Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.087
Filtrar
1.
Elife ; 122024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837189

RESUMO

The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting the Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Microdomínios da Membrana , Transporte Proteico , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microdomínios da Membrana/metabolismo , Via Secretória , Humanos , Cinética , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Células HeLa
2.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782601

RESUMO

Complexes of ERLIN1 and ERLIN2 (ER lipid raft-associated 1 and 2) form large ring-like cup-shaped structures on the endoplasmic reticulum (ER) membrane and serve as platforms to bind cholesterol and E3 ubiquitin ligases, potentially defining functional nanodomains. Here, we show that ERLIN scaffolds mediate the interaction between the full-length isoform of TMUB1 (transmembrane and ubiquitin-like domain-containing 1) and RNF170 (RING finger protein 170). We identify a luminal N-terminal conserved region in TMUB1 and RNF170, which is required for this interaction. Three-dimensional modelling shows that this conserved motif binds the stomatin/prohibitin/flotillin/HflKC domain of two adjacent ERLIN subunits at different interfaces. Protein variants that preclude these interactions have been previously linked to hereditary spastic paraplegia. Using omics-based approaches in combination with phenotypic characterization of HeLa cells lacking both ERLINs, we demonstrate a role of ERLIN scaffolds in limiting cholesterol esterification, thereby favouring cholesterol transport from the ER to the Golgi apparatus and regulating Golgi morphology and the secretory pathway.


Assuntos
Colesterol , Retículo Endoplasmático , Complexo de Golgi , Proteínas de Membrana , Via Secretória , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Membrana/metabolismo , Colesterol/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Retículo Endoplasmático/metabolismo , Células HeLa , Complexo de Golgi/metabolismo , Ligação Proteica , Proteínas do Tecido Nervoso
3.
Nat Commun ; 15(1): 4469, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796472

RESUMO

To facilitate inter-tissue communication and the exchange of proteins, lipoproteins, and metabolites with the circulation, hepatocytes have an intricate and efficient intracellular trafficking system regulated by small Rab GTPases. Here, we show that Rab30 is induced in the mouse liver by fasting, which is amplified in liver-specific carnitine palmitoyltransferase 2 knockout mice (Cpt2L-/-) lacking the ability to oxidize fatty acids, in a Pparα-dependent manner. Live-cell super-resolution imaging and in vivo proximity labeling demonstrates that Rab30-marked vesicles are highly dynamic and interact with proteins throughout the secretory pathway. Rab30 whole-body, liver-specific, and Rab30; Cpt2 liver-specific double knockout (DKO) mice are viable with intact Golgi ultrastructure, although Rab30 deficiency in DKO mice suppresses the serum dyslipidemia observed in Cpt2L-/- mice. Corresponding with decreased serum triglyceride and cholesterol levels, DKO mice exhibit decreased circulating but not hepatic ApoA4 protein, indicative of a trafficking defect. Together, these data suggest a role for Rab30 in the selective sorting of lipoproteins to influence hepatocyte and circulating triglyceride levels, particularly during times of excessive lipid burden.


Assuntos
Carnitina O-Palmitoiltransferase , Jejum , Hepatócitos , Homeostase , Metabolismo dos Lipídeos , Fígado , Camundongos Knockout , Proteínas rab de Ligação ao GTP , Animais , Masculino , Camundongos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Colesterol/metabolismo , Jejum/metabolismo , Complexo de Golgi/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Triglicerídeos/metabolismo , Triglicerídeos/sangue
4.
Sci Adv ; 10(19): eadh0798, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718107

RESUMO

Mutations in the LMNA gene encoding lamins A/C cause an array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis underlying cardiac dysfunction remains elusive. Using a novel conditional deletion model capable of translatome profiling, we observed that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Before cardiac dysfunction, Lmna-deleted cardiomyocytes displayed nuclear abnormalities, Golgi dilation/fragmentation, and CREB3-mediated stress activation. Translatome profiling identified MED25 activation, a transcriptional cofactor that regulates Golgi stress. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the Golgi. Systemic administration of modulators of autophagy or ER stress significantly delayed cardiac dysfunction and prolonged survival. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the LMNA cardiomyopathy development.


Assuntos
Cardiomiopatias , Lamina Tipo A , Miócitos Cardíacos , Membrana Nuclear , Animais , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Camundongos , Membrana Nuclear/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Cardiomiopatias/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Autofagia , Estresse Fisiológico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Complexo de Golgi/metabolismo , Camundongos Knockout
5.
Sci Rep ; 14(1): 10160, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698045

RESUMO

How information flow is coordinated for managing transit of 1/3 of the genome through endomembrane pathways by the coat complex II (COPII) system in response to human variation remains an enigma. By examining the interactome of the COPII cage-assembly component Sec13, we show that it is simultaneously associated with multiple protein complexes that facilitate different features of a continuous program of chromatin organization, transcription, translation, trafficking, and degradation steps that are differentially sensitive to Sec13 levels. For the trafficking step, and unlike other COPII components, reduction of Sec13 expression decreased the ubiquitination and degradation of wild-type (WT) and F508del variant cargo protein cystic fibrosis transmembrane conductance regulator (CFTR) leading to a striking increase in fold stability suggesting that the events differentiating export from degradation are critically dependent on COPII cage assembly at the ER Golgi intermediate compartment (ERGIC) associated recycling and degradation step linked to COPI exchange. Given Sec13's multiple roles in protein complex assemblies that change in response to its expression, we suggest that Sec13 serves as an unanticipated master regulator coordinating information flow from the genome to the proteome to facilitate spatial covariant features initiating and maintaining design and function of membrane architecture in response to human variation.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas de Transporte , Regulador de Condutância Transmembrana em Fibrose Cística , Transporte Proteico , Proteínas de Transporte Vesicular , Humanos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Ubiquitinação , Proteólise
6.
Biotechnol J ; 19(5): e2400098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38797728

RESUMO

Human carboxypeptidase B1 (hCPB1) is vital for recombinant insulin production, holding substantial value in the pharmaceutical industry. Current challenges include limited hCPB1 enzyme activity. In this study, recombinant hCPB1 efficient expression in Pichia pastoris was achieved. To enhance hCPB1 secretion, we conducted signal peptides screening and deleted the Vps10 sortilin domain, reducing vacuolar mis-sorting. Overexpression of Sec4p increased the fusion of secretory vesicles with the plasma membrane and improved hCPB1 secretion by 20%. Rational protein engineering generated twenty-two single-mutation mutants and identified the A178L mutation resulted in a 30% increase in hCPB1 specific activity. However, all combinational mutations that increased specific activities decreased protein expression levels. Therefore, computer-aided global protein design with PROSS was employed for the aim of improving specific activities and preserving good protein expression. Among the six designed mutants, hCPB1-P6 showed a remarkable 114% increase in the catalytic rate constant (kcat), a 137% decrease in the Michaelis constant (Km), and a 490% increase in catalytic efficiency. Most mutations occurred on the surface of hCPB1-P6, with eight sites mutated to proline. In a 5 L fermenter, hCPB1-P6 was produced by the secretion-enhanced P. pastoris chassis to 199.6 ± 20 mg L-1 with a specific activity of 96 ± 0.32 U mg-1, resulting in a total enzyme activity of 19137 ± 1131 U L-1, demonstrating significant potential for industrial applications.


Assuntos
Carboxipeptidase B , Membrana Celular , Complexo de Golgi , Engenharia de Proteínas , Proteínas Recombinantes , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Engenharia de Proteínas/métodos , Carboxipeptidase B/genética , Carboxipeptidase B/metabolismo , Membrana Celular/metabolismo , Membrana Celular/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/enzimologia , Saccharomycetales/genética , Saccharomycetales/enzimologia , Mutação , Pichia/genética , Pichia/metabolismo , Sinais Direcionadores de Proteínas/genética , Transporte Proteico
7.
Nat Commun ; 15(1): 4514, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802491

RESUMO

Knowledge on the distribution and dynamics of glycosylation enzymes in the Golgi is essential for better understanding this modification. Here, using a combination of CRISPR/Cas9 knockin technology and super-resolution microscopy, we show that the Golgi complex is assembled by a number of small 'Golgi units' that have 1-3 µm in diameter. Each Golgi unit contains small domains of glycosylation enzymes which we call 'zones'. The zones of N- and O-glycosylation enzymes are colocalised. However, they are less colocalised with the zones of a glycosaminoglycan synthesizing enzyme. Golgi units change shapes dynamically and the zones of glycosylation enzymes rapidly move near the rim of the unit. Photobleaching analysis indicates that a glycosaminoglycan synthesizing enzyme moves between units. Depletion of giantin dissociates units and prevents the movement of glycosaminoglycan synthesizing enzymes, which leads to insufficient glycosaminoglycan synthesis. Thus, we show the structure-function relationship of the Golgi and its implications in human pathogenesis.


Assuntos
Glicosaminoglicanos , Complexo de Golgi , Complexo de Golgi/metabolismo , Glicosilação , Humanos , Glicosaminoglicanos/metabolismo , Células HeLa , Sistemas CRISPR-Cas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas da Matriz do Complexo de Golgi
8.
Nat Commun ; 15(1): 3978, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729926

RESUMO

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Canais de Cloreto , Complexo de Golgi , Estresse Salino , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Complexo de Golgi/metabolismo , Canais de Cloreto/metabolismo , Canais de Cloreto/genética , Regulação da Expressão Gênica de Plantas , Transporte Proteico/efeitos dos fármacos , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Plantas Geneticamente Modificadas
9.
Biomed Pharmacother ; 175: 116646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692058

RESUMO

The Golgi apparatus plays a crucial role in mediating the modification, transport, and sorting of intracellular proteins and lipids. The morphological changes occurring in the Golgi apparatus are exceptionally important for maintaining its function. When exposed to external pressure or environmental stimulation, the Golgi apparatus undergoes adaptive changes in both structure and function, which are known as Golgi stress. Although certain signal pathway responses or post-translational modifications have been observed following Golgi stress, further research is needed to comprehensively summarize and understand the related mechanisms. Currently, there is evidence linking Golgi stress to neurodegenerative diseases; however, the role of Golgi stress in the progression of neurodegenerative diseases such as Alzheimer's disease remains largely unexplored. This review focuses on the structural and functional alterations of the Golgi apparatus during stress, elucidating potential mechanisms underlying the involvement of Golgi stress in regulating immunity, autophagy, and metabolic processes. Additionally, it highlights the pivotal role of Golgi stress as an early signaling event implicated in the pathogenesis and progression of neurodegenerative diseases. Furthermore, this study summarizes prospective targets that can be therapeutically exploited to mitigate neurodegenerative diseases by targeting Golgi stress. These findings provide a theoretical foundation for identifying novel breakthroughs in preventing and treating neurodegenerative diseases.


Assuntos
Complexo de Golgi , Doenças Neurodegenerativas , Humanos , Complexo de Golgi/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Transdução de Sinais , Autofagia/fisiologia , Estresse Fisiológico/fisiologia
10.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38770683

RESUMO

Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.


Assuntos
Carcinogênese , Membrana Celular , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Endocitose , Transporte Proteico , Complexo de Golgi/metabolismo
11.
Mol Cell Biol ; 44(4): 123-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747374

RESUMO

SREBP transcription factors are central regulators of lipid metabolism. Their proteolytic activation requires ER to the Golgi translocation and subsequent cleavage by site-1-protease (S1P). Produced as a proprotein, S1P undergoes autocatalytic cleavage from its precursor S1PA to mature S1PC form. Here, we report that SPRING (previously C12ORF29) and S1P interact through their ectodomains, and that this facilitates the autocatalytic cleavage of S1PA into its mature S1PC form. Reciprocally, we identified a S1P recognition-motif in SPRING and demonstrate that S1P-mediated cleavage leads to secretion of the SPRING ectodomain in cells, and in liver-specific Spring knockout (LKO) mice transduced with AAV-mSpring. By reconstituting SPRING variants into SPRINGKO cells we show that the SPRING ectodomain supports proteolytic maturation of S1P and SREBP signaling, but that S1P-mediated SPRING cleavage is not essential for these processes. Absence of SPRING modestly diminishes proteolytic maturation of S1PA→C and trafficking of S1PC to the Golgi. However, despite reaching the Golgi in SPRINGKO cells, S1PC fails to rescue SREBP signaling. Remarkably, whereas SREBP signaling was severely attenuated in SPRINGKO cells and LKO mice, that of ATF6, another S1P substrate, was unaffected in these models. Collectively, our study positions SPRING as a dedicated licensing factor for SREBP-specific activation by S1P.


Assuntos
Complexo de Golgi , Camundongos Knockout , Pró-Proteína Convertases , Animais , Camundongos , Complexo de Golgi/metabolismo , Humanos , Pró-Proteína Convertases/metabolismo , Pró-Proteína Convertases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Transdução de Sinais , Células HEK293 , Fígado/metabolismo , Proteólise , Retículo Endoplasmático/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética
12.
Bioorg Chem ; 148: 107476, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788368

RESUMO

Depression is a debilitating mental illness that poses a serious threat to human health. Nitric Oxide (NO), as an important gasotransmitter, is closely associated with the pathogenesis of depressive disorders. Effective monitoring of NO fluctuation is beneficial for the diagnosis of depression and therapy assessment of antidepressants. Currently, there is a lack of effective methods for rapidly and sensitively identifying NO and elucidating its relationship with depression diseases. Herein, we developed a NIR dye TJ730-based fluorescent probe TJ730-Golgi-NO incorporating benzenesulfonamide as a Golgi-targeted moiety and the thiosemicarbazide group for NO detection. The probe exhibited turn-on fluorescence ability and a large Stokes shift of 158 nm, which shows high sensitivity, selectivity, and rapid response (<1 min) for NO detection. TJ730-Golgi-NO could detect exogenous and endogenous NO in cells stimulated by Glu and LPS, and target Golgi apparatus. Moreover, we disclose a significant increase of NO in the depression model and a weak fluorescence evidenced in the fluoxetine-treated depression mice. This study provides a competent tool for studying the function of NO and helping improve the effective treatment of depression diseases.


Assuntos
Depressão , Corantes Fluorescentes , Complexo de Golgi , Óxido Nítrico , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Animais , Óxido Nítrico/metabolismo , Óxido Nítrico/análise , Camundongos , Complexo de Golgi/metabolismo , Depressão/tratamento farmacológico , Estrutura Molecular , Humanos , Modelos Animais de Doenças , Masculino , Relação Estrutura-Atividade , Raios Infravermelhos , Relação Dose-Resposta a Droga , Imagem Óptica , Células RAW 264.7
13.
Commun Biol ; 7(1): 596, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762629

RESUMO

Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.


Assuntos
Retículo Endoplasmático , Proteínas Ativadoras de GTPase , Proteínas de Protozoários , Toxoplasma , Proteínas rab de Ligação ao GTP , Toxoplasma/metabolismo , Toxoplasma/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Retículo Endoplasmático/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Complexo de Golgi/metabolismo , Transporte Proteico , Animais , Vesículas Transportadoras/metabolismo
14.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558237

RESUMO

The p24 family of proteins have been regarded as cargo receptors for endoplasmic reticulum (ER) to Golgi transport; however, their precise functions have yet to be revealed. In this issue, Pastor-Pareja and colleagues (https://doi.org/10.1083/jcb.202309045) show that the interaction of these proteins with Tango1 is critical for their localization at the ER exit site (ERES) and efficient transport of secretory proteins in Drosophila.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Drosophila , Retículo Endoplasmático , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612929

RESUMO

The Golgi apparatus, long recognized for its roles in protein processing and vesicular trafficking, has recently been identified as a crucial contributor to innate immune signaling pathways. This review discusses our expanding understanding of the Golgi apparatus's involvement in initiating and activating these pathways. It highlights the significance of membrane connections between the Golgi and other organelles, such as the endoplasmic reticulum, mitochondria, endosomes, and autophagosomes. These connections are vital for the efficient transmission of innate immune signals and the activation of effector responses. Furthermore, the article delves into the Golgi apparatus's roles in key immune pathways, including the inflammasome-mediated activation of caspase-1, the cGAS-STING pathway, and TLR/RLR signaling. Overall, this review aims to provide insights into the multifunctional nature of the Golgi apparatus and its impact on innate immunity.


Assuntos
Complexo de Golgi , Imunidade Inata , Inflamassomos , Autofagossomos , Caspase 1
16.
Cell Mol Biol Lett ; 29(1): 54, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627612

RESUMO

BACKGROUND: The trafficking of cargoes from endosomes to the trans-Golgi network requires numerous sequential and coordinated steps. Cargoes are sorted into endosomal-derived carriers that are transported, tethered, and fused to the trans-Golgi network. The tethering step requires several complexes, including the Golgi-associated retrograde protein complex, whose localization at the trans-Golgi network is determined by the activity of small GTPases of the Arl and Rab family. However, how the Golgi-associated retrograde protein complex recognizes the endosome-derived carriers that will fuse with the trans-Golgi network is still unknown. METHODS: We studied the retrograde trafficking to the trans-Golgi network by using fluorescent cargoes in cells overexpressing Rab4b or after Rab4b knocked-down by small interfering RNA in combination with the downregulation of subunits of the Golgi-associated retrograde protein complex. We used immunofluorescence and image processing (Super Resolution Radial Fluctuation and 3D reconstruction) as well as biochemical approaches to characterize the consequences of these interventions on cargo carriers trafficking. RESULTS: We reported that the VPS52 subunit of the Golgi-associated retrograde protein complex is an effector of Rab4b. We found that overexpression of wild type or active Rab4b increased early endosomal to trans-Golgi network retrograde trafficking of the cation-independent mannose-6-phosphate receptor in a Golgi-associated retrograde protein complex-dependent manner. Conversely, overexpression of an inactive Rab4b or Rab4b knockdown attenuated this trafficking. In the absence of Rab4b, the internalized cation-independent mannose 6 phosphate receptor did not have access to VPS52-labeled structures that look like endosomal subdomains and/or endosome-derived carriers, and whose subcellular distribution is Rab4b-independent. Consequently, the cation-independent mannose-6-phosphate receptor was blocked in early endosomes and no longer had access to the trans-Golgi network. CONCLUSION: Our results support that Rab4b, by controlling the sorting of the cation-independent mannose-6-phosphate receptor towards VPS52 microdomains, confers a directional specificity for cargo carriers en route to the trans-Golgi network. Given the importance of the endocytic recycling in cell homeostasis, disruption of the Rab4b/Golgi-associated retrograde protein complex-dependent step could have serious consequences in pathologies.


Assuntos
Receptor IGF Tipo 2 , Rede trans-Golgi , Cátions/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/metabolismo
17.
Anal Chim Acta ; 1304: 342572, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637042

RESUMO

BACKGROUND: Adenosine 5'-triphosphate (ATP) plays an important role in cell metabolism and has been regarded as an indicator of cell survival and damage. Golgi apparatus participates in the signal transduction processes of substance transport, ion homeostasis and stress when extracellular substances enter cells. Till now, there is no fluorescent probe for monitoring Golgi ATP level fluctuation and visualizing the configuration change of the Golgi apparatus during the inhibition of glycolysis. RESULTS: Herein, we report the synthesis of a novel water-soluble cationic polythiophene derivative (PEMTEA) that can be employed as a fluorescent sensor for measuring ATP in the Golgi apparatus. PEMTEA self-assembles into PT-NP nanoparticles in aqueous solution with a diameter of approximately 2 nm. PT-NP displays high sensitivity and superb selectivity towards ATP with a detection limit of 90 nM and a linear detection range from 0 to 3.0 µM. The nanoparticles show low toxicity to HepG2 cells and good photostability in the Golgi apparatus. With the stimulation of Ca2+, PT-NP was practically applied to real-time monitor of endogenous ATP levels in the Golgi apparatus through fluorescence microscopy. Finally, we studied the relationship between the concentration of ATP and configuration of the Golgi apparatus during the inhibition of glycolysis using PT-NP. SIGNIFICANCE: We have demonstrated that PT-NP can not only indicate the fluctuation and distribution of ATP in the Golgi apparatus, but also give the information of the configuration change of the Golgi apparatus at the single-cell level during the inhibition of glycolysis.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/metabolismo , Água/metabolismo , Complexo de Golgi/metabolismo , Trifosfato de Adenosina/metabolismo , Polímeros , Glicólise
18.
Elife ; 132024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629949

RESUMO

Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.


Assuntos
Complexo de Golgi , Saccharomycetales
19.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579009

RESUMO

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adesão Celular/genética , Pectinas/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Parede Celular/metabolismo
20.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626263

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.


Assuntos
Complexo de Golgi , Herpesvirus Humano 8 , Lipoilação , Proteínas Virais , Vírion , Replicação Viral , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Humanos , Vírion/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral/fisiologia , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...