RESUMO
Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.S619L, impair Ca2+-induced exocytosis of the glucose transporter GLUT4 containing vesicles in immortalized human myoblasts. As exocytosis and endocytosis occur within rapid timescales, here we applied high-temporal resolution techniques, such as patch-clamp capacitance measurements and carbon-fiber amperometry to assess the effects of these mutations on these two cellular processes, using bovine chromaffin cells as a study model. We found that the expression of any of these dynamin-2 mutants inhibits a dynamin and F-actin-dependent form of fast endocytosis triggered by single action potential stimulus, as well as inhibits a slow compensatory endocytosis induced by 500 ms square depolarization. Both dynamin-2 mutants further reduced the exocytosis induced by 500 ms depolarizations, and the frequency of release events and the recruitment of neuropeptide Y (NPY)-labeled vesicles to the cell cortex after stimulation of nicotinic acetylcholine receptors with 1,1-dimethyl-4-phenyl piperazine iodide (DMPP). They also provoked a significant decrease in the Ca2+-induced formation of new actin filaments in permeabilized chromaffin cells. In summary, our results indicate that the centronuclear myopathy (CNM)-linked p.A618T and p.S619L mutations in dynamin-2 affect exocytosis and endocytosis, being the disruption of F-actin dynamics a possible explanation for these results. These impaired cellular processes might underlie the pathogenic mechanisms associated with these mutations.
Assuntos
Células Cromafins , Dinamina II , Endocitose , Exocitose , Mutação , Miopatias Congênitas Estruturais , Células Cromafins/metabolismo , Endocitose/fisiologia , Endocitose/genética , Dinamina II/genética , Dinamina II/metabolismo , Animais , Exocitose/fisiologia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/metabolismo , Mutação/genética , Bovinos , Humanos , Actinas/metabolismo , Actinas/genética , Células Cultivadas , Técnicas de Patch-Clamp , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologiaRESUMO
Metabolic changes are critical in the regulation of Ca2+ influx in central and peripheral neuroendocrine cells. To study the regulation of L-type Ca2+ channels by AMPK we used biochemical reagents and ATP/glucose-concentration manipulations in rat chromaffin cells. AICAR and Compound-C, at low concentration, significantly induce changes in L-type Ca2+ channel-current amplitude and voltage dependence. Remarkably, an overlasting decrease in the channel-current density can be induced by lowering the intracellular level of ATP. Accordingly, Ca2+ channel-current density gradually diminishes by decreasing the extracellular glucose concentration. By using immunofluorescence, a decrease in the expression of CaV1.2 is observed while decreasing extracellular glucose, suggesting that AMPK reduces the number of functional Ca2+ channels into the plasma membrane. Together, these results support for the first time the dependence of metabolic changes in the maintenance of Ca2+ channel-current by AMPK. They reveal a key step in Ca2+ influx in secretory cells.
Assuntos
Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida , Canais de Cálcio Tipo L , Células Cromafins , Glucose , Animais , Células Cromafins/metabolismo , Células Cromafins/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos , Glucose/metabolismo , Glucose/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Trifosfato de Adenosina/metabolismo , Ribonucleotídeos/farmacologia , Pirimidinas/farmacologia , Cálcio/metabolismo , Pirazóis/farmacologia , Células Cultivadas , Ratos Wistar , Ativação do Canal Iônico/efeitos dos fármacosRESUMO
BACKGROUND AND PURPOSE: ATP is highly accumulated in secretory vesicles and secreted upon exocytosis from neurons and endocrine cells. In adrenal chromaffin granules, intraluminal ATP reaches concentrations over 100 mM. However, how these large amounts of ATP contribute to exocytosis has not been investigated. EXPERIMENTAL APPROACH: Exocytotic events in bovine and mouse adrenal chromaffin cells were measured with single cell amperometry. Cytosolic Ca2+ measurements were carried out in Fluo-4 loaded cells. Submembrane Ca2+ was examined in PC12 cells transfected with a membrane-tethered Ca2+ indicator Lck-GCaMP3. ATP release was measured using the luciferin/luciferase assay. Knockdown of P2X7 receptors was induced with short interfering RNA (siRNA). Direct Ca2+ influx through this receptor was measured using a P2X7 receptor-GCamp6 construct. KEY RESULTS: ATP induced exocytosis in chromaffin cells, whereas the ectonucleotidase apyrase reduced the release events induced by the nicotinic agonist dimethylphenylpiperazinium (DMPP), high KCl, or ionomycin. The purinergic agonist BzATP also promoted a secretory response that was dependent on extracellular Ca2+. A740003, a P2X7 receptor antagonist, abolished secretory responses of these secretagogues. Exocytosis was also diminished in chromaffin cells when P2X7 receptors were silenced using siRNAs and in cells of P2X7 receptor knockout mice. In PC12 cells, DMPP induced ATP release, triggering Ca2+ influx through P2X7 receptors. Furthermore, BzATP, DMPP, and KCl allowed the formation of submembrane Ca2+ microdomains inhibited by A740003. CONCLUSION AND IMPLICATIONS: Autocrine activation of P2X7 receptors constitutes a crucial feedback system that amplifies the secretion of catecholamines in chromaffin cells by favouring submembrane Ca2+ microdomains.
