Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.023
Filtrar
2.
PLoS One ; 19(4): e0297344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568934

RESUMO

BACKGROUND: The coronavirus disease (COVID-19) pandemic has significantly strained global healthcare, particularly in the management of patients requiring mechanical ventilation (MV) and continuous renal replacement therapy (CRRT). This study investigated the characteristics and prognoses of these patients. METHODS: This multicenter retrospective cohort study gathered data from patients with COVID-19 across 26 medical centers. Logistic analysis was used to identify the factors associated with CRRT implementation. RESULTS: Of the 640 patients with COVID-19 who required MV, 123 (19.2%) underwent CRRT. Compared to the non-CRRT group, the CRRT group was older and exhibited higher sequential organ failure assessment scores. The incidence of hypertension, diabetes, cardiovascular disease, chronic neurological disease, and chronic kidney disease was also higher in the CRRT group. Moreover, the CRRT group had higher intensive care unit (ICU) (75.6% vs. 26.9%, p < 0.001) and in-hospital (79.7% vs. 29.6%, p < 0.001) mortality rates. CRRT implementation was identified as an independent risk factor for both ICU mortality (hazard ratio [HR]:1.833, 95% confidence interval [CI]:1.342-2.505, p < 0.001) and in-hospital mortality (HR: 2.228, 95% CI: 1.648-3.014, p < 0.001). Refractory respiratory failure (n = 99, 19.1%) was the most common cause of death in the non-CRRT death group, and shock with multi-organ failure (n = 50, 40.7%) was the most common cause of death in the CRRT death group. Shock with multi-organ failure and cardiac death were significantly more common in the CRRT death group, compared to non-CRRT death group. CONCLUSION: This study indicates that CRRT is associated with higher ICU and in-hospital mortality rates in patients with COVID-19 who require MV. Notably, the primary cause of death in the CRRT group was shock with multi-organ failure, emphasizing the severe clinical course for these patients, while refractory respiratory failure was most common in non-CRRT patients.


Assuntos
Injúria Renal Aguda , COVID-19 , Terapia de Substituição Renal Contínua , Infecções por Coronavirus , Coronavirus , Insuficiência Respiratória , Humanos , Estudos Retrospectivos , Respiração Artificial , COVID-19/terapia , COVID-19/complicações , Prognóstico , Unidades de Terapia Intensiva , Insuficiência de Múltiplos Órgãos/complicações , Infecções por Coronavirus/complicações , Insuficiência Respiratória/terapia , Insuficiência Respiratória/complicações , Terapia de Substituição Renal
3.
Nat Commun ; 15(1): 2887, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575573

RESUMO

Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana. This reveals uneven CoV infection patterns between closely related species, with the alpha-CoV 229E-like and SARS-related beta-CoV 2b emerging as multi-host pathogens. Prevalence and infection likelihood for both phylogenetically distinct CoVs is influenced by the abundance of competent species and naïve subadults. Broadly, bat species vary in CoV competence, and highly competent species are more common in less diverse communities, leading to increased CoV prevalence in less diverse bat assemblages. In line with the One Health framework, our work supports the notion that biodiversity conservation may be the most proactive measure to prevent the spread of pathogens with zoonotic potential.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavirus , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Coronavirus/genética , Prevalência , Filogenia , Infecções por Coronavirus/epidemiologia
6.
BMC Vet Res ; 20(1): 134, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570774

RESUMO

BACKGROUND: Porcine acute diarrhea syndrome coronavirus (SADS-CoV) is one of the novel pathogens responsible for piglet diarrhea, contributing to substantial economic losses in the farming sector. The broad host range of SADS-CoV raises concerns regarding its potential for cross-species transmission. Currently, there are no effective means of preventing or treating SADS-CoV infection, underscoring the urgent need for identifying efficient antiviral drugs. This study focuses on evaluating quercetin as an antiviral agent against SADS-CoV. RESULTS: In vitro experiments showed that quercetin inhibited SADS-CoV proliferation in a concentration-dependent manner, targeting the adsorption and replication stages of the viral life cycle. Furthermore, quercetin disrupts the regulation of the P53 gene by the virus and inhibits host cell cycle progression induced by SADS-CoV infection. In vivo experiments revealed that quercetin effectively alleviated the clinical symptoms and intestinal pathological damage caused by SADS-CoV-infected piglets, leading to reduced expression levels of inflammatory factors such as TLR3, IL-6, IL-8, and TNF-α. CONCLUSIONS: Therefore, this study provides compelling evidence that quercetin has great potential and promising applications for anti- SADS-CoV action.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Coronavirus/genética , Quercetina/farmacologia , Quercetina/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Doenças dos Suínos/tratamento farmacológico
7.
Viruses ; 16(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675878

RESUMO

Emerging coronaviruses (CoVs) are understood to cause critical human and domestic animal diseases; the spillover from wildlife reservoirs can result in mild and severe respiratory illness in humans and domestic animals and can spread more readily in these naïve hosts. A low-cost CoV molecular method that can detect a variety of CoVs from humans, animals, and environmental specimens is an initial step to ensure the early identification of known and new viruses. We examine a collection of 50 human, 46 wastewater, 28 bat, and 17 avian archived specimens using 3 published pan-CoV PCR assays called Q-, W-, and X-CoV PCR, to compare the performance of each assay against four CoV genera. X-CoV PCR can detect all four CoV genera, but Q- and W-CoV PCR failed to detect δ-CoV. In total, 21 (42.0%), 9 (18.0%), and 21 (42.0%) of 50 human specimens and 30 (65.22%), 6 (13.04%), and 27 (58.70%) of 46 wastewater specimens were detected using Q-, W-, and X-CoV PCR assays, respectively. The X-CoV PCR assay has a comparable sensitivity to Q-CoV PCR in bat CoV detection. Combining Q- and X-CoV PCR assays can increase sensitivity and avoid false negative results in the early detection of novel CoVs.


Assuntos
Coronavirus , Sensibilidade e Especificidade , Humanos , Animais , Coronavirus/genética , Coronavirus/classificação , Coronavirus/isolamento & purificação , Águas Residuárias/virologia , Quirópteros/virologia , Aves/virologia , Reação em Cadeia da Polimerase/métodos , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/diagnóstico
8.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38653491

RESUMO

Coronaviruses have threatened humans repeatedly, especially COVID-19 caused by SARS-CoV-2, which has posed a substantial threat to global public health. SARS-CoV-2 continuously evolves through random mutation, resulting in a significant decrease in the efficacy of existing vaccines and neutralizing antibody drugs. It is critical to assess immune escape caused by viral mutations and develop broad-spectrum vaccines and neutralizing antibodies targeting conserved epitopes. Thus, we constructed CovEpiAb, a comprehensive database and analysis resource of human coronavirus (HCoVs) immune epitopes and antibodies. CovEpiAb contains information on over 60 000 experimentally validated epitopes and over 12 000 antibodies for HCoVs and SARS-CoV-2 variants. The database is unique in (1) classifying and annotating cross-reactive epitopes from different viruses and variants; (2) providing molecular and experimental interaction profiles of antibodies, including structure-based binding sites and around 70 000 data on binding affinity and neutralizing activity; (3) providing virological characteristics of current and past circulating SARS-CoV-2 variants and in vitro activity of various therapeutics; and (4) offering site-level annotations of key functional features, including antibody binding, immunological epitopes, SARS-CoV-2 mutations and conservation across HCoVs. In addition, we developed an integrated pipeline for epitope prediction named COVEP, which is available from the webpage of CovEpiAb. CovEpiAb is freely accessible at https://pgx.zju.edu.cn/covepiab/.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Epitopos , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Epitopos/química , Epitopos/genética , Coronavirus/imunologia , Coronavirus/genética , Bases de Dados Factuais , Reações Cruzadas/imunologia
9.
PLoS Pathog ; 20(4): e1012163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648214

RESUMO

Virus discovery by genomics and metagenomics empowered studies of viromes, facilitated characterization of pathogen epidemiology, and redefined our understanding of the natural genetic diversity of viruses with profound functional and structural implications. Here we employed a data-driven virus discovery approach that directly queries unprocessed sequencing data in a highly parallelized way and involves a targeted viral genome assembly strategy in a wide range of sequence similarity. By screening more than 269,000 datasets of numerous authors from the Sequence Read Archive and using two metrics that quantitatively assess assembly quality, we discovered 40 nidoviruses from six virus families whose members infect vertebrate hosts. They form 13 and 32 putative viral subfamilies and genera, respectively, and include 11 coronaviruses with bisegmented genomes from fishes and amphibians, a giant 36.1 kilobase coronavirus genome with a duplicated spike glycoprotein (S) gene, 11 tobaniviruses and 17 additional corona-, arteri-, cremega-, nanhypo- and nangoshaviruses. Genome segmentation emerged in a single evolutionary event in the monophyletic lineage encompassing the subfamily Pitovirinae. We recovered the bisegmented genome sequences of two coronaviruses from RNA samples of 69 infected fishes and validated the presence of poly(A) tails at both segments using 3'RACE PCR and subsequent Sanger sequencing. We report a genetic linkage between accessory and structural proteins whose phylogenetic relationships and evolutionary distances are incongruent with the phylogeny of replicase proteins. We rationalize these observations in a model of inter-family S recombination involving at least five ancestral corona- and tobaniviruses of aquatic hosts. In support of this model, we describe an individual fish co-infected with members from the families Coronaviridae and Tobaniviridae. Our results expand the scale of the known extraordinary evolutionary plasticity in nidoviral genome architecture and call for revisiting fundamentals of genome expression, virus particle biology, host range and ecology of vertebrate nidoviruses.


