Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Respir Res ; 25(1): 175, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654248

RESUMO

BACKGROUND: Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS: Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS: Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION: These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.


Assuntos
Asma , Modelos Animais de Doenças , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Ratos , Masculino , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Ratos Sprague-Dawley , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Antiasmáticos/farmacologia , Ovalbumina/toxicidade
2.
Nitric Oxide ; 146: 1-9, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428514

RESUMO

BACKGROUND: Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS: Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS: CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION: Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.


Assuntos
Analgésicos , Canabidiol , Classe Ib de Fosfatidilinositol 3-Quinase , Canais KATP , Neuralgia , Óxido Nítrico Sintase Tipo I , Óxido Nítrico , Transdução de Sinais , Animais , Canabidiol/farmacologia , Canais KATP/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Analgésicos/farmacologia , Analgesia
3.
Cancer Lett ; 584: 216615, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199586

RESUMO

The biological role of B7-H1 intrinsic signal is reportedly diverse and controversial, its signal pathway remains unclear. Although B7-H1 blocking antibodies were found to have agonist capacity, their binding features and agonist mechanisms need further investigation. Here, by constructing cell strains with full-length or truncated B7-H1, we found that B7-H1 functioned as a receptor to transmit cell death signal from PD-1 protein or anti-B7-H1s through its cytoplasmic domain. Specific binding to the IgV-like domain of B7-H1 was required for the downstream signal. Upon agonists interaction, B7-H1 regulated the degradation of phosphoinositide 3-kinases (PI3Ks) subunit p110γ, subsequently inhibited the PI3K/AKT/mTOR pathway, and significantly increased autophagy. Moreover, B7-H1 agonists also suppressed ubiquitylation in B7-H1+cells by reducing ubiquitin-activating enzyme (E1), eventually leading to cell death. Finally, we validated the receptor role of B7-H1 in multiple tumor cells and demonstrated that B7-H1 agonists could suppress tumor progression independent of T cells in vivo. Our findings revealed that B7-H1 agonists functions as a PI3K inhibitor and may offer new strategies for PI3K targeting therapy.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Antígeno B7-H1/metabolismo , Morte Celular , Classe Ib de Fosfatidilinositol 3-Quinase , Agonistas dos Receptores Histamínicos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Blood ; 143(19): 1965-1979, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271660

RESUMO

ABSTRACT: Acute myeloid leukemia (AML) is an aggressive hematological malignancy originating from transformed hematopoietic stem or progenitor cells. AML prognosis remains poor owing to resistance and relapse driven by leukemia stem cells (LSCs). Targeting molecules essential for LSC function is a promising therapeutic approach. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is often dysregulated in AML. We found that although PI3Kγ is highly enriched in LSCs and critical for self-renewal, it was dispensable for normal hematopoietic stem cells. Mechanistically, PI3Kγ-AKT signaling promotes nuclear factor erythroid 2-related factor 2 (NRF2) nuclear accumulation, which induces 6-phosphogluconate dehydrogenase (PGD) and the pentose phosphate pathway, thereby maintaining LSC stemness. Importantly, genetic or pharmacological inhibition of PI3Kγ impaired expansion and stemness of murine and human AML cells in vitro and in vivo. Together, our findings reveal a key role for PI3Kγ in selectively maintaining LSC function by regulating AKT-NRF2-PGD metabolic pathway. Targeting the PI3Kγ pathway may, therefore, eliminate LSCs without damaging normal hematopoiesis, providing a promising therapeutic strategy for AML.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Via de Pentose Fosfato , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Humanos , Camundongos , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Autorrenovação Celular , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética
5.
Bioorg Med Chem ; 84: 117261, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011446

RESUMO

Targeting PI3Kγ would be a useful strategy for treating inflammatory and cancer diseases. However, the development of selective inhibitors of PI3Kγ is very challenging due to the high structural and sequence homology with other PI3K isoforms. A series of quinazolinone derivatives were designed, synthesized and biologically evaluated as PI3Kγ-selective inhibitors. Among all the 28 compounds, compound 9b was found to be the most potent selective inhibitor with IC50 values of 13.11 nM against PI3Kγ kinase. Additionally, compound 9b could generate toxicity on leukemia cells in a panel of 12 different of cancer cell lines with the IC50 value of 2.41 ± 0.11 µM on Jurkat cell. Preliminary mechanism studies indicated that compound 9b through inhibit the activity of PI3K-AKT in human and murine leukemia cells, and activated phosphorylated p38 and phosphorylated ERK presented potent antiproliferative activity, which provided a potent small molecule for further cancer therapy.