Assuntos
Trifosfato de Adenosina , Catecolaminas , Células Cromafins , Exocitose , Receptores Purinérgicos P2X7 , Animais , Receptores Purinérgicos P2X7/metabolismo , Células Cromafins/metabolismo , Células Cromafins/efeitos dos fármacos , Bovinos , Trifosfato de Adenosina/metabolismo , Camundongos , Catecolaminas/metabolismo , Exocitose/efeitos dos fármacos , Células PC12 , Ratos , Cálcio/metabolismo , Comunicação Autócrina , Camundongos Endogâmicos C57BL , Células Cultivadas , MasculinoRESUMO
Chromaffin granules isolated from adrenal glands constitute a powerful experimental tool to the study of secretory vesicle components and their participation in fusion and docking processes, vesicle aggregation, and interactions with cytosolic components. Although it is possible to isolate and purify chromaffin granules from adrenal glands of different species, bovine adrenal glands are the most used tissue source due to its easy handling and the large amount of granules that can be obtained from this tissue. In this chapter, we describe an easy-to-use and short-term protocol for efficiently obtaining highly purified chromaffin granules from bovine adrenal medulla. We additionally include protocols to isolate granules from cultured bovine chromaffin cells and PC12 cells, as well as a section to obtain chromaffin granules from mouse adrenal glands.
Assuntos
Medula Suprarrenal , Células Cromafins , Células Neuroendócrinas , Glândulas Suprarrenais , Animais , Bovinos , Grânulos Cromafim , Camundongos , Células PC12 , RatosRESUMO
Resumen Los feocromocitomas y paragangliomas son tumores raros que se originan en las células cromafines. Tienen un amplio espectro clínico que va desde el hallazgo incidental hasta manifestaciones por la producción exagerada de catecolaminas. El diagnóstico bioquímico se realiza mediante medición de metanefrinas libres en plasma. El tratamiento ideal es la escisión quirúrgica completa previo bloqueo de receptores a y 6 adrenérgicos. En caso de enfermedad metastásica, las opciones de tratamiento sistêmico actuales son limitadas y con escasa tasa de respuesta. Está en investigación el uso de antiangiogénicos.
Abstract Pheochromocytomas and Paragangliomas are rare tumors, originated from the chromaffin cells. They have a broad clinical spectrum from incidental finding to full clinical manifestations explain to overproduction of catecholamines. The biochemistry diagnosis is made by the measurement of free Metanephrines in plasma. Complete surgical removal is the optimal treatment, previously having a y 6 adrenergic receptors blockage. In case of metastasic disease, treatment options are palliative, limited and with a low rate response; the use of antiangiogenic treatments is under investigation.