Assuntos
Coronavirus , Genoma Viral , Nidovirales , Filogenia , Animais , Nidovirales/genética , Coronavirus/genética , Coronavirus/classificação , Vertebrados/virologia , Vertebrados/genética , Peixes/virologia , Evolução Molecular , Mineração de Dados , Infecções por Nidovirales/virologia , Infecções por Nidovirales/genética
10.
J Agric Food Chem ; 72(18): 10640-10654, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661066

RESUMO

Coronaviruses have consistently posed a major global concern in the field of livestock industry and public health. However, there is currently a lack of efficient drugs with broad-spectrum antiviral activity to address the challenges presented by emerging mutated strains or drug resistance. Additionally, the method for identifying multitarget drugs is also insufficient. Aminopeptidase N (APN) and 3C-like proteinase (3CLpro) represent promising targets for host-directed and virus-directed strategies, respectively, in the development of effective drugs against various coronaviruses. In this study, maduramycin ammonium demonstrated a broad-spectrum antiviral effect by targeting both of the proteins. The binding domains 4 Å from the ligand of both target proteins shared a structural similarity, suggesting that screening and designing drugs based on these domains might exhibit broad-spectrum and highly effective antiviral activity. Furthermore, it was identified that the polyether ionophores' ability to carry zinc ion might be one of the reasons why they were able to target APN and exhibit antiviral effect. The findings of this experiment provide novel perspectives for future drug screening and design, while also offering valuable references for the utilization of polyether ionophores in the management of livestock health.


Assuntos
Antivirais , Antígenos CD13 , Ionóforos , Gado , Animais , Antivirais/farmacologia , Antivirais/química , Ionóforos/farmacologia , Ionóforos/química , Antígenos CD13/metabolismo , Antígenos CD13/química , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Drogas Veterinárias/farmacologia , Drogas Veterinárias/química , Coronavirus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Policetídeos de Poliéter
11.
Vet Microbiol ; 293: 110070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593624

RESUMO

Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.


Assuntos
DNA Helicases , Inflamação , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Animais , Suínos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , RNA Helicases/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Replicação Viral , Coronavirus/imunologia , Coronavirus/fisiologia , Linhagem Celular , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/genética , Imunidade Inata
12.
J Virol ; 98(4): e0017124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38488361

RESUMO

The global impact of emerging viral infections emphasizes the urgent need for effective broad-spectrum antivirals. The cellular organelle, lipid droplet (LD), is utilized by many types of viruses for replication, but its reduction does not affect cell survival. Therefore, LD is a potential target for developing broad-spectrum antivirals. In this study, we found that 2-bromopalmitate (2 BP), a previously defined palmitoylation inhibitor, depletes LD across all studied cell lines and exerts remarkable antiviral effects on different coronaviruses. We comprehensively utilized 2 BP, alongside other palmitoylation inhibitors such as cerulenin and 2-fluoro palmitic acid (2-FPA), as well as the enhancer palmostatin B and evaluated their impact on LD and the replication of human coronaviruses (hCoV-229E, hCoV-Oc43) and murine hepatitis virus (MHV-A59) at non-cytotoxic concentrations. While cerulenin and 2-FPA exhibited moderate inhibition of viral replication, 2 BP exhibited a much stronger suppressive effect on MHV-A59 replication, although they share similar inhibitory effects on palmitoylation. As expected, palmostatin B significantly enhanced viral replication, it failed to rescue the inhibitory effects of 2 BP, whereas it effectively counteracted the effects of cerulenin and 2-FPA. This suggests that the mechanism that 2 BP used to inhibit viral replication is beyond palmitoylation inhibition. Further investigations unveil that 2 BP uniquely depletes LDs, a phenomenon not exhibited by 2-FPA and cerulenin. Importantly, the depletion of LDs was closely associated with the inhibition of viral replication because the addition of oleic acid to 2 BP significantly rescued LD depletion and its inhibitory effects on MHV-A59. Our findings indicate that the inhibitory effects of 2 BP on viral replication primarily stem from LD disruption rather than palmitoylation inhibition. Intriguingly, fatty acid (FA) assays demonstrated that 2 BP reduces the FA level in mitochondria while concurrently increasing FA levels in the cytoplasm. These results highlight the crucial role of LDs in viral replication and uncover a novel biological activity of 2 BP. These insights contribute to the development of broad-spectrum antiviral strategies. IMPORTANCE: In our study, we conducted a comparative investigation into the antiviral effects of palmitoylation inhibitors including 2-bromopalmitate (2-BP), 2-fluoro palmitic acid (2-FPA), and cerulenin. Surprisingly, we discovered that 2-BP has superior inhibitory effects on viral replication compared to 2-FPA and cerulenin. However, their inhibitory effects on palmitoylation were the same. Intrigued by this finding, we delved deeper into the underlying mechanism of 2-BP's potent antiviral activity, and we unveiled a novel biological activity of 2-BP: depletion of lipid droplets (LDs). Importantly, we also highlighted the crucial role of LDs in viral replication. Our insights shed new light on the antiviral mechanism of LD depletion paving the way for the development of broad-spectrum antiviral strategies by targeting LDs.


