Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758698

RESUMO

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Assuntos
Resfriado Comum , Imunidade Inata , Interferons , Mucosa Nasal , SARS-CoV-2 , Transdução de Sinais , Humanos , Mucosa Nasal/virologia , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Interferons/metabolismo , Interferons/imunologia , Resfriado Comum/imunologia , Resfriado Comum/virologia , Transdução de Sinais/imunologia , SARS-CoV-2/imunologia , Replicação Viral , Rhinovirus/imunologia , Coronavirus Humano 229E/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavirus Humano NL63/imunologia
2.
J Med Virol ; 96(5): e29655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727091

RESUMO

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Assuntos
Coronavirus Humano 229E , Gases em Plasma , Inativação de Vírus , Humanos , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/fisiologia , Inativação de Vírus/efeitos dos fármacos , Gases em Plasma/farmacologia , Linhagem Celular , Porosidade , Desinfecção/métodos , Aço Inoxidável
3.
Bioorg Chem ; 147: 107353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615475

RESUMO

Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.


Assuntos
Antivirais , Coronavirus Humano 229E , Desenho de Fármacos , Vírus da Influenza A Subtipo H1N1 , Simulação de Acoplamento Molecular , Organofosfonatos , Pirimidinonas , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Humanos , Pirimidinonas/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade , Organofosfonatos/farmacologia , Organofosfonatos/química , Organofosfonatos/síntese química , Coronavirus Humano 229E/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo
4.
Daru ; 32(1): 215-235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652363

RESUMO

PURPOSE: Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS: We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS: CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION: We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.


Assuntos
Antivirais , Coronavirus Humano 229E , Reposicionamento de Medicamentos , Mapas de Interação de Proteínas , SARS-CoV-2 , Biologia de Sistemas , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/efeitos dos fármacos , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Nucleofosmina , Mucosa Respiratória/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Redes Reguladoras de Genes/efeitos dos fármacos , COVID-19
5.
J Med Virol ; 96(3): e29540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529542

RESUMO

The sex disparity in COVID-19 outcomes with males generally faring worse than females has been associated with the androgen-regulated expression of the protease TMPRSS2 and the cell receptor ACE2 in the lung and fueled interest in antiandrogens as potential antivirals. In this study, we explored enzalutamide, an antiandrogen used commonly to treat prostate cancer, as a potential antiviral against the human coronaviruses which cause seasonal respiratory infections (HCoV-NL63, -229E, and -OC43). Using lentivirus-pseudotyped and authentic HCoV, we report that enzalutamide reduced 229E and NL63 entry and infection in both TMPRSS2- and nonexpressing immortalized cells, suggesting a TMPRSS2-independent mechanism. However, no effect was observed against OC43. To decipher this distinction, we performed RNA-sequencing analysis on 229E- and OC43-infected primary human airway cells. Our results show a significant induction of androgen-responsive genes by 229E compared to OC43 at 24 and 72 h postinfection. The virus-mediated effect on AR-signaling was further confirmed with a consensus androgen response element-driven luciferase assay in androgen-depleted MRC-5 cells. Specifically, 229E induced luciferase-reporter activity in the presence and absence of the synthetic androgen mibolerone, while OC43 inhibited induction. These findings highlight a complex interplay between viral infections and androgen-signaling, offering insights for disparities in viral outcomes and antiviral interventions.


Assuntos
Androgênios , Benzamidas , Coronavirus Humano 229E , Nitrilas , Feniltioidantoína , Masculino , Feminino , Humanos , Androgênios/metabolismo , Androgênios/farmacologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/metabolismo , Estações do Ano , Antivirais/farmacologia , Antivirais/metabolismo , Luciferases
6.
Proc Natl Acad Sci U S A ; 121(10): e2320493121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427602