Assuntos
Paraganglioma , Feocromocitoma , Terapêutica , Células Cromafins , Catecolaminas , Achados Incidentais , DiagnósticoRESUMO
Pannexin-1 (Panx1) forms plasma membrane channels that allow the exchange of small molecules between the intracellular and extracellular compartments, and are involved in diverse physiological and pathological responses in the nervous system. However, the signaling mechanisms that induce their opening still remain elusive. Here, we propose a new mechanism for Panx1 channel activation through a functional crosstalk with the highly Ca2+ permeable α7 nicotinic acetylcholine receptor (nAChR). Consistent with this hypothesis, we found that activation of α7 nAChRs induces Panx1-mediated dye uptake and ATP release in the neuroblastoma cell line SH-SY5Y-α7. Using membrane permeant Ca2+ chelators, total internal reflection fluorescence microscopy in SH-SY5Y-α7 cells expressing a membrane-tethered GCAMP3, and Src kinase inhibitors, we further demonstrated that Panx1 channel opening depends on Ca2+ signals localized in submembrane areas, as well as on Src kinases. In turn, Panx1 channels amplify cytosolic Ca2+ signals induced by the activation of α7 nAChRs, by a mechanism that seems to involve ATP release and P2X7 receptor activation, as hydrolysis of extracellular ATP with apyrase or blockage of P2X7 receptors with oxidized ATP significantly reduces the α7 nAChR-Ca2+ signal. The physiological relevance of this crosstalk was also demonstrated in neuroendocrine chromaffin cells, wherein Panx1 channels and P2X7 receptors contribute to the exocytotic release of catecholamines triggered by α7 nAChRs, as measured by amperometry. Together these findings point to a functional coupling between α7 nAChRs, Panx1 channels and P2X7 receptors with physiological relevance in neurosecretion.
Assuntos
Células Cromafins/metabolismo , Conexinas/metabolismo , Exocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptor Cross-Talk/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Quelantes de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Bovinos , Linhagem Celular Tumoral , Células Cromafins/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Humanos , Camundongos , Receptor Cross-Talk/efeitos dos fármacosRESUMO
The maintenance of the secretory response requires a continuous replenishment of releasable vesicles. It was proposed that the immediately releasable pool (IRP) is important in chromaffin cell secretion during action potentials applied at basal physiological frequencies, because of the proximity of IRP vesicles to voltage-dependent Ca2+ channels. However, previous reports showed that IRP replenishment after depletion is too slow to manage such a situation. In this work, we used patch-clamp measurements of membrane capacitance, confocal imaging of F-actin distribution, and cytosolic Ca2+ measurements with Fura-2 to re-analyze this problem in primary cultures of mouse chromaffin cells. We provide evidence that IRP replenishment has one slow (time constant between 5 and 10 s) and one rapid component (time constant between 0.5 and 1.5 s) linked to a dynamin-dependent fast endocytosis. Both, the fast endocytosis and the rapid replenishment component were eliminated when 500 nM Ca2+ was added to the internal solution during patch-clamp experiments, but they became dominant and accelerated when the cytosolic Ca2+ buffer capacity was increased. In addition, both rapid replenishment and fast endocytosis were retarded when cortical F-actin cytoskeleton was disrupted with cytochalasin D. Finally, in permeabilized chromaffin cells stained with rhodamine-phalloidin, the cortical F-actin density was reduced when the Ca2+ concentration was increased in a range of 10-1000 nM. We conclude that low cytosolic Ca2+ concentrations, which favor cortical F-actin stabilization, allow the activation of a fast endocytosis mechanism linked to a rapid replenishment component of IRP.
Assuntos
Cálcio/metabolismo , Células Cromafins/metabolismo , Endocitose/fisiologia , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Actinas/metabolismo , Córtex Suprarrenal/metabolismo , Animais , Canais de Cálcio/metabolismo , Células Cultivadas , Feminino , Masculino , CamundongosRESUMO
AIM: It is widely accepted that the exocytosis of synaptic and secretory vesicles is triggered by Ca2+ entry through voltage-dependent Ca2+ channels. However, there is evidence of an alternative mode of exocytosis induced by membrane depolarization but lacking Ca2+ current and intracellular Ca2+ increase. In this work we investigated if such a mechanism contributes to secretory vesicle exocytosis in mouse chromaffin cells. METHODS: Exocytosis was evaluated by patch-clamp membrane capacitance measurements, carbon fibre amperometry and TIRF. Cytosolic Ca2+ was estimated using epifluorescence microscopy and fluo-8 (salt form). RESULTS: Cells stimulated by brief depolatizations in absence of extracellular Ca+2 show moderate but consistent exocytosis, even in presence of high cytosolic BAPTA concentration and pharmacological inhibition of Ca+2 release from intracellular stores. This exocytosis is tightly dependent on membrane potential, is inhibited by neurotoxin Bont-B (cleaves the v-SNARE synaptobrevin), is very fast (saturates with time constant <10 ms), it is followed by a fast endocytosis sensitive to the application of an anti-dynamin monoclonal antibody, and recovers after depletion in <5 s. Finally, this exocytosis was inhibited by: (i) ω-agatoxin IVA (blocks P/Q-type Ca2+ channel gating), (ii) in cells from knock-out P/Q-type Ca2+ channel mice, and (iii) transfection of free synprint peptide (interferes in P/Q channel-exocytic proteins association). CONCLUSION: We demonstrated that Ca2+ -independent and voltage-dependent exocytosis is present in chromaffin cells. This process is tightly coupled to membrane depolarization, and is able to support secretion during action potentials at low basal rates. P/Q-type Ca2+ channels can operate as voltage sensors of this process.
Assuntos
Sinalização do Cálcio/fisiologia , Células Cromafins/fisiologia , Exocitose/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Feminino , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp/métodosRESUMO
ß-Subunits of the Ca2+ channel have been conventionally regarded as auxiliary subunits that regulate the expression and activity of the pore-forming α1 subunit. However, they comprise protein-protein interaction domains, such as a SRC homology 3 domain (SH3) domain, which make them potential signaling molecules. Here we evaluated the role of the ß2a subunit of the Ca2+ channels (CaV ß2a) and its SH3 domain (ß2a-SH3) in late stages of channel trafficking in bovine adrenal chromaffin cells. Cultured bovine adrenal chromaffin cells were injected with CaV ß2a or ß2a-SH3 under different conditions, in order to acutely interfere with endogenous associations of these proteins. As assayed by whole-cell patch clamp recordings, Ca2+ currents were reduced by CaV ß2a in the presence of exogenous α1-interaction domain. ß2a-SH3, but not its dimerization-deficient mutant, also reduced Ca2+ currents. Na+ currents were also diminished following ß2a-SH3 injection. Furthermore, ß2a-SH3 was still able to reduce Ca2+ currents when dynamin-2 function was disrupted, but not when SNARE-dependent exocytosis or actin polymerization was inhibited. Together with the additional finding that both CaV ß2a and ß2a-SH3 diminished the incorporation of new actin monomers to cortical actin filaments, ß2a-SH3 emerges as a signaling module that might down-regulate forward trafficking of ion channels by modulating actin dynamics.
Assuntos
Actinas/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células Cromafins/metabolismo , Regulação para Baixo/fisiologia , Domínios de Homologia de src/fisiologia , Animais , Bovinos , Células Cultivadas , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , CoelhosRESUMO
Venoms of medically important scorpions from Buthidae family have been intensively studied, in contrast to non-buthid venoms, for which knowledge is scarce. In this work, we characterized the venom of a Diplocentridae species, Didymocentrus krausi, a small fossorial scorpion that inhabits the Tropical Dry Forest of Central America. D. krausi venom soluble fraction contains proteases with enzymatic activity on gelatin and casein. Mass spectrometry and venomic analysis confirmed the presence of elastase-like, cathepsin-O-like proteases and a neprilysin-like metalloproteinase. We did not detect phospholipase A2, C or D, nor hyaluronidase activity in the venom. By homology-based venom gland transcriptomic analysis, NDBPs, a ß-KTx-like peptide, and other putative toxin transcripts were found, which, together with a p-benzoquinone compound present in the venom, could potentially explain its direct hemolytic and cytotoxic effects in several mammalian cell lines. Cytotoxicity of D. krausi venom was higher than the effect of venoms from two buthid scorpion species distributed in Costa Rica, Centruroides edwardsii and Tityus pachyurus. Even though D. krausi venom was not lethal to mice or crickets, when injected in mouse gastrocnemius muscle at high doses it induced pathological effects at 24â¯h, which include myonecrosis, weak hemorrhage, and inflammatory infiltration. We observed an apparent thrombotic effect in the skin blood vessels, but no in vitro fibrinogenolytic activity was detected. In crickets, D. krausi venom induced toxicity and paralysis in short periods of time.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Venenos de Escorpião/química , Venenos de Escorpião/toxicidade , Escorpiões/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/toxicidade , Linhagem Celular , Células Cromafins/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Gryllidae/efeitos dos fármacos , Humanos , Camundongos , Mioblastos/efeitos dos fármacos , Coelhos , RatosRESUMO
Comorbidity of diabetes and hypertension is frequent. Here, we have performed a comparative study in three animal models namely, normotensive Wistar Kyoto (WKY) rats, streptozotocin-induced diabetic rats (STZ), and spontaneously hypertensive rats (SHR). With respect WKY rats, we have found the following alterations in adrenal chromaffin cells from STZ and SHR rats: (1) diminished Ca2+ currents; (2) augmented [Ca2+]c elevations and catecholamine release in cells stimulated with angiotensin II or high K+; (3) unchanged expression of angiotensin II receptors AT1 and AT2; (4) higher density of secretory vesicles at subplasmalemmal sites; (5) mitochondria with lower cristae density that were partially depolarized; and (6) lower whole cell ATP content. These alterations may have their origin in (i) an augmented capacity of the endoplasmic reticulum [Ca2+] store likely due to (ii) impaired mitochondrial Ca2+ uptake; (iii) augmented high-[Ca2+]c microdomains at subplasmalemmal sites secondary to augmented calcium-induce calcium release and to inositol tris-phosphate receptor mediated enhanced Ca2+ mobilization from the endoplasmic reticulum; and (iv) augmented vesicle pool. These alterations seem to be common to the two models of human hypertension here explored, STZ diabetic rats and SHR hypertensive rats.
Assuntos
Sinalização do Cálcio , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Células Cromafins/patologia , Diabetes Mellitus Experimental/patologia , Mitocôndrias/patologia , Animais , Contagem de Células , Masculino , Ratos , Ratos Endogâmicos SHR , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismoAssuntos
Glândulas Suprarrenais , Células Cromafins , Células de Schwann , Células-Tronco , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/metabolismo , Animais , Células Cromafins/citologia , Células Cromafins/metabolismo , Humanos , Células de Schwann/citologia , Células de Schwann/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismoRESUMO
Most accepted single particle tracking methods are able to obtain high-resolution trajectories for relatively short periods of time. In this work we apply a straightforward combination of single-particle tracking microscopy and metallic nanoparticles internalization on mouse chromaffin cells to unveil the intracellular trafficking mechanism of metallic-nanoparticle-loaded vesicles (MNP-V) complexes after clathrin dependent endocytosis. We found that directed transport is the major route of MNP-Vs intracellular trafficking after stimulation (92.6% of the trajectories measured). We then studied the MNP-V speed at each point along the trajectory, and found that the application of a second depolarization stimulus during the tracking provokes an increase in the percentage of low-speed trajectory points in parallel with a decrease in the number of high-speed trajectory points. This result suggests that stimulation may facilitate the compartmentalization of internalized MNPs in a more restricted location such as was already demonstrated in neuronal and neuroendocrine cells (Bronfman et al 2003 J. Neurosci. 23 3209-20). Although further experiments will be required to address the mechanisms underlying this transport dynamics, our studies provide quantitative evidence of the heterogeneous behavior of vesicles mobility after endocytosis in chromaffin cells highlighting the potential of MNPs as alternative labels in optical microscopy to provide new insights into the vesicles dynamics in a wide variety of cellular environments.
Assuntos
Clorpromazina/farmacologia , Células Cromafins/metabolismo , Clatrina/metabolismo , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Animais , Células Cultivadas , Endocitose/efeitos dos fármacos , Feminino , Masculino , Camundongos , Potássio/farmacologia , Imagem Individual de MoléculaRESUMO
It is known that chronic ethanol (EtOH) consumption leads to hypertension development and has been associated with deleterious effects on the cardiovascular system. Whether this condition alters calcium (Ca2+) signaling and exocytosis in adrenal chromaffin cells (CCs) as the case is for genetic hypertension, is unknown. We explored this question in four randomized experimental groups, male Wistar Kyoto (WKY/EtOH) and Spontaneously Hypertensive (SHR/EtOH) rats were subjected to the intake of increasing EtOH concentrations (5-20%, for 30 days) and their respective controls (WKY/Control and SHR/Control) received water. WKY/EtOH developed hypertension and cardiac hypertrophy; blood aldehyde dehydrogenase (ALDH) and H2O2 were also augmented. In comparison with WKY/Control, CCs from WKY/EtOH had the following features: (i) depolarization and higher frequency of spontaneous action potentials; (ii) decreased Ca2+ currents with slower inactivation; (iii) decreased K+ currents; (iv) augmented K+-elicited cytosolic Ca2+ transients ([Ca2+]c); (v) enhanced K+-elicited catecholamine release. These cardiovascular, blood and CCs changes were qualitatively similar to those undergone by SHR/Control and SHR/EtOH. The results suggest that the hypertension elicited by chronic EtOH has pathogenic features common to genetic hypertension namely, augmented [Ca2+]c transients and catecholamine release from their CCs.
Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células Cromafins/patologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Etanol/farmacologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Potássio/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de TempoRESUMO
Adrenal chromaffin cells (CCs) from spontaneously hypertensive rats (SHRs) secrete more catecholamine (CA) upon stimulation than CCs from normotensive Wistar Kyoto rats (WKY). Unitary CA exocytosis events, both spontaneous and stimulated, were amperometrically recorded from cultured WKY and SHR CCs. Both strains display spontaneous amperometric spikes but SHR CCs produce more spikes and of higher mean amplitude. After a brief stimulation with high K(+) or caffeine which produces voltage-gated Ca(2+) influx or intracellular Ca(2+) release, respectively, more spikes and of greater mean amplitude and unitary charge were recorded in SHR CCs. Consequently, peak cumulative charge was ~2-fold higher in SHR CCs. Ryanodine (10 µM), a specific blocker of the ryanodine receptors reduced depolarization-induced peak cumulative charge by ~10 % in WKY and ~77 % in SHR CCs, suggesting, a larger contribution of Ca(2+)-induced Ca(2+) release to CA exocytosis in SHR CCs. Accordingly, Ca(2+) imaging showed larger [Ca(2+)]i signals induced both by depolarization and caffeine in SHR CCs. Distribution amplitude histograms showed that small amperometric spikes (0-50 pA) are more frequent in WKY than in SHR CCs. Conversely, medium (50-190 pA) and large (190-290 pA) spikes are more numerous in SHR than in WKY CCs. This study reveals that the enhanced CA secretion in SHR CCs results from a combination of (1) larger depolarization-induced Ca(2+) transients, due to a greater Ca(2+)-induced intracellular Ca(2+) release, (2) more exocytosis events per time unit, and (3) a greater proportion of medium and large amperometric spikes probably due to a higher mean CA content per granule. Enhanced CA release by excessive amplification by Ca(2+) induced Ca(2+) release and larger granule catecholamine content contributes to the increased CA plasma levels and vasomotor tone in SHRs.
Assuntos
Glândulas Suprarrenais/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Cálcio/farmacologia , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Glândulas Suprarrenais/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Cafeína/farmacologia , Células Cultivadas , Células Cromafins/efeitos dos fármacos , Exocitose , Frequência Cardíaca/efeitos dos fármacos , Masculino , Inibidores de Fosfodiesterase/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacosRESUMO
The cortical actin network is dynamically rearranged during secretory processes. Nevertheless, it is unclear how de novo actin polymerization and the disruption of the preexisting actin network control transmitter release. Here we show that in bovine adrenal chromaffin cells, both formation of new actin filaments and disruption of the preexisting cortical actin network are induced by Ca2+ concentrations that trigger exocytosis. These two processes appear to regulate different stages of exocytosis; whereas the inhibition of actin polymerization with the N-WASP inhibitor wiskostatin restricts fusion pore expansion, thus limiting the release of transmitters, the disruption of the cortical actin network with cytochalasin D increases the amount of transmitter released per event. Further, the Src kinase inhibitor PP2, and cSrc SH2 and SH3 domains also suppress Ca2+-dependent actin polymerization, and slow down fusion pore expansion without disturbing the cortical F-actin organization. Finally, the isolated SH3 domain of c-Src prevents both the disruption of the actin network and the increase in the quantal release induced by cytochalasin D. These findings support a model where a rise in the cytosolic Ca2+ triggers actin polymerization through a mechanism that involves Src kinases. The newly formed actin filaments would speed up the expansion of the initial fusion pore, whereas the preexisting actin network might control a different step of the exocytosis process.
Assuntos
Actinas/metabolismo , Células Cromafins/metabolismo , Quinases da Família src/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Cálcio/farmacologia , Bovinos , Células Cultivadas , Células Cromafins/citologia , Células Cromafins/efeitos dos fármacos , Citocalasina D/farmacologia , Exocitose/efeitos dos fármacos , Cinética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Quinases da Família src/química , Quinases da Família src/genéticaRESUMO
Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin's ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands.
Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Cromafins/metabolismo , Dinamina II/fisiologia , Animais , Catecolaminas/metabolismo , Bovinos , Células Cultivadas , Exocitose , Expressão Gênica , Fusão de Membrana , Multimerização Proteica , Vesículas Secretórias/metabolismoRESUMO
It is generally accepted that the immediately releasable pool is a group of readily releasable vesicles that are closely associated with voltage dependent Ca(2+) channels. We have previously shown that exocytosis of this pool is specifically coupled to P/Q Ca(2+) current. Accordingly, in the present work we found that the Ca(2+) current flowing through P/Q-type Ca(2+) channels is 8 times more effective at inducing exocytosis in response to short stimuli than the current carried by L-type channels. To investigate the mechanism that underlies the coupling between the immediately releasable pool and P/Q-type channels we transiently expressed in mouse chromaffin cells peptides corresponding to the synaptic protein interaction site of Cav2.2 to competitively uncouple P/Q-type channels from the secretory vesicle release complex. This treatment reduced the efficiency of Ca(2+) current to induce exocytosis to similar values as direct inhibition of P/Q-type channels via ω-agatoxin-IVA. In addition, the same treatment markedly reduced immediately releasable pool exocytosis, but did not affect the exocytosis provoked by sustained electric or high K(+) stimulation. Together, our results indicate that the synaptic protein interaction site is a crucial factor for the establishment of the functional coupling between immediately releasable pool vesicles and P/Q-type Ca(2+) channels.
Assuntos
Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Células Cromafins/metabolismo , Vesículas Secretórias/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Exocitose/fisiologia , CamundongosRESUMO
The interrenal gland of anurans synthesizes the steroids aldosterone and corticosterone, but it is unknown whether these hormones are synthesized by the same cell type. In this work, we aim to elucidate whether there are different steroidogenic cell types and whether they have specific regionalization in the interrenal gland of the male toad Rhinella arenarum. We characterized all cell types using histological, immuhistochemical, and histochemical methods as well as transmission electron microscopy. Furthermore, we evaluated the organization of the cell types in the gland and anteroposterior variations in the synthesis of the steroids. We found evidence of five cell types: two morphologically different steroidogenic cells, type 1: polyhedral cells tightly attached to each other that have spherical euchromatic nuclei and type 2: retracted cells loosely attached to each other that have oval heterochromatic nuclei. Cell type 2 is mainly observed in the inner zone of the gland. In addition, we observed two types of chromaffin cells, called type 3 and 4 cells, randomly distributed throughout the interrenal gland, as well as type 5 cells, recognized as summer cells. Morphometric analyses of the cell types in the anterior and posterior zones of the interrenal showed that the ratio "area of type 2 cells/total interrenal area" is significantly lower in the posterior zone. In vitro incubations showed that the posterior portion of the gland produces significantly higher amounts of both corticosterone and aldosterone. Overall, our results suggest that the type 2 cells are less active to synthesize both aldosterone and corticosterone, compared to type 1 cells. Unlike most previous reports on the interrenal gland of anurans, in R. arenarum there is a zonation of the steroidogenic cell types, which implies that the organ is not anteroposterior or dorsoventrally homogeneous.
Assuntos
Aldosterona/biossíntese , Anuros/anatomia & histologia , Corticosterona/biossíntese , Glândula Inter-Renal/citologia , Glândula Inter-Renal/metabolismo , Animais , Núcleo Celular/ultraestrutura , Células Cromafins/citologia , Células Cromafins/diagnóstico por imagem , Células Cromafins/metabolismo , Imuno-Histoquímica , Glândula Inter-Renal/ultraestrutura , Masculino , UltrassonografiaRESUMO
Chromaffin cell transplants have been explored since the early 1980s as a promising alternative in different pathological states, mainly Parkinson's disease and chronic pain. Advances are significant since transplants have been performed in humans. The general mechanism of these transplants relies in the capacity of chromaffin cells to act as mini-pumps that release amines and peptides. Different strategies are being used to improve the efficacy of transplants. However, a remaining hurdle is to determine the viability across time and the interaction with the microenvironment of the graft. We analyzed previous and current results finding that although there is a lot of positive evidence, there is also a lack of molecular studies that support behavioral results. The present review gives an update on recent advances of chromaffin cell transplants and their future in the clinic.