. Individual behavioural variation appears to be an important factor in their spread, for example a round goby's personality traits can influence their dispersal tendency, which may also produce variation in the behavioral composition of populations at different points along their invasion fronts. To further analyze the drivers of behavioral variation within invasive round goby populations, we focused on two populations along the Baltic Sea invasion front with closely comparable physical and community characteristics. Specifically, this study measured personality within a novel environment and predator response context (i.e., boldness), and directly analyzed links between individuals' personality traits and their physiological characteristics and stress responses (i.e., blood cortisol and lactate, brain neurotransmitters). In contrast to previous findings, the more recently established population had similar activity levels but were less bold in response to a predator cue than the older population, which suggests that behavioral compositions within our study populations may be more driven by local environmental conditions rather than being a result of personality-biased dispersal. Furthermore, we found that both populations showed similar physiological stress responses, and there also appeared to be no detectable relationship between physiological parameters and behavioral responses to predator cues. Instead, body size and body condition were important factors influencing individual behavioral responses. Overall, our results reinforce the importance of boldness traits as a form of phenotypic variation in round goby populations in the Baltic Sea. We also highlight the importance of these traits for future studies specifically testing for effects of invasion processes on phenotypic variation in the species. Nonetheless, our results also highlight that the physiological mechanisms underpinning behavioural variation in these populations remain unclear.


Assuntos
Tamanho Corporal , Oceanos e Mares , Perciformes , Comportamento Predatório , Estresse Fisiológico , Perciformes/anatomia & histologia , Perciformes/sangue , Perciformes/fisiologia , Comportamento Predatório/fisiologia , Tamanho Corporal/fisiologia , Estresse Fisiológico/fisiologia , Dinamarca , Assunção de Riscos , Masculino , Feminino , Animais , Reprodutibilidade dos Testes , Química Encefálica
18.
Invest Radiol ; 58(10): 730-739, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185832

RESUMO

OBJECTIVES: The purpose of this work was to evaluate the influence of residual quadrupolar interaction on the determination of human brain apparent tissue sodium concentrations (aTSCs) using quantitative sodium magnetic resonance imaging ( 23 Na MRI) in healthy controls (HCs) and patients with multiple sclerosis (MS). Especially, it was investigated if the more detailed examination of residual quadrupolar interaction effects enables further analysis of the observed 23 Na MRI signal increase in MS patients. MATERIALS AND METHODS: 23 Na MRI with a 7 T MR system was performed on 21 HC and 50 MS patients covering all MS subtypes (25 patients with relapsing-remitting MS, 14 patients with secondary progressive MS, and 11 patients with primary progressive MS) using 2 different 23 Na pulse sequences for quantification: a commonly used standard sequence (aTSC Std ) as well as a sequence with shorter excitation pulse length and lower flip angle for minimizing signal loss resulting from residual quadrupolar interactions (aTSC SP ). Apparent tissue sodium concentration was determined using the same postprocessing pipeline including correction of the receive profile of the radiofrequency coil, partial volume correction, and relaxation correction. Spin dynamic simulations of spin-3/2 nuclei were performed to aid in the understanding of the measurement results and to get deeper insight in the underlying mechanisms. RESULTS: In normal-appearing white matter (NAWM) of HC and all MS subtypes, the aTSC SP values were approximately 20% higher than the aTSC Std values ( P < 0.001). In addition, the ratio aTSC SP /aTSC Std was significantly higher in NAWM than in normal-appearing gray matter (NAGM) for all subject cohorts ( P < 0.002). In NAWM, aTSC Std values were significantly higher in primary progressive MS compared with HC ( P = 0.01) as well as relapsing-remitting MS ( P = 0.03). However, in contrast, no significant differences between the subject cohorts were found for aTSC SP . Spin simulations assuming the occurrence of residual quadrupolar interaction in NAWM were in good accordance with the measurement results, in particular, the ratio aTSC SP /aTSC Std in NAWM and NAGM. CONCLUSIONS: Our results showed that residual quadrupolar interactions in white matter regions of the human brain have an influence on aTSC quantification and therefore must be considered, especially in pathologies with expected microstructural changes such as loss of myelin in MS. Furthermore, the more detailed examination of residual quadrupolar interactions may lead to a better understanding of the pathologies themselves.


Assuntos
Esclerose Múltipla , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Sódio/análise , Química Encefálica
19.
Talanta ; 252: 123864, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057164

RESUMO

In this work, endogenous metabolites in mouse brain tissue were imaged by negative desorption electrospray ionization (DESI), ammonia assisted DESI (aa-DESI), DESI/post-photoionization (DESI/PI), and ammonia assisted DESI/PI (aa-DESI/PI) mass spectrometry imaging (MSI) strategies. The combined effect of ammonia additive and post-photoionization was found to play an important role in the enhancement of sensitivity and coverage for endogenous analytes under ambient conditions. Compared with DESI, aa-DESI/PI can provide increased signal intensities for metabolites up to 37.1-fold, as well as the imaging of nine more small metabolites (m/z < 350) (26 for aa-DESI/PI and 17 for DESI) in mouse brain tissue. The results of Pearson correlation analysis and KEGG pathway analysis showed that the enhanced imaging strategy of aa-DESI/PI can facilitate the study of endogenous metabolic pathways and molecular networks. Moreover, the imaging results of mouse tumor tissue demonstrated the promising application of aa-DESI/PI in tumor research.


Assuntos
Amônia , Espectrometria de Massas por Ionização por Electrospray , Animais , Camundongos , Espectrometria de Massas por Ionização por Electrospray/métodos , Química Encefálica , Encéfalo/diagnóstico por imagem , Diagnóstico por Imagem
20.
Angew Chem Int Ed Engl ; 62(1): e202208872, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36284258

RESUMO

Neurochemical events involving biosignals of different time and space dimensionalities constitute the complex basis of neurological functions and diseases. In view of this fact, electrochemical measurements enabling real-time quantification of neurochemicals at multiple levels of spatiotemporal resolution can provide informative clues to decode the molecular networks bridging vesicles and brains. This Minireview focuses on how scientific questions regarding the properties of single vesicles, neurotransmitter release kinetics, interstitial neurochemical dynamics, and multisignal interconnections in vivo have driven the design of electrochemical nano/microsensors, sensing interface engineering, and signal/data processing. An outlook for the future frontline in this realm will also be provided.


Assuntos
Encéfalo , Transmissão Sináptica , Química Encefálica , Transporte Biológico , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA