Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 766
Filtrar
1.
Molecules ; 29(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39275072

RESUMO

Cruzipain (CZP), the major cysteine protease present in T. cruzi, the ethiological agent of Chagas disease, has attracted particular attention as a therapeutic target for the development of targeted covalent inhibitors (TCI). The vast chemical space associated with the enormous molecular diversity feasible to explore by means of modern synthetic approaches allows the design of CZP inhibitors capable of exhibiting not only an efficient enzyme inhibition but also an adequate translation to anti-T. cruzi activity. In this work, a computer-aided design strategy was developed to combinatorially construct and screen large libraries of 1,4-disubstituted 1,2,3-triazole analogues, further identifying a selected set of candidates for advancement towards synthetic and biological activity evaluation stages. In this way, a virtual molecular library comprising more than 75 thousand diverse and synthetically feasible analogues was studied by means of molecular docking and molecular dynamic simulations in the search of potential TCI of CZP, guiding the synthetic efforts towards a subset of 48 candidates. These were synthesized by applying a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) centered synthetic scheme, resulting in moderate to good yields and leading to the identification of 12 hits selectively inhibiting CZP activity with IC50 in the low micromolar range. Furthermore, four triazole derivatives showed good anti-T. cruzi inhibition when studied at 50 µM; and Ald-6 excelled for its high antitrypanocidal activity and low cytotoxicity, exhibiting complete in vitro biological activity translation from CZP to T. cruzi. Overall, not only Ald-6 merits further advancement to preclinical in vivo studies, but these findings also shed light on a valuable chemical space where molecular diversity might be explored in the search for efficient triazole-based antichagasic agents.


Assuntos
Cisteína Endopeptidases , Simulação de Acoplamento Molecular , Proteínas de Protozoários , Triazóis , Trypanosoma cruzi , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Cisteína Endopeptidases/química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/síntese química , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Desenho Assistido por Computador , Desenho de Fármacos , Humanos , Estrutura Molecular , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Doença de Chagas/tratamento farmacológico
2.
J Pediatr ; 274: 114180, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38972567

RESUMO

To evaluate a novel candidate disease gene, we engaged international collaborators and identified rare, biallelic, specifically homozygous, loss of function variants in SENP7 in 4 children from 3 unrelated families presenting with neurodevelopmental abnormalities, dysmorphism, and immunodeficiency. Their clinical presentations were characterized by hypogammaglobulinemia, intermittent neutropenia, and ultimately death in infancy for all 4 patients. SENP7 is a sentrin-specific protease involved in posttranslational modification of proteins essential for cell regulation, via a process referred to as deSUMOylation. We propose that deficiency of deSUMOylation may represent a novel mechanism of primary immunodeficiency.


Assuntos
Cisteína Endopeptidases , Síndromes de Imunodeficiência , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Cisteína Endopeptidases/genética , Evolução Fatal , Síndromes de Imunodeficiência/genética , Mutação com Perda de Função , Fenótipo
3.
Fitoterapia ; 177: 106120, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992475

RESUMO

Periodontitis is clinically characterized by destruction of the tooth support system and tooth loss. Porphyromonas gingivalis (Pg) plays a dominant role in periodontitis. Fractions and isolated compounds from an acetone-water extract of the roots of Limonium brasiliense (Lb) were tested in vitro for their anti-adhesive capacity against Pg on human KB buccal cells, influence on gingipains, the main virulence factors of Pg, and biofilm formation. Fractions EAF and FLB7 (50 µg/mL) reduced the bacterial adhesion of Pg to KB cells significantly (63 resp. 70%). The proanthocyanidin samarangenin A inhibited the adhesion (72%, 30 µM), samarangenin B (71%, 20 µM), and the flavan-3-ol epigallocatechin-3-O-gallate (79%, 30 µM). Fraction AQF, representing hydrophilic compounds, reduced the proteolytic activity of Arginin-specific gingipain (IC50 12.78 µg/mL). Fractions EAF and FLB7, characterized by lipohilic constituents, inhibited Arg-gingipain (IC50 3 µg/mL). On Lysine-specific gingipain, AQF has an IC50 15.89, EAF 14.15, and FLB7 6 µg/mL. The reduced bacterial adhesion is due to a strong interaction of proanthocyanidins with gingipains. AQF, EAF, and FLB7 significantly inhibited biofilm formation: IC50 11.34 (AQF), 11.66 (EAF), and 12.09 µg/mL (FLB7). In silico analysis indicated, that the polyphenols act against specific targets of Pg, not affecting mammalian cells. Therefore, Lb might be effective for prevention of periodontal disease by influencing virulence factors of Pg.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana , Biofilmes , Cisteína Endopeptidases , Cisteína Endopeptidases Gingipaínas , Extratos Vegetais , Plumbaginaceae , Porphyromonas gingivalis , Fatores de Virulência , Biofilmes/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Humanos , Adesinas Bacterianas/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Plumbaginaceae/química , Raízes de Plantas/química , Proantocianidinas/farmacologia , Proantocianidinas/isolamento & purificação , Células KB , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
4.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930828

RESUMO

The development of new compounds to treat Chagas disease is imperative due to the adverse effects of current drugs and their low efficacy in the chronic phase. This study aims to investigate nitroisoxazole derivatives that produce oxidative stress while modifying the compounds' lipophilicity, affecting their ability to fight trypanosomes. The results indicate that these compounds are more effective against the epimastigote form of T. cruzi, with a 52 ± 4% trypanocidal effect for compound 9. However, they are less effective against the trypomastigote form, with a 15 ± 3% trypanocidal effect. Additionally, compound 11 interacts with a higher number of amino acid residues within the active site of the enzyme cruzipain. Furthermore, it was also found that the presence of a nitro group allows for the generation of free radicals; likewise, the large size of the compound enables increased interaction with aminoacidic residues in the active site of cruzipain, contributing to trypanocidal activity. This activity depends on the size and lipophilicity of the compounds. The study recommends exploring new compounds based on the nitroisoxazole skeleton, with larger substituents and lipophilicity to enhance their trypanocidal activity.


Assuntos
Isoxazóis , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Isoxazóis/química , Isoxazóis/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/antagonistas & inibidores , Relação Estrutura-Atividade , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Animais , Domínio Catalítico , Estrutura Molecular
5.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747836

RESUMO

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Assuntos
Desenho de Fármacos , Hidrazinas , Leishmania , Naftoquinonas , Tripanossomicidas , Trypanosoma cruzi , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Leishmania/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Testes de Sensibilidade Parasitária , Concentração Inibidora 50 , Relação Estrutura-Atividade , Cisteína Endopeptidases
6.
Protein Expr Purif ; 218: 106458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423156

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.


Assuntos
Proteínas de Membrana , Trypanosoma cruzi , Trypanosoma cruzi/genética , Cisteína Endopeptidases/metabolismo , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
7.
J Comput Chem ; 45(1): 35-46, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37641955

RESUMO

SARS-CoV-2 cysteine proteases are essential nonstructural proteins due to their role in the formation of the virus multiple enzyme replication-transcription complex. As a result, those functional proteins are extremely relevant targets in the development of a new drug candidate to fight COVID-19. Based on this fact and guided by the bioisosterism strategy, the present work has selected 126 out of 1050 ligands from DrugBank website. Subsequently, 831 chemical analogs containing bioisosteres, some of which became structurally simplified, were created using the MB-Isoster software, and molecular docking simulations were performed using AutoDock Vina. Finally, a study of physicochemical properties, along with pharmacokinetic profiles, was carried out through SwissADME and ADMETlab 2.0 platforms. The promising results obtained with the molecules encoded as DB00549_BI_005, DB04868_BI_003, DB11984_BI_002, DB12364_BI_006 and DB12805_BI_004 must be confirmed by molecular dynamics studies, followed by in vitro and in vivo empirical tests that ratify the advocated in-silico results.