Assuntos
Antivirais , Coronavirus , Vírus da Hepatite Murina , Palmitatos , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/metabolismo , Cerulenina/metabolismo , Cerulenina/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/fisiologia , Gotículas Lipídicas/efeitos dos fármacos , Palmitatos/farmacologia , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Propiolactona/análogos & derivados , Replicação Viral/efeitos dos fármacos , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/fisiologia
13.
Viruses ; 16(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543810

RESUMO

PDCoV, an enveloped RNA virus, causes atrophic enteritis in neonatal piglets, leading to diarrhea, malabsorption, dehydration, and death. The study aims to fill the gap in the current epidemiological information about PDCoV in the U.S. pig population after its emergence in 2014. Data from the Morrison Swine Health Monitoring Project (MSHMP) between January 2015 and December 2023 were analyzed, representing approximately 60% of the U.S. breeding herd. Participating herds report weekly PDCoV health status. In total, 244 PDCoV outbreaks occurred in 186 sites from 22 production systems across 16 states. Case counts peaked during winter, and incidence ranged from 0.44% in 2017 to 4.28% in 2023. For sites that experienced more than one PDCoV outbreak during the study period, the interval between outbreaks was a median of 2.11 years. The South and Midwest regions reported the majority of cases. In 2017, a shift in the spatial distribution of cases from the Midwest to the South was observed. The findings underscore the importance of continued monitoring and strengthened control measures to mitigate the impact of PDCoV in U.S. breeding herds.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Animais , Estados Unidos/epidemiologia , Suínos , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Deltacoronavirus , Doenças dos Suínos/epidemiologia
14.
Emerg Microbes Infect ; 13(1): 2332653, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517703

RESUMO

Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.


Assuntos
Alphacoronavirus , Coinfecção , Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Humanos , Suínos , Animais , Coinfecção/veterinária , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Gastroenterite Transmissível/genética , Recombinação Genética
16.
Redox Biol ; 71: 103112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461791

RESUMO

The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Coronavirus/metabolismo , Ácido Pirúvico/metabolismo , Doenças dos Suínos/metabolismo , Doenças dos Suínos/patologia , Infecções por Coronavirus/patologia
17.
Ann Epidemiol ; 90: 35-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38501569

RESUMO

PURPOSE: This study assessed opioid-involved overdose rates by age, sex, and race-ethnicity across strict pandemic mitigation phases and how this varied across data systems. METHODS: We examined opioid-involved overdoses using medical examiner and hospital data for Cook County, Illinois between 2016-2021. Multivariable segmented regression was used to assess weekly overdose rates across subgroups of age, sex and race/ethnicity and strict pandemic mitigation phases. RESULTS: The overall rate of weekly opioid-involved overdoses increased when assessing the medical examiner (ß = 0.01; 95% CI = 0.01,0.02; P ≤ .001) and emergency department visits data sources (ß = 0.15; 95% CI = 0.09,0.20; P ≤ .001) but not for the hospital admissions data source. We found differences in overdose rates across subgroups and phases of pandemic mandates. Fatal overdoses increased during lockdown-1 while admissions and emergency department (ED) visits for opioid-involved overdoses generally decreased across all phases of pandemic mitigation mandates except for the period following lockdown-1. Across pandemic mitigation phases, Hispanics and individuals under 25 years did not demonstrate any change in admissions and ED visits for overdoses. CONCLUSIONS: We underscore the importance of utilizing multiple sources of surveillance to better characterize opioid-involved overdoses and for public health planning.


Assuntos
COVID-19 , Coronavirus , Overdose de Drogas , Overdose de Opiáceos , Humanos , Analgésicos Opioides , Overdose de Opiáceos/epidemiologia , COVID-19/epidemiologia , Pandemias , Controle de Doenças Transmissíveis , Overdose de Drogas/epidemiologia , Serviço Hospitalar de Emergência
18.
Protein Sci ; 33(4): e4923, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501465

RESUMO

The envelope (E) proteins of coronaviruses (CoVs) form cation-conducting channels that are associated with the pathogenicity of these viruses. To date, high-resolution structural information about these viroporins is limited to the SARS-CoV E protein. To broaden our structural knowledge of other members of this family of viroporins, we now investigate the conformation of the E protein of the human coronavirus (hCoV), NL63. Using two- and three-dimensional magic-angle-spinning NMR, we have measured 13 C and 15 N chemical shifts of the transmembrane domain of E (ETM), which yielded backbone (ϕ, ψ) torsion angles. We further measured the water accessibility of NL63 ETM at neutral pH versus acidic pH in the presence of Ca2+ ions. These data show that NL63 ETM adopts a regular α-helical conformation that is unaffected by pH and the N-terminal ectodomain. Interestingly, the water accessibility of NL63 ETM increases only modestly at acidic pH in the presence of Ca2+ compared to neutral pH, in contrast to SARS ETM, which becomes much more hydrated at acidic pH. This difference suggests a structural basis for the weaker channel conductance of α-CoV compared to ß-CoV E proteins. The weaker E channel activity may in turn contribute to the reduced virulence of hCoV-NL63 compared to SARS-CoV viruses.


Assuntos
Infecções por Coronavirus , Coronavirus , Humanos , Proteínas Viroporinas , Proteínas do Envelope Viral/química , Infecções por Coronavirus/metabolismo , Água
19.
Carbohydr Res ; 538: 109098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527408

RESUMO

This study describes the novel development of quaternized cassava starch (Q-CS) with antimicrobial and antiviral properties, particularly effective against the MHV-3 coronavirus. The preparation of Q-CS involved the reaction of cassava starch (CS) with glycidyltrimethylammonium chloride (GTMAC) in an alkaline solution. Q-CS physicochemical properties were determined by FTIR, NMR, elemental analysis, zeta potential, TGA, and moisture sorption. FTIR and NMR spectra confirmed the introduction of cationic groups in the CS structure. The elemental analysis revealed a degree of substitution (DS) of 0.552 of the cationic reagent on the hydroxyl groups of CS. Furthermore, Q-CS exhibited a positive zeta potential value (+28.6 ± 0.60 mV) attributed to the high positive charge density shown by the quaternary ammonium groups. Q-CS demonstrated lower thermal stability and higher moisture sorption compared to CS. The antimicrobial activity of Q-CS was confirmed against Escherichia coli (MIC = 0.156 mg mL-1) and Staphylococcus aureus (MIC = 0.312 mg mL-1), along with a remarkable ability to inactivate 99% of MHV-3 coronavirus after only 1 min of direct contact. Additionally, Q-CS showed high cell viability (close to 100%) and minimal cytotoxicity effects, guaranteeing its safe use. Therefore, these findings indicate the potential use of Q-CS as a raw material for antiseptic biomaterials.


Assuntos
Compostos de Amônio , Coronavirus , Manihot , Manihot/química , Staphylococcus aureus , Amido/química
20.
Bioorg Chem ; 146: 107322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555797

RESUMO

Porcine Delta Coronavirus (PDCoV) infection can induce serious dehydration, diarrhea and even death of piglets, which has caused huge losses to the breeding industry. PDCoV has been reported to have the potential for cross species transmission, and even reports of infecting humans have emerged. At present, there are still no effective prevention and control measures for PDCoV. In this study, we have designed and synthesized a series of unreported Dihydropteridone derivatives. All of these compounds were evaluated for the against PDCoV in vivo and in vitro for the first time. In this study, antiviral activity (17.34 ± 7.20 µM) and low cytotoxicity (>800 µM) was found in compound W8. Compound W8 exerts antiviral effect on PDCoV by inhibiting cell apoptosis and inflammatory factors caused by virus infection in vitro. In addition, lung and small intestinal lesions caused by PDCoV infection in mice could be significantly reduced by compound W8. These findings highlight the potential of compound W8 as a valuable therapeutic option against PDCoV infection, and lay a foundation for further research and development in this field.


Assuntos
Infecções por Coronavirus , Coronavirus , Sulfonamidas , Suínos , Animais , Humanos , Camundongos , Intestino Delgado , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...