Assuntos
Antineoplásicos , Leucemia , Neoplasias , Inibidores de Proteínas Quinases , Quinazolinonas , Animais , Humanos , Camundongos , Antineoplásicos/química , Proliferação de Células , Desenho de Fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinonas/química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade , Classe Ib de Fosfatidilinositol 3-Quinase
6.
Cell Immunol ; 380: 104573, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36031460

RESUMO

Considering the possible interaction between mesenchymal stem cells (MSCs) and PI3Kγ-associated drugs, we evaluated the efficacy and action mechanism of MSCs in the treatment of colitis in PI3Kγ-/- mice. Trinitro-benzene-sulfonic acid enema was used to create a colitis model, and MSCs were transplanted through the caudal vein to treat colitis in wild-type and PI3Kγ-/- mice. We sequenced microbial 16S rRNA genes in the colonic mucosa of PI3Kγ-/- and wild-type mice and quantified colonic IgA, IL-2, IL-10, IL-17A, occludin, and serum IgA. MSC transplantation led to a more serious reduction in the weight of trinitro-benzene-sulfonic acid-administered PI3Kγ-/- mice than that in wild-type mice. The disease activity index, pathological scoring, number of taxa in the colon, Berger-Parker index, I-index, proportion of Proteobacteria, and IgA level in the blood were higher in PI3Kγ-/- mice than in wild-type mice after MSC transplantation. The occludin and IL-10 levels in the colon tissues decreased before and after MSC transplantation in PI3Kγ-/- mice, whereas they were increased in wild-type mice The IL-17 level decreased in both wild-type and PI3Kγ-/- mice, with knockout mice showing a greater decrease. Therefore, MSC transplantation in PI3Kγ-/- mice led to increased numbers of exogenous pathogenic microorganisms and enhanced colitis that was difficult to relieve.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Colite , Transplante de Células-Tronco Mesenquimais , Animais , Benzeno , Colite/induzido quimicamente , Citocinas , Modelos Animais de Doenças , Imunoglobulina A , Inflamação , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ocludina , RNA Ribossômico 16S , Ácido Trinitrobenzenossulfônico
7.
Immunobiology ; 227(5): 152242, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870262

RESUMO

Single nucleotide polymorphisms (SNPs) that do not change the composition of amino acids and cause synonymous mutations (sSNPs) were previously considered to lack any functional roles. However, sSNPs have recently been shown to interfere with protein expression owing to a myriad of factors related to the regulation of transcription, mRNA stability, and protein translation processes. In patients with Chagas disease, the presence of the synonymous mutation rs1129293 in phosphatidylinositol-4,5-bisphosphate 3-kinase gamma (PIK3CG) gene contributes to the development of the chronic Chagas cardiomyopathy (CCC), instead of the digestive or asymptomatic forms. In this study, we aimed to investigate whether rs1129293 is associated with the transcription of PIK3CG mRNA and its activity by quantifying AKT phosphorylation in the heart samples of 26 chagasic patients with CCC. Our results showed an association between rs1129293 and decreased PIK3CG mRNA expression levels in the cardiac tissues of patients with CCC. The phosphorylation levels of AKT, the protein target of PI3K, were also reduced in patients with this mutation, but were not correlated with PI3KCG mRNA expression levels. Moreover, bioinformatics analysis showed that rs1129293 and other SNPs in linkage disequilibrium (LD) were associated with the transcriptional regulatory elements, post-transcriptional modifications, and cell-specific splicing expression of PIK3CG mRNA. Therefore, our data demonstrates that the synonymous SNP rs1129293 is capable of affecting the PIK3CG mRNA expression and PI3Kγ activation.


Assuntos
Cardiomiopatia Chagásica , Cardiomiopatia Chagásica/genética , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Humanos , Fosfatidilinositol 3-Quinases , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mutação Silenciosa
8.
Ann N Y Acad Sci ; 1515(1): 196-207, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35725890

RESUMO

Phosphoinositide 3-kinases (PI3Ks) are a family of enzymes phosphorylating phospholipids in the membrane, thereby, promoting the PI3K/AKT signaling cascade. PI3Ks are involved in a variety of fundamental cellular functions, including tumor necrosis factor α (TNFα)-induced tight junction (TJ) impairment-a hallmark of inflammatory bowel diseases. Most of the studies analyzing the role of class I PI3K signaling in epithelial barrier maintenance did not decipher which of the isoforms are responsible for the observed effects. By using wild-type and PI3Kγ-deficient HT-29/B6 cells, we characterized the functional role of PI3Kγ in these cells under inflammatory conditions. Measurement of the transepithelial electrical resistance and the paracellular flux of macromolecules revealed that monolayers of PI3Kγ-deficient cells, compared with wild-type cells, were protected against TNFα-induced barrier dysfunction. This effect was independent of any PI3K activity because treatment with a pan-PI3K inhibitor did not alter this observation. By immunostaining, we found correlative changes in the distribution of the TJ marker ZO-1. Furthermore, the absence of PI3Kγ reduced the basal level of the pore-forming TJ protein claudin-2. Our study suggests a novel noncanonical, kinase-independent scaffolding function of PI3Kγ in TNFα-induced barrier dysfunction.


Assuntos
Fosfatidilinositol 3-Quinases , Fator de Necrose Tumoral alfa , Classe Ib de Fosfatidilinositol 3-Quinase , Claudina-2/metabolismo , Colo , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositóis/metabolismo , Fosfatidilinositóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Nat Commun ; 13(1): 1768, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365657

RESUMO

Myeloid cells play key roles in cancer immune suppression and tumor progression. In response to tumor derived factors, circulating monocytes and granulocytes extravasate into the tumor parenchyma where they stimulate angiogenesis, immune suppression and tumor progression. Chemokines, cytokines and interleukins stimulate PI3Kγ-mediated Rap1 activation, leading to conformational changes in integrin α4ß1 that promote myeloid cell extravasation and tumor inflammation Here we show that PI3Kγ activates a high molecular weight form of myosin light chain kinase, MLCK210, that promotes myosin-dependent Rap1 GTP loading, leading to integrin α4ß1 activation. Genetic or pharmacological inhibition of MLCK210 suppresses integrin α4ß1 activation, as well as tumor inflammation and progression. These results demonstrate a critical role for myeloid cell MLCK210 in tumor inflammation and serve as basis for the development of alternative approaches to develop immune oncology therapeutics.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Quinase de Cadeia Leve de Miosina , Neoplasias , Adesão Celular/fisiologia , Humanos , Inflamação , Peso Molecular , Células Mieloides/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Neoplasias/genética
10.
Dis Markers ; 2022: 8707061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308138

RESUMO

Objective: To investigate the role of leptin in regulating cell inflammation and protecting myocardium after myocardial ischemia-reperfusion injury in rats through signaling pathway at tissue and molecular protein levels. Methods: Healthy female SD rats were randomly divided into 4 groups, which were sham, I/R group, leptin low-dose intervention group, and high-dose intervention group (40 µg/kg and 80 µg/kg, respectively). Cardiac hemodynamics, myocardial enzymology, inflammatory indices, and pathological changes were observed. Western blot was used to observe the expression of PI3K, AKT, and NFκB protein by leptin. Results: Leptin can improve the hemodynamics of cardiac ischemia-reperfusion rats, improve the expression of myocardial enzymology, reduce the release of cardiac and serum inflammatory factors, increased PI3k, AKT, and NFκB expression, and reduce the occurrence of inflammation from the perspective of gross pathology, thus protecting the body. Conclusion: Leptin pretreatment can reduce MIRI injury, and the protective mechanism may be that leptin upregulates PI3K-AKT-NFκB expression in myocardial tissue to reduce inflammation and promote repair of I/R injury.


Assuntos
Inflamação/metabolismo , Leptina , Traumatismo por Reperfusão Miocárdica , Substâncias Protetoras , Animais , Classe Ib de Fosfatidilinositol 3-Quinase , Feminino , Leptina/imunologia , Leptina/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
11.
Nat Rev Immunol ; 22(11): 687-700, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35322259

RESUMO

Over the past two decades, new insights have positioned phosphoinositide 3-kinase-γ (PI3Kγ) as a context-dependent modulator of immunity and inflammation. Recent advances in protein structure determination and drug development have allowed for generation of highly specific PI3Kγ inhibitors, with the first now in clinical trials for several oncology indications. Recently, a monogenic immune disorder caused by PI3Kγ deficiency was discovered in humans and modelled in mice. Human inactivated PI3Kγ syndrome confirms the immunomodulatory roles of PI3Kγ and strengthens newly defined roles of this molecule in modulating inflammatory cytokine release in macrophages. Here, we review the functions of PI3Kγ in the immune system and discuss how our understanding of its potential as a therapeutic target has evolved.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Humanos , Camundongos , Animais , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase , Inibidores de Fosfoinositídeo-3 Quinase , Macrófagos/metabolismo
12.
Sci Transl Med ; 14(638): eabl6328, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353541

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP)-elevating agents, such as ß2-adrenergic receptor (ß2-AR) agonists and phosphodiesterase (PDE) inhibitors, remain a mainstay in the treatment of obstructive respiratory diseases, conditions characterized by airway constriction, inflammation, and mucus hypersecretion. However, their clinical use is limited by unwanted side effects because of unrestricted cAMP elevation in the airways and in distant organs. Here, we identified the A-kinase anchoring protein phosphoinositide 3-kinase γ (PI3Kγ) as a critical regulator of a discrete cAMP signaling microdomain activated by ß2-ARs in airway structural and inflammatory cells. Displacement of the PI3Kγ-anchored pool of protein kinase A (PKA) by an inhaled, cell-permeable, PI3Kγ mimetic peptide (PI3Kγ MP) inhibited a pool of subcortical PDE4B and PDE4D and safely increased cAMP in the lungs, leading to airway smooth muscle relaxation and reduced neutrophil infiltration in a murine model of asthma. In human bronchial epithelial cells, PI3Kγ MP induced unexpected cAMP and PKA elevations restricted to the vicinity of the cystic fibrosis transmembrane conductance regulator (CFTR), the ion channel controlling mucus hydration that is mutated in cystic fibrosis (CF). PI3Kγ MP promoted the phosphorylation of wild-type CFTR on serine-737, triggering channel gating, and rescued the function of F508del-CFTR, the most prevalent CF mutant, by enhancing the effects of existing CFTR modulators. These results unveil PI3Kγ as the regulator of a ß2-AR/cAMP microdomain central to smooth muscle contraction, immune cell activation, and epithelial fluid secretion in the airways, suggesting the use of a PI3Kγ MP for compartment-restricted, therapeutic cAMP elevation in chronic obstructive respiratory diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fosfatidilinositol 3-Quinase , Animais , Classe Ib de Fosfatidilinositol 3-Quinase , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Inflamação , Camundongos , Peptídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
13.
Cells ; 11(5)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269396

RESUMO

Inflammatory cells contribute to the pathogenesis of renal ischemia-reperfusion injury (IRI). However, the signaling mechanisms underlying the infiltration of inflammatory cells into the kidney are not well understood. In this study, we examined the effects of phosphoinositide 3 kinase γ (PI3Kγ) on inflammatory cells infiltration into the kidney in response to ischemia-reperfusion injury. Compared with wild-type mice, PI3Kγ knockout mice displayed less IRI in the kidney with fewer tubular apoptotic cell. Furthermore, PI3Kγ deficiency decreased the number of infiltrated neutrophils, macrophages, and T cells in the kidney, which was accompanied by a decrease in the expression of pro-inflammatory cytokines in the kidney. Moreover, wild-type mice treated with AS-605240, a selective PI3Kγ inhibitor, displayed less tubular damage, accumulated fewer inflammatory cells, and expressed less proinflammatory molecules in the kidney following IRI. These results demonstrate that PI3Kγ has a critical role in the pathogenesis of kidney damage in IRI, indicating that PI3Kγ inhibition may serve as a potential therapeutic strategy for the prevention of ischemia-reperfusion-induced kidney injury.


Assuntos
Injúria Renal Aguda , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Traumatismo por Reperfusão , Injúria Renal Aguda/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Traumatismo por Reperfusão/metabolismo
14.
Eur J Pain ; 26(4): 825-834, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35044019

RESUMO

BCKGROUND: Aripiprazole is an antipsychotic drug used to treat schizophrenia and bipolar disorder. Recently, its peripheral analgesic component was evaluated, however, the mechanism involved in this effect is not fully established. Therefore, the aim of the study was to obtain pharmacological evidence for the involvement of the nitric oxide system in the peripheral antinociceptive effect induced by aripiprazole. METHODS: The hyperalgesia was induced via intraplantar injection of prostaglandin E2 in mice and the nociceptive thresholds were evaluated using the paw pressure test. All drugs were injected locally into the right hind paw. RESULTS: The PI3K inhibitor (AS605240), but not rapamycin (mTOR kinase inhibitor), reversed the peripheral antinociceptive effect induced by Aripiprazole. Antinociception was antagonized by the non-selective inhibitor of the nitric oxide synthase (L-NOarg). The same response was observed using the selective iNOS, but not with the selective nNOS inhibitors. The selective guanylyl cyclase enzyme inhibitor (ODQ) and the non-selective potassium channel blocker tetraethylammonium were able to reverse the antinociceptive effect of aripiprazole. The same was seen using glibenclamide, an ATP-dependent K+ channel blocker. However, calcium-activated potassium channel blockers of small and high conductance, dequalinium chloride and paxilline, respectively, did not reverse this effect. The injection of cGMP-specific phosphodiesterase type 5 inhibitor zaprinast, potentiated the antinociceptive effect induced by a low dose of aripiprazole. CONCLUSION: The results provide evidence that aripiprazole induces peripheral antinociceptive effects via PI3K/NO/cGMP/KATP pathway activation.


Assuntos
Analgésicos , Antipsicóticos , Aripiprazol , Trifosfato de Adenosina , Analgésicos/uso terapêutico , Animais , Antipsicóticos/farmacologia , Aripiprazol/farmacologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , GMP Cíclico/metabolismo , Camundongos , Óxido Nítrico/metabolismo
15.
Bioengineered ; 13(1): 1491-1506, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986757

RESUMO

This paper probes the mechanisms underlying miR-142-3p's modulation of hepatocellular carcinoma (HCC) invasion and apoptosis. Quantitative real-time PCR and Western blot monitored the miR-142-3p profile in HCC tissues and non-tumor tissues. The correlation between miR-142-3p expression and HCC patients' clinicopathological indicators was analyzed. miR-142-3p overexpression and knockdown models were established in HCC cell lines. Cell proliferation was gauged by the colony formation assay and BrdU staining. For measuring apoptosis, flow cytometry and Western blot were implemented. Transwell assay tested cell migration and invasion. miR-142-3p mimics or inhibitors were transfected in Huh7 and HCCLM3 cells. The targeting association between miR-142-3p and PIK3CG was predicted through bioinformatics and further verified by related experiments. The influence of PIK3CG overexpression on miR-142-3p's role in HCC was assayed. A xenografted tumor model was built in mice to validate miR-142-3p knockdown's influence on HCC in vivo. As a result, miR-142-3p exhibited a decreased profile in HCC tissues and cells. Overexpressing miR-142-3p accelerated apoptosis and suppressed the PI3K/AKT/HIF-1α signal. Knocking down miR-142-3p presented opposite effects. PIK3CG overexpression dampened the anti-tumor effect of miR-142-3p. miR-142-3p repressed HCC invasion and intensified apoptosis to restrain HCC by abating the PIK3CG-mediated PI3K/AKT/HIF-1α pathway.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/genética , RNA Interferente Pequeno/administração & dosagem , Animais , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Classe Ib de Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Blood ; 139(4): 523-537, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084470

RESUMO

Current limitations in using chimeric antigen receptor T(CART) cells to treat patients with hematological cancers include limited expansion and persistence in vivo that contribute to cancer relapse. Patients with chronic lymphocytic leukemia (CLL) have terminally differentiated T cells with an exhausted phenotype and experience low complete response rates after autologous CART therapy. Because PI3K inhibitor therapy is associated with the development of T-cell-mediated autoimmunity, we studied the effects of inhibiting the PI3Kδ and PI3Kγ isoforms during the manufacture of CART cells prepared from patients with CLL. Dual PI3Kδ/γ inhibition normalized CD4/CD8 ratios and maximized the number of CD8+ T-stem cell memory, naive, and central memory T-cells with dose-dependent decreases in expression of the TIM-3 exhaustion marker. CART cells manufactured with duvelisib (Duv-CART cells) showed significantly increased in vitro cytotoxicity against CD19+ CLL targets caused by increased frequencies of CD8+ CART cells. Duv-CART cells had increased expression of the mitochondrial fusion protein MFN2, with an associated increase in the relative content of mitochondria. Duv-CART cells exhibited increased SIRT1 and TCF1/7 expression, which correlated with epigenetic reprograming of Duv-CART cells toward stem-like properties. After transfer to NOG mice engrafted with a human CLL cell line, Duv-CART cells expressing either a CD28 or 41BB costimulatory domain demonstrated significantly increased in vivo expansion of CD8+ CART cells, faster elimination of CLL, and longer persistence. Duv-CART cells significantly enhanced survival of CLL-bearing mice compared with conventionally manufactured CART cells. In summary, exposure of CART to a PI3Kδ/γ inhibitor during manufacturing enriched the CART product for CD8+ CART cells with stem-like qualities and enhanced efficacy in eliminating CLL in vivo.


Assuntos
Imunoterapia Adotiva/métodos , Isoquinolinas/uso terapêutico , Leucemia Linfocítica Crônica de Células B/terapia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Purinas/uso terapêutico , Animais , Células Cultivadas , Técnicas de Reprogramação Celular/métodos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Epigênese Genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos
17.
Sci Rep ; 12(1): 347, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013447

RESUMO

Cancer stem cells (CSCs) are capable of continuous proliferation, self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. We have established a model of CSCs that was originally developed from mouse induced pluripotent stem cells (miPSCs) by proposing miPSCs to the conditioned medium (CM) of cancer derived cells, which is a mimic of carcinoma microenvironment. Further research found that not only PI3K-Akt but also EGFR signaling pathway was activated during converting miPSCs into CSCs. In this study, we tried to observe both of PI3Kγ inhibitor Eganelisib and EGFR inhibitor Gefitinib antitumor effects on the models of CSCs derived from miPSCs (miPS-CSC) in vitro and in vivo. As the results, targeting these two pathways exhibited significant inhibition of cell proliferation, self-renewal, migration and invasion abilities in vitro. Both Eganelisib and Gefitinib showed antitumor effects in vivo while Eganelisib displayed more significant therapeutic efficacy and less side effects than Gefitinib on all miPS-CSC models. Thus, these data suggest that the inhibitiors of PI3K and EGFR, especially PI3Kγ, might be a promising therapeutic strategy against CSCs defeating cancer in the near future.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Receptores ErbB/antagonistas & inibidores , Gefitinibe/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos
18.
J Med Chem ; 65(2): 1418-1444, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34672584

RESUMO

Phosphoinositide-3-kinase γ (PI3Kγ) is highly expressed in immune cells and promotes the production and migration of inflammatory mediators. The inhibition of PI3Kγ has been shown to repolarize the tumor immune microenvironment to a more inflammatory phenotype, thereby controlling immune suppression in cancer. Herein, we report the structure-based optimization of an early lead series of pyrazolopyrimidine isoindolinones, which culminated in the discovery of highly potent and isoform-selective PI3Kγ inhibitors with favorable drug-like properties. X-ray cocrystal structure analysis, molecular docking studies, and detailed structure-activity relationship investigations resulted in the identification of the optimal amide and isoindolinone substituents to achieve a desirable combination of potency, selectivity, and metabolic stability. Preliminary in vitro studies indicate that inhibition of PI3Kγ with compound 56 results in a significant immune response by increasing pro-inflammatory cytokine gene expression in M1 macrophages.


Assuntos
Amidas/química , Classe Ib de Fosfatidilinositol 3-Quinase/química , Desenho de Fármacos , Descoberta de Drogas , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirimidinas/química , Animais , Humanos , Masculino , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
19.
Eur J Cancer ; 157: 450-463, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601286

RESUMO

INTRODUCTION: We hypothesised that the combined use of radiation therapy and a phosphoinositide 3-kinaseγδ inhibitor to reduce immune suppression would enhance the efficacy of an immune checkpoint inhibitor. METHODS: Murine breast cancer cells (4T1) were grown in both immune-competent and -deficient BALB/c mice, and tumours were irradiated by 3 fractions of 24 Gy. A PD-1 blockade and a phosphoinositide 3-kinase (PI3K)γδ inhibitor were then administered every other day for 2 weeks. The same experiments were performed in humanised patient-derived breast cancer xenograft model and its tumour was sequenced to identify immune-related pathways and profile infiltrated immune cells. Transcriptomic and clinical data were acquired from The Cancer Genome Atlas pan-cancer cohort, and the deconvolution algorithm was used to profile immune cell repertoire. RESULTS: Using a PI3Kγδ inhibitor, radiation therapy (RT) and PD-1 blockade significantly delayed primary tumour growth, boosted the abscopal effect and improved animal survival. RT significantly increased CD8+cytotoxic T-cell fractions, immune-suppressive regulatory T cells (Tregs), myeloid-derived suppressor cells and M2 tumour-associated macrophages (TAMs). However, the PI3Kγδ inhibitor significantly lowered the proportions of Tregs, myeloid-derived suppressor cells and M2 TAMs, achieving dramatic gains in splenic, nodal, and tumour CD8+ T-cell populations after triple combination therapy. In a humanised patient-derived breast cancer xenograft model, triple combination therapy significantly delayed tumour growth and decreased immune-suppressive pathways. In The Cancer Genome Atlas cohort, high Treg/CD8+ T cell and M2/M1 TAM ratios were associated with poor overall patient survival. CONCLUSION: These findings indicate PI3Kγ and PI3Kδ are clinically relevant targets in an immunosuppressive TME, and combining PI3Kγδ inhibitor, RT and PD-1 blockade may overcome the therapeutic resistance of immunologically cold tumours. SYNOPSIS: Combining PI3Kγδ inhibitor, RT, and PD-1 blockade may be a viable clinical approach, helping to overcome the therapeutic resistance of immunologically cold tumours such as breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/terapia , Quimiorradioterapia/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Sinergismo Farmacológico , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos da radiação , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/efeitos da radiação , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cells ; 10(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685514

RESUMO

(1) Background: Rapid microglial proliferation contributes to the complex responses of the innate immune system in the brain to various neuroinflammatory stimuli. Here, we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) and reactive oxygen species (ROS) for rapid proliferation of murine microglia induced by LPS and ATP. (2) Methods: PI3Kγ knockout mice (PI3Kγ KO), mice expressing catalytically inactive PI3Kγ (PI3Kγ KD) and wild-type mice were assessed for microglial proliferation using an in vivo wound healing assay. Additionally, primary microglia derived from newborn wild-type, PI3Kγ KO and PI3Kγ KD mice were used to analyze PI3Kγ effects on proliferation and cell viability, senescence and cellular and mitochondrial ROS production; the consequences of ROS production for proliferation and cell viability after LPS or ATP stimulation were studied using genetic and pharmacologic approaches. (3) Results: Mice with a loss of lipid kinase activity showed impaired proliferation of microglia. The prerequisite of induced microglial proliferation and cell viability appeared to be PI3Kγ-mediated induction of ROS production. (4) Conclusions: The lipid kinase activity of PI3Kγ plays a crucial role for microglial proliferation and cell viability after acute inflammatory activation.


Assuntos
Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Microglia/metabolismo , Animais , Encéfalo/metabolismo , Proliferação de Células/genética , Sobrevivência Celular/genética , Classe Ib de Fosfatidilinositol 3-Quinase/genética , AMP Cíclico/metabolismo , Camundongos Knockout , Neurogênese/fisiologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...