Assuntos
COVID-19 , Cisteína Proteases , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Cisteína Proteases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica Molecular
9.
Arq Bras Cardiol ; 120(11): e20230395, 2023 10.
Artigo em Inglês, Português | MEDLINE | ID: mdl-37909538

RESUMO

BACKGROUND: Many clinical studies have confirmed that legumain is closely related to atherosclerosis. Unfortunately, different conclusions have been reached, and analyses and studies on atherosclerotic plaque characteristics in patients with increased plasma levels of legumain are still lacking. OBJECTIVES: This study aimed to investigate the correlation between legumain and coronary atherosclerotic plaque characteristics. METHODS: A total of 81 patients with coronary atherosclerotic heart disease (CHD), including 43 patients with unstable angina (UA) and 38 patients with stable angina (SA), were screened by coronary angiography. Intravascular ultrasound (IVUS) was performed to evaluate the characteristics of coronary atherosclerotic plaques, and plasma legumain levels were also measured. Values of p < 0.05 were considered significant. RESULTS: Legumain concentration was significantly higher in the two CHD subgroups than in the control group (all p<0.001). Legumain concentrations in the UA group were significantly higher than in the SA group (p=0.001). The plaque area, remodeling index (RI), and eccentricity index (EI) in the UA group were significantly higher than those in the SA group (p<0.001, p=0.001, p=0.001, respectively). There was a significant positive correlation between legumain levels and RI and EI in both UA and SA patients (all p<0.05). CONCLUSIONS: High plasma levels of legumain were closely related to the occurrence and severity of CHD, and the lesions tended to be unstable. Legumain is expected to be a potential inflammatory biomarker for the diagnosis of CHD and the early identification of unstable coronary lesions.


FUNDAMENTO: Muitos estudos clínicos confirmaram que a legumain está intimamente relacionada à aterosclerose. Infelizmente, chegaram-se a conclusões diferentes e ainda faltam análises e estudos sobre as características da placa aterosclerótica em pacientes com níveis plasmáticos aumentados de legumain. OBJETIVOS: Este estudo teve como objetivo investigar a correlação entre as características da legumain e da placa aterosclerótica coronariana. MÉTODOS: Um total de 81 pacientes com doença cardíaca aterosclerótica coronariana (DCAC), incluindo 43 pacientes com angina instável (AI) e 38 pacientes com angina estável (AE), foram examinados por angiografia coronária. Foi realizado ultrassom intravascular (IVUS) para avaliar as características das placas ateroscleróticas coronarianas, e os níveis plasmáticos de legumain também foram medidos. Valores de p < 0,05 foram considerados significativos. RESULTADOS: A concentração de legumain foi significativamente maior nos dois subgrupos de doença coronariana do que no grupo controle (todos p<0,001). As concentrações de legumain no grupo AI foram significativamente maiores do que no grupo SA (p=0,001). A área de placa, o índice de remodelamento (IR) e o índice de excentricidade (IE) no grupo AI foram significativamente maiores do que no grupo AE (p<0,001, p=0,001, p=0,001, respectivamente). Houve uma correlação positiva significativa entre os níveis de legumain e IR e IE em pacientes com AI e AE (todos p<0,05). CONCLUSÕES: Níveis plasmáticos elevados de legumain estavam intimamente relacionados com a ocorrência e gravidade da doença coronariana, e as lesões tendiam a ser instáveis. Espera-se que a legumain seja um potencial biomarcador inflamatório para o diagnóstico de doença coronariana e a identificação precoce de lesões coronárias instáveis.


Assuntos
Angina Estável , Aterosclerose , Doença da Artéria Coronariana , Doença das Coronárias , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Angina Instável/diagnóstico por imagem , Cisteína Endopeptidases , Angiografia Coronária , Ultrassonografia de Intervenção
10.
Eur J Med Chem ; 257: 115498, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290182

RESUMO

Over 110 years after the first formal description of Chagas disease, the trypanocidal drugs thus far available have limited efficacy and several side effects. This encourages the search for novel treatments that inhibit T. cruzi targets. One of the most studied anti-T. cruzi targets is the cysteine protease cruzain; it is associated with metacyclogenesis, replication, and invasion of the host cells. We used computational techniques to identify novel molecular scaffolds that act as cruzain inhibitors. First, with a docking-based virtual screening, we identified compound 8, a competitive cruzain inhibitor with a Ki of 4.6 µM. Then, aided by molecular dynamics simulations, cheminformatics, and docking, we identified the analog compound 22 with a Ki of 27 µM. Surprisingly, despite sharing the same isoquinoline scaffold, compound 8 presented higher trypanocidal activity against the epimastigote forms, while compound 22, against the trypomastigotes and amastigotes. Taken together, compounds 8 and 22 represent a promising scaffold for further development of trypanocidal compounds as drug candidates for treating Chagas disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Cisteína Endopeptidases/farmacologia , Doença de Chagas/tratamento farmacológico , Proteínas de Protozoários
11.
Eur J Med Chem ; 254: 115345, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054562