RESUMO

Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses. The SL5 domain of betacoronavirus severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2), resolved at 4.7 Å resolution, exhibits a T-shaped structure, with its UUYYGU hexaloops at opposing ends of a coaxial stack, the T's "arms." Further analysis of SL5 domains from SARS-CoV-1 and MERS (7.1 and 6.4 to 6.9 Å resolution, respectively) indicate that the junction geometry and inter-hexaloop distances are conserved features across these human-infecting betacoronaviruses. The MERS SL5 domain displays an additional tertiary interaction, which is also observed in the non-human-infecting betacoronavirus BtCoV-HKU5 (5.9 to 8.0 Å resolution). SL5s from human-infecting alphacoronaviruses, HCoV-229E and HCoV-NL63 (6.5 and 8.4 to 9.0 Å resolution, respectively), exhibit the same coaxial stacks, including the UUYYGU-capped arms, but with a phylogenetically distinct crossing angle, an X-shape. As such, all SL5 domains studied herein fold into stable tertiary structures with cross-genus similarities and notable differences, with implications for potential protein-binding modes and therapeutic targets.


Assuntos
Alphacoronavirus , COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2/genética , RNA
7.
Environ Pollut ; 347: 123700, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452839

RESUMO

Emerging bio-contaminants (airborne viruses) exploits and manipulate host (human) metabolism to produce new viral particles, evading the host's immune defences and leading to infections. Non-thermal plasma, operating at atmospheric pressure and ambient temperature, is explored for virus inactivation, generating RONS that interact and denatures viral proteins. However, various factors affecting virus survival influence the efficacy of non-thermal plasma. Glucose analogue 2-DG, a metabolic modifier used in this study, disrupts the glycolysis pathway viruses rely on, creating an unfavourable environment for replication. Here, airborne HCoV-229E bio-contaminant was treated with plasma for inactivation, and the presence of RONS was analysed. Metabolically altered lung cells were subsequently exposed to the treated airborne viruses. Cytopathic effect, spike protein, and cell death were evaluated via flow cytometry and confocal microscopy, and CPRRs mediated antiviral gene expression was evaluated using PCR. Gas plasma-treated viruses led to reduced virus proliferation in unaltered lung cells, although few virus particles survived the exposure, as confirmed by biological assessment (cytopathic effects and live/dead staining). A combination approach of gas plasma-treated viruses and altered lung cells displayed drastic virus reduction compared to the control group, established through confocal microscopy and flow cytometry. Furthermore, altered lung cell enhances gene transcription responsible for innate immunity when exposed to the gas plasma-treated virus, thereby impeding airborne virus propagation. This study demonstrates the significance of a surface air gas plasma and metabolic alteration approach in enhancing genes targeted towards antiviral innate immunity and tackling outbreaks of emerging bio-contaminants of concerns (airborne viruses).


Assuntos
Coronavirus Humano 229E , Humanos , Coronavirus Humano 229E/genética , Inativação de Vírus , Pulmão , Imunidade Inata , Antivirais
8.
J Ethnopharmacol ; 328: 118070, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521430

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Senegal, upper and lower respiratory tract infections constitute a real health problem. To manage these disorders, most people rely on the use of local medicinal plants. This is particularly the case for species belonging to the botanical families, Combretaceae, Fabaceae, Myrtaceae and Rubiaceae, which are widely used to treat various respiratory problems such as colds, flu, rhinitis, sinusitis, otitis, angina, bronchitis, bronchiolitis and also pneumonia. AIM OF THE STUDY: The aim of this study was to identify medicinal plants traditionally used for the management of infectious diseases, in particular those of the respiratory tract. On the basis of these ethnopharmacological uses, this study made it possible to highlight the antibacterial, antiviral and cytotoxic activities of selected plant species. MATERIALS AND METHODS: An ethnobotanical survey was conducted in Senegal among informants, including herbalists, traditional healers, and households, using medicinal plants in the management of infectious diseases, with a focus on respiratory tract infections. The most cited plant species were evaluated in vitro on a panel of 18 human pathogenic bacteria may be involved in respiratory infections and against the human coronavirus HCoV-229E in Huh-7 cells. The antiviral activity of the most active extracts against HCoV-229E was also evaluated on COVID-19 causing agent, SARS-CoV-2 in Vero-81 cells. In parallel, cytotoxic activities were evaluated on Huh-7 cells. RESULTS: A total of 127 informants, including 100 men (78.74%) and 27 women (21.26%) participated in this study. The ethnobotanical survey led to the inventory of 41 plant species belonging to 19 botanical families used by herbalists and/or traditional healers and some households to treat infectious diseases, with a specific focus on upper respiratory tract disorders. Among the 41 plant species, the most frequently mentioned in the survey were Guiera senegalensis J.F. Gmel. (95.2%), Combretum glutinosum Perr. Ex DC. (93.9%) and Eucalyptus spp. (82.8%). Combretaceae (30.2%) represented the most cited botanical family with six species, followed by Fabaceae (29.3%, 12 species). A total of 33 crude methanolic extracts of the 24 plant species selected for their number of citations were evaluated in vitro for their antimicrobial and cytotoxic activities. Guiera senegalensis, Combretum glutinosum, Vachellia nilotica subsp. tomentosa (Benth.) Kyal. & Boatwr, Eucalyptus camaldulensis Dehnh., and Terminalia avicennioides Guill. & Perr., showed antibacterial activities. The most active plants against HCoV-229E were: Ficus sycomorus L., Mitragyna inermis (Willd.) Kuntze, Pterocarpus erinaceus Poir., and Spermacoce verticillata L. One of these plants, Mitragyna inermis, was also active against SARS-CoV-2. CONCLUSION: This work confirmed the anti-infective properties of plant species traditionally used in Senegal. Overall, the most frequently cited plant species showed the best antibacterial activities. Moreover, some of the selected plant species could be considered as a potential source for the management of coronavirus infections. This new scientific data justified the use of these plants in the management of some infectious pathologies, especially those of the respiratory tract.


Assuntos
Anti-Infecciosos , COVID-19 , Combretaceae , Combretum , Doenças Transmissíveis , Coronavirus Humano 229E , Plantas Medicinais , Masculino , Humanos , Feminino , Fitoterapia , Medicinas Tradicionais Africanas , Etnobotânica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico
9.
Viruses ; 16(2)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399953

RESUMO

Coronaviruses are a large family of enveloped RNA viruses found in numerous animal species. They are well known for their ability to cross species barriers and have been transmitted from bats or intermediate hosts to humans on several occasions. Four of the seven human coronaviruses (hCoVs) are responsible for approximately 20% of common colds (hCoV-229E, -NL63, -OC43, -HKU1). Two others (SARS-CoV-1 and MERS-CoV) cause severe and frequently lethal respiratory syndromes but have only spread to very limited extents in the human population. In contrast the most recent human hCoV, SARS-CoV-2, while exhibiting intermediate pathogenicity, has a profound impact on public health due to its enormous spread. In this review, we discuss which initial features of the SARS-CoV-2 Spike protein and subsequent adaptations to the new human host may have helped this pathogen to cause the COVID-19 pandemic. Our focus is on host forces driving changes in the Spike protein and their consequences for virus infectivity, pathogenicity, immune evasion and resistance to preventive or therapeutic agents. In addition, we briefly address the significance and perspectives of broad-spectrum therapeutics and vaccines.


Assuntos
COVID-19 , Coronavirus Humano 229E , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Pandemias , SARS-CoV-2
10.
Antimicrob Agents Chemother ; 68(3): e0121023, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319076

RESUMO

Libraries composed of licensed drugs represent a vast repertoire of molecules modulating physiological processes in humans, providing unique opportunities for the discovery of host-targeting antivirals. We screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) repurposing library with approximately 12,000 molecules for broad-spectrum coronavirus antivirals and discovered 134 compounds inhibiting an alphacoronavirus and mapping to 58 molecular target categories. Dominant targets included the 5-hydroxytryptamine receptor, the dopamine receptor, and cyclin-dependent kinases. Gene knock-out of the drugs' host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly modulated HCoV-229E infection, providing evidence that these compounds inhibited the virus through acting on their respective host targets. Counter-screening of all 134 primary compound candidates with SARS-CoV-2 and validation in primary cells identified Phortress, an AHR activating ligand, P-3622-targeting FDFT1, and Omaveloxolone, which activates the NFE2-like bZIP transcription factor 2 (NFE2L2) by liberating it from its endogenous inhibitor KEAP1, as antiviral candidates for both an Alpha- and a Betacoronavirus. This study provides an overview of HCoV-229E repurposing candidates and reveals novel potentially druggable viral host dependency factors hijacked by diverse coronaviruses.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Tiazóis , Triterpenos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Reposicionamento de Medicamentos , Fator 2 Relacionado a NF-E2/metabolismo , Coronavirus Humano 229E/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico
11.
Microbiol Spectr ; 12(3): e0391223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329364

RESUMO

After 3 years of its introduction to humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared as endemic. Little is known about the severity of the disease manifestation that future infections may cause, especially when reinfections occur after humoral immunity from a previous infection or vaccination has waned. Such knowledge could inform policymakers regarding the frequency of vaccination. Reinfections by endemic human coronaviruses (HCoVs) can serve as a model system for SARS-CoV-2 endemicity. We monitored 44 immunocompetent male adults with blood sampling every 6 months (for 17 years), for the frequency of HCoV (re-)infections, using rises in N-antibodies of HCoV-NL63, HCoV-29E, HCoV-OC43, and HCoV-HKU1 as markers of infection. Disease associations during (re-)infections were examined by comparison of self-reporting records of influenza-like illness (ILI) symptoms, every 6 months, by all participants. During 8,549 follow-up months, we found 364 infections by any HCoV with a median of eight infections per person. Symptoms more frequently reported during HCoV infection were cough, sore throat, and myalgia. Two hundred fifty-one of the 364 infections were species-specific HCoV-reinfections, with a median interval of 3.58 (interquartile range 1.92-5.67) years. The length of the interval between reinfections-being either short or long-had no influence on the frequency of reporting ILI symptoms. All HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1 (re-)infections are associated with the reporting of ILIs. Importantly, in immunocompetent males, these symptoms are not influenced by the length of the interval between reinfections. IMPORTANCE: Little is known about the disease following human coronavirus (HCoV) reinfection occurring years after the previous infection, once humoral immunity has waned. We monitored endemic HCoV reinfection in immunocompetent male adults for up to 17 years. We found no influence of reinfection interval length in the disease manifestation, suggesting that immunocompetent male adults are adequately protected against future HCoV infections.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Influenza Humana , Infecções Respiratórias , Adulto , Humanos , Masculino , Reinfecção , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Infecções Respiratórias/diagnóstico , SARS-CoV-2
12.
PLoS One ; 19(2): e0297879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394072

RESUMO

Liquid chromatography purification of multiple recombinant proteins, in parallel, could catalyze research and discovery if the processes are fast and approach the robustness of traditional, "one-protein-at-a-time" purification. Here, we report an automated, four channel chromatography platform that we have designed and validated for parallelized protein purification at milligram scales. The device can purify up to four proteins (each with its own single column), has inputs for up to eight buffers or solvents that can be directed to any of the four columns via a network of software-driven valves, and includes an automated fraction collector with ten positions for 1.5 or 5.0 mL collection tubes and four positions for 50 mL collection tubes for each column output. The control software can be accessed either via Python scripting, giving users full access to all steps of the purification process, or via a simple-to-navigate touch screen graphical user interface that does not require knowledge of the command line or any programming language. Using our instrument, we report milligram-scale, parallelized, single-column purification of a panel of mammalian cell expressed coronavirus (SARS-CoV-2, HCoV-229E, HCoV-OC43, HCoV-229E) trimeric Spike and monomeric Receptor Binding Domain (RBD) antigens, and monoclonal antibodies targeting SARS-CoV-2 Spike (S) and Influenza Hemagglutinin (HA). We include a detailed hardware build guide, and have made the controlling software open source, to allow others to build and customize their own protein purifier systems.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano OC43 , Animais , SARS-CoV-2 , Proteínas Recombinantes/metabolismo , Software , Linguagens de Programação , Glicoproteína da Espícula de Coronavírus/metabolismo , Mamíferos
13.
Arch Pharm (Weinheim) ; 357(1): e2300442, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840345

RESUMO

The coronavirus disease-19 (COVID-19) pandemic has raised major interest in innovative drug concepts to suppress human coronavirus (HCoV) infections. We previously reported on a class of 1,2,3-triazolo fused betulonic acid derivatives causing strong inhibition of HCoV-229E replication via the viral nsp15 protein, which is proposedly related to compound binding at an intermonomer interface in hexameric nsp15. In the present study, we further explored the structure-activity relationship (SAR), by varying the substituent at the 1,2,3-triazolo ring as well as the triterpenoid skeleton. The 1,2,3-triazolo fused triterpenoids were synthesized by a multicomponent triazolization reaction, which has been developed in-house. Several analogs possessing a betulin, oleanolic acid, or ursolic acid core displayed favorable activity and selectivity (EC50 values for HCoV-229E: 1.6-3.5 µM), but neither of them proved as effective as the lead compound containing betulonic acid. The 18ß-glycyrrhetinic acid-containing analogs had low selectivity. The antiviral findings were rationalized by in silico docking in the available structure of the HCoV-229E nsp15 protein. The new SAR insights will aid the further development of these 1,2,3-triazolo fused triterpenoid compounds as a unique type of coronavirus inhibitors.


Assuntos
Coronavirus Humano 229E , Triterpenos , Humanos , Coronavirus Humano 229E/metabolismo , Proteínas Virais , Triterpenos/farmacologia , Relação Estrutura-Atividade
14.
Risk Anal ; 44(3): 631-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37317640

RESUMO

The risk assessments during the COVID-19 pandemic were primarily based on dose-response models derived from the pooled datasets for infection of animals susceptible to SARS-CoV. Despite similarities, differences in susceptibility between animals and humans exist for respiratory viruses. The two most commonly used dose-response models for calculating the infection risk of respiratory viruses are the exponential and the Stirling approximated ß-Poisson (BP) models. The modified version of the one-parameter exponential model or the Wells-Riley model was almost solely used for infection risk assessments during the pandemic. Still, the two-parameter (α and ß) Stirling approximated BP model is often recommended compared to the exponential dose-response model due to its flexibility. However, the Stirling approximation restricts this model to the general rules of ߠ≫ 1 and α â‰ª ß, and these conditions are very often violated. To refrain from these requirements, we tested a novel BP model by using the Laplace approximation of the Kummer hypergeometric function instead of the conservative Stirling approximation. The datasets of human respiratory airborne viruses available in the literature for human coronavirus (HCoV-229E) and human rhinovirus (HRV-16 and HRV-39) are used to compare the four dose-response models. Based on goodness-of-fit criteria, the exponential model was the best fitting model for the HCoV-229E (k = 0.054) and for HRV-39 datasets (k = 1.0), whereas the Laplace approximated BP model followed by the exact and Stirling approximated BP models are preferred for both the HRV-16 (α = 0.152 and ß = 0.021 for Laplace BP) and the HRV-16 and HRV-39 pooled datasets (α = 0.2247 and ß = 0.0215 for Laplace BP).


Assuntos
COVID-19 , Coronavirus Humano 229E , Animais , Humanos , Rhinovirus , Pandemias , Medição de Risco
15.
J Hazard Mater ; 465: 133249, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154189

RESUMO

The severe acute respiratory syndrome (SARS-CoV-2) outbreak triggered global concern and emphasized the importance of virus monitoring. During a seasonal influenza A outbreak, relatively low concentrations of 103-104 viral genome copies are available per 1 m3 of air, which makes detection and monitoring very challenging because the limit of detection of most polymerase chain reaction (PCR) devices is approximately 103 viral genome copies/mL. In response to the urgent need for the rapid detection of airborne coronaviruses and influenza viruses, an electrostatic aerosol-to-hydrosol (ATH) sampler was combined with a concanavalin A (ConA)-coated high-throughput microfluidic chip. The samples were then used for PCR detection. The results revealed that the enrichment capacity of the ATH sampler was 30,000-fold for both HCoV-229E and H1N1 influenza virus, whereas the enrichment capacities provided by the ConA-coated microfluidic chip were 8-fold and 16-fold for HCoV-229E and H1N1 virus, respectively. Thus, the total enrichment capacities of our combined ATH sampler and ConA-coated microfluidic chip were 2.4 × 105-fold and 4.8 × 105-fold for HCoV-229E and H1N1 virus, respectively. This methodology significantly improves PCR detection by providing a higher concentration of viable samples.


Assuntos
Coronavirus Humano 229E , Vírus da Influenza A Subtipo H1N1 , Concanavalina A/genética , Microfluídica , Vírus da Influenza A Subtipo H1N1/genética , Aerossóis e Gotículas Respiratórios , Coronavirus Humano 229E/genética , Reação em Cadeia da Polimerase
16.
Virology ; 589: 109915, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931588

RESUMO

A small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with EC50s in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation. Furthermore, the compounds acted post virus entry. While the antiviral activity of digitoxin was dependent upon activation of the MEK and JNK signaling pathways but not signaling through GPCRs, the antiviral effect of monensin was reversed upon inhibition of several signaling pathways. Together, the data demonstrates the potent anti-coronavirus properties of two classes of FDA approved drugs that function by altering the properties of the infected cell, rendering it unable to support virus replication.


Assuntos
Glicosídeos Cardíacos , Coronavirus Humano 229E , Humanos , Glicosídeos Cardíacos/farmacologia , Monensin/farmacologia , Ouabaína/farmacologia , Digitoxina/farmacologia , Antivirais/farmacologia
17.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068938

RESUMO

The limited availability of antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred the search for novel antiviral drugs. Here, we investigated the potential antiviral properties of plants adapted to high-salt environments collected in the north of France. Twenty-five crude methanolic extracts obtained from twenty-two plant species were evaluated for their cytotoxicity and antiviral effectiveness against coronaviruses HCoV-229E and SARS-CoV-2. Then, a bioguided fractionation approach was employed. The most active crude methanolic extracts were partitioned into three different sub-extracts. Notably, the dichloromethane sub-extract of the whole plant Hippophae rhamnoides L. demonstrated the highest antiviral activity against both viruses. Its chemical composition was evaluated by ultra-high performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS) and then it was fractionated by centrifugal partition chromatography (CPC). Six cinnamoyl triterpenoid compounds were isolated from the three most active fractions by preparative high-performance liquid chromatography (HPLC) and identified by high resolution MS (HR-MS) and mono- and bi-dimensional nuclear magnetic resonance (NMR). Specifically, these compounds were identified as 2-O-trans-p-coumaroyl-maslinic acid, 3ß-hydroxy-2α-trans-p-coumaryloxy-urs-12-en-28-oic acid, 3ß-hydroxy-2α-cis-p-coumaryloxy-urs-12-en-28-oic acid, 3-O-trans-caffeoyl oleanolic acid, a mixture of 3-O-trans-caffeoyl oleanolic acid/3-O-cis-caffeoyl oleanolic acid (70/30), and 3-O-trans-p-coumaroyl oleanolic acid. Infection tests demonstrated a dose-dependent inhibition of these triterpenes against HCoV-229E and SARS-CoV-2. Notably, cinnamoyl oleanolic acids displayed activity against both SARS-CoV-2 and HCoV-229E. Our findings suggest that Hippophae rhamnoides could represent a source of potential antiviral agents against coronaviruses.


Assuntos
Coronavirus Humano 229E , Hippophae , Ácido Oleanólico , Triterpenos , Triterpenos/química , Hippophae/química , Plantas Tolerantes a Sal , Mar do Norte , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/análise
18.
Viruses ; 15(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140536

RESUMO

Coronaviruses represent a significant threat to both human and animal health, encompassing a range of pathogenic strains responsible for illnesses, from the common cold to more severe diseases. VV116 is a deuterated derivative of Remdesivir with oral bioavailability that was found to potently inhibit SARS-CoV-2. In this work, we investigated the broad-spectrum antiviral activity of VV116 against a variety of human and animal coronaviruses. We examined the inhibitory effects of VV116 on the replication of the human coronaviruses HCoV-NL63, HCoV-229E, and HCoV-OC43, as well as the animal coronaviruses MHV, FIPV, FECV, and CCoV. The findings reveal that VV116 effectively inhibits viral replication across these strains without exhibiting cytotoxicity, indicating its potential for safe therapeutic use. Based on the results of a time-of-addition assay and an rNTP competitive inhibition assay, it is speculated that the inhibitory mechanism of VV116 against HCoV-NL63 is consistent with its inhibition of SARS-CoV-2. Our work presents VV116 as a promising candidate for broad-spectrum anti-coronavirus therapy, with implications for both human and animal health, and supports the expansion of its therapeutic applications as backed by detailed experimental data.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Animais , Humanos , SARS-CoV-2
19.
Sci Rep ; 13(1): 20048, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973822

RESUMO

The emergence of more virulent and epidemic strains of viruses, especially in the context of COVID-19, makes it more important than ever to improve methods of decontamination. The objective of this study was to evaluate the potential of on-demand production of chlorine species to inactivate human coronaviruses. The commercial prototype disinfection unit was provided by Unipolar Water Technologies. The Unipolar device generates active chlorine species using an electrochemical reaction and dispenses the disinfectant vapour onto surfaces with an aspirator. The minimum effective concentration and exposure time of disinfectant were evaluated on human hepatoma (Huh7) cells using 50% tissue culture infectious dose (TCID50) assay and human coronavirus 229E (HCoV-229E), a surrogate for pathogenic human coronaviruses. We showed that chlorine species generated in the Unipolar device inactivate HCoV-229E on glass surfaces at ≥ 400 parts per million active chlorine concentration with a 5 min exposure time. Here, inactivation refers to the inability of the virus to infect the Huh7 cells. Importantly, no toxic effect was observed on Huh7 cells for any of the active chlorine concentrations and contact times tested.


Assuntos
Coronavirus Humano 229E , Desinfetantes , Vírus , Humanos , Desinfecção/métodos , Cloro/farmacologia , Desinfetantes/farmacologia
20.
Antiviral Res ; 219: 105730, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805057

RESUMO

The development of antivirals with an extended spectrum of activity is an attractive possibility to protect against future emerging coronaviruses (CoVs). Cyclosporine A (CsA), a clinically approved immunosuppressive drug, has established antiviral activity against diverse unrelated viruses, including several CoVs. However, its antiviral mechanisms of action against CoV infection have remained elusive, precluding the rational design of non-immunosuppressive derivatives with improved antiviral activities. In this study, we evaluated the mechanisms of CsA against HCoV-229E infection in a human lung epithelial cell line. We demonstrate that the antiviral activity of CsA against HCoV-229E is independent of classical CsA target proteins, cyclophilin A or B, which are not required host factors for HCoV-229E in A549 cells. Instead, CsA treatment induces expression of antiviral genes in a manner dependent on interferon regulatory factor 1, but independent of classical interferon responses, which contributes to its inhibitory effect against HCoV-229E infection. Our results also point to a role for the HCoV-229E nucleoprotein in antagonizing activation of type I interferon, but we show that CsA treatment does not affect evasion of innate immune signalling pathways by HCoV-229E. Overall, our findings further the understanding of the antiviral mechanisms of CsA against CoV infection and highlight a novel immunomodulatory strategy to inhibit CoV infection that may inform future drug development efforts.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus , Humanos , Ciclofilina A/genética , Ciclosporina/farmacologia , Células Epiteliais , Antivirais/farmacologia , Antivirais/uso terapêutico , Pulmão/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...