RESUMO

Based on the activity of 23 TSCs on CZ taken from the literature, we have developed a QSAR model for predicting the activity of TSCs. New TSCs were designed and then tested against CZP, resulting in inhibitors with IC50 values in the nanomolar range. The modelling of the corresponding TSC-CZ complexes by molecular docking and QM/QM ONIOM refinement indicates a binding mode compatible with what was expected for active TSCs, according to a geometry-based theoretical model previously developed by our research group. Kinetic experiments on CZP suggest that the new TSCs act by a mechanism that involves the formation of a reversible covalent adduct with slow association and dissociation kinetics. These results demonstrate the strong inhibitory effect of the new TSCs and the benefit of the combined use of QSAR and molecular modelling techniques in the design of new and potent CZ/CZP inhibitors.


Assuntos
Tiossemicarbazonas , Tiossemicarbazonas/química , Simulação de Acoplamento Molecular , Cisteína Endopeptidases , Proteínas de Protozoários
12.
J Chem Inf Model ; 63(7): 2226-2239, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36952618

RESUMO

The SARS-CoV-2 pandemic has prompted global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro) and the papain-like protease (PLpro) are essential for viral replication and are key targets for therapeutic development. In this work, we investigate the mechanisms of SARS-CoV-2 inhibition by diphenyl diselenide (PhSe)2 which is an archetypal model of diselenides and a renowned potential therapeutic agent. The in vitro inhibitory concentration of (PhSe)2 against SARS-CoV-2 in Vero E6 cells falls in the low micromolar range. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations [level of theory: SMD-B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ] are used to inspect non-covalent inhibition modes of both proteases via π-stacking and the mechanism of covalent (PhSe)2 + Mpro product formation involving the catalytic residue C145, respectively. The in vitro CC50 (24.61 µM) and EC50 (2.39 µM) data indicate that (PhSe)2 is a good inhibitor of the SARS-CoV-2 virus replication in a cell culture model. The in silico findings indicate potential mechanisms of proteases' inhibition by (PhSe)2; in particular, the results of the covalent inhibition here discussed for Mpro, whose thermodynamics is approximatively isoergonic, prompt further investigation in the design of antiviral organodiselenides.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Papaína , Peptídeo Hidrolases , Cisteína Endopeptidases/química , Proteínas não Estruturais Virais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular
13.
J Chem Inf Model ; 63(5): 1506-1520, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36802548

RESUMO

Trypanosoma cruzi is a parasite that infects about 6-7 million people worldwide, mostly in Latin America, causing Chagas disease. Cruzain, the main cysteine protease of T. cruzi, is a validated target for developing drug candidates for Chagas disease. Thiosemicarbazones are one of the most relevant warheads used in covalent inhibitors targeting cruzain. Despite its relevance, the mechanism of inhibition of cruzain by thiosemicarbazones is unknown. Here, we combined experiments and simulations to unveil the covalent inhibition mechanism of cruzain by a thiosemicarbazone-based inhibitor (compound 1). Additionally, we studied a semicarbazone (compound 2), which is structurally similar to compound 1 but does not inhibit cruzain. Assays confirmed the reversibility of inhibition by compound 1 and suggested a two-step mechanism of inhibition. The Ki was estimated to be 36.3 µM and Ki* to be 11.5 µM, suggesting the pre-covalent complex to be relevant for inhibition. Molecular dynamics simulations of compounds 1 and 2 with cruzain were used to propose putative binding modes for the ligands. One-dimensional (1D) quantum mechanics/molecular mechanics (QM/MM) potential of mean force (PMF) and gas-phase energies showed that the attack of Cys25-S- on the C═S or C═O bond yields a more stable intermediate than the attack on the C═N bond of the thiosemicarbazone/semicarbazone. Two-dimensional (2D) QM/MM PMF revealed a putative reaction mechanism for compound 1, involving the proton transfer to the ligand, followed by the Cys25-S- attack at C═S. The ΔG and energy barrier were estimated to be -1.4 and 11.7 kcal/mol, respectively. Overall, our results shed light on the inhibition mechanism of cruzain by thiosemicarbazones.


Assuntos
Doença de Chagas , Semicarbazonas , Tiossemicarbazonas , Trypanosoma cruzi , Humanos , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Cisteína Endopeptidases/química , Proteínas de Protozoários/química , Inibidores de Cisteína Proteinase/química
14.
ChemMedChem ; 18(6): e202200434, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692246

RESUMO

Chagas disease is a neglected tropical disease caused by the protozoa Trypanosoma cruzi. Cruzain, its main cysteine protease, is commonly targeted in drug discovery efforts to find new treatments for this disease. Even though the essentiality of this enzyme for the parasite has been established, many cruzain inhibitors fail as trypanocidal agents. This lack of translation from biochemical to biological assays can involve several factors, including suboptimal physicochemical properties. In this work, we aim to rationalize this phenomenon through chemical space analyses of calculated molecular descriptors. These include statistical tests, visualization of projections, scaffold analysis, and creation of machine learning models coupled with interpretability methods. Our results demonstrate a significant difference between the chemical spaces of cruzain and T. cruzi inhibitors, with compounds with more hydrogen bond donors and rotatable bonds being more likely to be good cruzain inhibitors, but less likely to be active on T. cruzi. In addition, cruzain inhibitors seem to occupy specific regions of the chemical space that cannot be easily correlated with T. cruzi activity, which means that using predictive modeling to determine whether cruzain inhibitors will be trypanocidal is not a straightforward task. We believe that the conclusions from this work might be of interest for future projects that aim to develop novel trypanocidal compounds.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Cisteína Endopeptidases/química , Doença de Chagas/tratamento farmacológico , Proteínas de Protozoários , Tripanossomicidas/química , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/química
15.
Clin Transl Oncol ; 25(3): 776-785, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609651

RESUMO

BACKGROUND: Cetuximab, a monoclonal antibody targeting epidermal growth factor receptor (EGFR), is effective for RAS wild-type metastatic colorectal cancer (mCRC) patients. However, cetuximab resistance often occur and the mechanism has not been fully elucidated. The purpose of this study was to investigate the role of asparaginyl endopeptidase (AEP) in cetuximab resistance. METHODS: Differentially expressed genes between cetuximab responders and non-responders were identified by analyzing the gene expression profile GSE5851, retrieved from Gene Expression Omnibus (GEO). The potential genes were further validated in cetuximab-resistant CRC cell lines. The expression of AEP in the peripheral blood and tumor tissues of mCRC patients in our hospital were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. The survival analysis was carried out by Kaplan-Meier method. The function and associated pathways of AEP were further investigated by lentivirus transfection, CCK8 assay, colony formation assay, real-time polymerase chain reaction (qPCR) and western blot. RESULTS: Through bioinformatics analysis, we found that the expression of AEP gene was related to progress free survival (PFS) of mCRC patients treated with cetuximab alone (P = 0.00133). The expression of AEP was significantly higher in the cetuximab-resistant CRC cell lines, as well as in mCRC patients with shorter PFS treated with cetuximab-containing therapy. Furthermore, AEP could decrease the sensitivity of CRC cells to cetuximab in vitro. And the phosphorylation level of MEK and ERK1/2 was increased in AEP overexpression cells. The downregulation of AEP using specific inhibitors could partially restore the sensitivity of CRC cells to cetuximab. CONCLUSION: The higher expression of AEP could contribute to the shorter PFS of cetuximab treatment in mCRC. The reason might be that AEP could promote the phosphorylation of MEK/ERK protein in the downstream signal pathway of EGFR.


Assuntos
Neoplasias Colorretais , Cisteína Endopeptidases , Resistencia a Medicamentos Antineoplásicos , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Transdução de Sinais , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Sistema de Sinalização das MAP Quinases
16.
J Biomol Struct Dyn ; 41(10): 4368-4382, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35475501

RESUMO

There are only two drugs for the treatment of Chagas disease, namely, nifurtimox and benznidazole, that can cause several adverse effects. Despite the effectiveness of these drugs in the disease's acute phase, they are not recognized as curative in the chronic phase, establishing the need for more effective treatment in all stages of the disease. Cruzain is an enzyme that plays a vital role in the life cycle of the etiologic agent, the protozoan Trypanosoma cruzi, being relevant as a therapeutic target in the planning of new drugs. Using molecular docking and dynamics simulations, we have investigated the structural and dynamic factors that can be involved in the enzyme inhibition process at the atomic-molecular level by benzimidazole compounds that are potent cruzain inhibitors with in vitro trypanocidal activity. The study suggests that these inhibitors bind cruzain through steric and hydrogen bonding interactions without altering its secondary structure content and protein compaction. Besides, we observed that these inhibitors decrease the correlation of movements between Cα-atoms of cruzain, increasing the number of atomic communities, mainly in the α-helix that presents the catalytic Cys25 residue. As expected, we also observed a correlation between the inhibitory activity of each inhibitor and their respective binding-free energies, reinforcing that the affinity of the complexes seems to be a relevant factor for enzymatic inhibition. Hence, the results presented in this work contribute to a better understanding of the cruzain enzyme inhibition mechanism through competitive and non-covalent inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Tripanossomicidas , Trypanosoma cruzi , Simulação de Acoplamento Molecular , Cisteína Endopeptidases/química , Proteínas de Protozoários , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Inibidores de Cisteína Proteinase/química
17.
J Biomol Struct Dyn ; 41(20): 10851-10858, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36562200

RESUMO

The Arbovirus (Arthropod-borne virus) is a group which comprises viruses whose transmission is carried out by arthropod vectors infecting vertebrates. Some arboviruses related to human diseases have been given considerable relevance as Chikungunya and Mayaro of the family Togaviridae, genus Alphavirus. The lack of proper specific treatment has prompted the requirement for deeper structural studies that could unveil leads to new drugs. Among possible targets, viral proteases are recognized as proteins with big potential. These proteins, termed nsP2 in Alphavirus, have the function of cleaving certain regions of the viral polyprotein, being vital to the viral cycle. In this research, we used docking and molecular dynamics to analyze the contact between the protease nsP2 of Alphavirus Chikungunya and Mayaro and substrates formed by peptides with ten amino acid residues. A model of the Mayaro nsP2 was constructed based on homologous proteases. Our study suggests that the glycine specificity motif, a region where a highly conserved glycine residue in position P2 of the protease substrate is positioned, facilitates the nucleophilic attack by assisting in placing the P1 carbonyl group carbon. Stabilization of different substrate regions maybe explained by relevant contacts with the enzyme. Besides that, the phi and psi angles in the outlier region of the Ramachandran plot found for the P2 glycine of the Chikungunya substrate seems to indicate the necessity of this residue that can accommodate angles not allowed to other residues.Communicated by Ramaswamy H. Sarma.


Assuntos
Alphavirus , Febre de Chikungunya , Animais , Humanos , Alphavirus/metabolismo , Peptídeo Hidrolases , Cisteína Endopeptidases/química , Peptídeos , Glicina
18.
Planta Med ; 89(11): 1074-1086, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35598603

RESUMO

Periodontal diseases are a global oral health problem affecting almost 10% of the global population. Porphyromonas gingivalis is one of the main bacteria involved in the initiation and progression of inflammatory processes as a result of the action of the cysteine proteases lysin- and arginine-gingipain. Surelease/polycarbophil microparticles containing a lyophilized proanthocyanidin-enriched fraction from the rhizomes of Limonium brasiliense, traditionally named "baicuru" (ethyl acetate fraction), were manufactured. The ethyl acetate fraction was characterized by UHPLC by the presence of samarangenins A and B (12.10 ± 0.07 and 21.05 ± 0.44%, respectively) and epigallocatechin-3-O-gallate (13.44 ± 0.27%). Physiochemical aspects of Surelease/polycarbophil microparticles were characterized concerning particle size, zeta potential, entrapment efficiency, ethyl acetate fraction release, and mucoadhesion. Additionally, the presence of the ethyl acetate fraction-loaded microparticles was performed concerning potential influence on viability of human buccal KB cells, P. gingivalis adhesion to KB cells, gingipain activity, and P. gingivalis biofilm formation. In general, all Surelease/polycarbophil microparticles tested showed strong adhesion to porcine cheek mucosa (93.1 ± 4.2% in a 30-min test), associated with a prolonged release of the ethyl acetate fraction (up to 16.5 ± 0.8% in 24 h). Preincubation of KB cells with Surelease/polycarbophil microparticles (25 µg/mL) resulted in an up to 93 ± 2% reduced infection rate by P. gingivalis. Decreased activity of the P. gingivalis-specific virulence factors lysin- and arginine-gingipain proteases by Surelease/polycarbophil microparticles was confirmed. Surelease/polycarbophil microparticles decreased biofilm formation of P. gingivalis (97 ± 2% at 60 µg/mL). Results from this study prove the promising activity of Surelease/polycarbophil microparticles containing ethyl acetate fraction microparticles as a prophylaxis strategy to prevent the recurrence of P. gingivalis.


Assuntos
Plumbaginaceae , Proantocianidinas , Humanos , Animais , Suínos , Cisteína Endopeptidases Gingipaínas , Porphyromonas gingivalis , Adesinas Bacterianas , Proantocianidinas/farmacologia , Cisteína Endopeptidases , Plumbaginaceae/química
19.
J Mol Model ; 28(10): 311, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097090

RESUMO

Chikungunya virus (CHIKV) is the etiological agent of the Chikungunya fever which has spread worldwide. Clinically, this disease may lead to prolonged incapacitating joint pain that can compromise remarkably the patients' quality of life. However, there are no licensed vaccines or specific drugs to fight this infection yet, making the search for novel therapies an imperative need. In this scenario, the CHIKV nsP2 protease emerged as an attractive therapeutic target once this protein plays a pivotal role in viral replication and pathogenesis. Hence, we investigated the structural basis for the inhibition of this enzyme by using molecular docking and dynamics simulations. Compounds with inhibitory activities against CHIKV nsP2 protease determined experimentally were selected from the literature. Docking studies with a set of stereoisomers showed that trans isomers, but not cis ones, bound close to the catalytic dyad which may explain isomerism requirements to the enzyme's inhibition. Further, binding mode analyses of other known inhibitors revealed highly conserved contacts between inhibitors and enzyme residues like N1011, C1013, A1046, Y1079, N1082, W1084, L1205, and M1242. Molecular dynamics simulations reinforced the importance of some of these interactions and pointed to nonpolar interactions as the main forces for inhibitors' binding. Finally, we observed that true inhibitors exhibited lower structural fluctuation, higher ligand efficiency and did not induce significant changes in protein correlated motions. Collectively, our findings might allow discerning true inhibitors from false ones and can guide drug development efforts targeting the nsP2 protease to fight CHIKV infections in the future.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/metabolismo , Vírus Chikungunya/química , Vírus Chikungunya/fisiologia , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/metabolismo , Qualidade de Vida
20.
Sci Rep ; 12(1): 14030, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982147

RESUMO

As the world enters its second year of the pandemic caused by SARS-CoV-2, intense efforts have been directed to develop an effective diagnosis, prevention, and treatment strategies. One promising drug target to design COVID-19 treatments is the SARS-CoV-2 Mpro. To date, a comparative understanding of Mpro dynamic stereoelectronic interactions with either covalent or non-covalent inhibitors (depending on their interaction with a pocket called S1' or oxyanion hole) has not been still achieved. In this study, we seek to fill this knowledge gap using a cascade in silico protocol of docking, molecular dynamics simulations, and MM/PBSA in order to elucidate pharmacophore models for both types of inhibitors. After docking and MD analysis, a set of complex-based pharmacophore models was elucidated for covalent and non-covalent categories making use of the residue bonding point feature. The highest ranked models exhibited ROC-AUC values of 0.93 and 0.73, respectively for each category. Interestingly, we observed that the active site region of Mpro protein-ligand complex undergoes large conformational changes, especially within the S2 and S4 subsites. The results reported in this article may be helpful in virtual screening (VS) campaigns to guide the design and discovery of novel small-molecule therapeutic agents against SARS-CoV-2 Mpro protein.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA