Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.916
Filtrar
1.
J Neurol Sci ; 464: 123166, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128159

RESUMO

INTRODUCTION: Gerstmann-Sträussler-Scheinker disease (GSS) is an autosomal-dominant inherited prion disease most often associated with the human prion protein gene (PRNP)-P102L mutation. Although patients manifest considerable phenotypic heterogeneity, the involvement of the nigrostriatal system has not been well-studied. METHODS: We performed dopamine transporter single-photon emission computed tomography (DAT-SPECT) using 123I-ioflupane to investigate the nigrostriatal system function in nine patients with the PRNP-P102L mutation. We also examined the pathological findings in another patient whose predominant feature was ataxia and who died 5 years after disease onset. RESULTS: Striatum uptake of 123I-ioflupane indicated by specific binding ratio (SBR) values was significantly reduced in two patients. The DAT-SPECT examination was performed 6 months after disease onset in one of these patients who manifested rapidly developing cognitive decline mimicking Creutzfeldt-Jakob disease. DAT-SPECT was also performed 9 years after disease onset in another patient who manifested the conventional features of GSS involving ataxia and dementia in the initial phase but showed akinetic mutism at the examination time. Another patient examined 2 years after disease onset who predominantly manifested ataxia showed marginally abnormal SBR values. An autopsy case showed moderate neuronal loss in the substantia nigra, and the degree of neuronal loss was similar in most other parts of the brain. CONCLUSION: Nigrostriatal system involvement may occur in patients with GSS associated with the PRNP-P102L mutation, even though parkinsonism is not the predominant feature.


Assuntos
Corpo Estriado , Doença de Gerstmann-Straussler-Scheinker , Mutação , Proteínas Priônicas , Príons , Substância Negra , Tomografia Computadorizada de Emissão de Fóton Único , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/patologia , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Doença de Gerstmann-Straussler-Scheinker/diagnóstico por imagem , Nortropanos , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Substância Negra/metabolismo
2.
Nat Commun ; 15(1): 7093, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154025

RESUMO

Perceptual decisions should depend on sensory evidence. However, such decisions are also influenced by past choices and outcomes. These choice history biases may reflect advantageous strategies to exploit temporal regularities of natural environments. However, it is unclear whether and how observers can adapt their choice history biases to different temporal regularities, to exploit the multitude of temporal correlations that exist in nature. Here, we show that male mice adapt their perceptual choice history biases to different temporal regularities of visual stimuli. This adaptation was slow, evolving over hundreds of trials across several days. It occurred alongside a fast non-adaptive choice history bias, limited to a few trials. Both fast and slow trial history effects are well captured by a normative reinforcement learning algorithm with multi-trial belief states, comprising both current trial sensory and previous trial memory states. We demonstrate that dorsal striatal dopamine tracks predictions of the model and behavior, suggesting that striatal dopamine reports reward predictions associated with adaptive choice history biases. Our results reveal the adaptive nature of perceptual choice history biases and shed light on their underlying computational principles and neural correlates.


Assuntos
Comportamento de Escolha , Corpo Estriado , Dopamina , Animais , Masculino , Dopamina/metabolismo , Camundongos , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Comportamento de Escolha/fisiologia , Camundongos Endogâmicos C57BL , Tomada de Decisões/fisiologia , Recompensa , Estimulação Luminosa , Percepção Visual/fisiologia , Reforço Psicológico
3.
Elife ; 132024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196613

RESUMO

How does alcohol consumption alter synaptic transmission across time, and do these alcohol-induced neuroadaptations occur similarly in both male and female mice? Previously we identified that anterior insular cortex (AIC) projections to the dorsolateral striatum (DLS) are uniquely sensitive to alcohol-induced neuroadaptations in male, but not female mice, and play a role in governing binge alcohol consumption in male mice (Haggerty et al., 2022). Here, by using high-resolution behavior data paired with in-vivo fiber photometry, we show how similar levels of alcohol intake are achieved via different behavioral strategies across sexes, and how inter-drinking session thirst states predict future alcohol intakes in females, but not males. Furthermore, we show how presynaptic calcium activity recorded from AIC synaptic inputs in the DLS across 3 weeks of water consumption followed by 3 weeks of binge alcohol consumption changes across, fluid, time, sex, and brain circuit lateralization. By time-locking presynaptic calcium activity from AIC inputs to the DLS to peri-initiation of drinking events we also show that AIC inputs into the left DLS robustly encode binge alcohol intake behaviors relative to water consumption. These findings suggest a fluid-, sex-, and lateralization-dependent role for the engagement of AIC inputs into the DLS that encode binge alcohol consumption behaviors and further contextualize alcohol-induced neuroadaptations at AIC inputs to the DLS.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Corpo Estriado , Córtex Insular , Animais , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais , Caracteres Sexuais , Etanol
4.
J Neurol Sci ; 464: 123165, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39116487

RESUMO

INTRODUCTION: A major component of Lewy bodies is phosphorylated α-synuclein. This post-translational modification of α-synuclein, phosphorylation, may consume a great amount of serum phosphorus. We aimed to investigate serum phosphorus levels and their associations with clinical phenotype and the degeneration of cardiac sympathetic and nigrostriatal dopaminergic neurons in patients with Parkinson's disease (PD). MATERIALS AND METHODS: We examined serum phosphorus levels in 127 participants (drug-naïve PD, 97; age- and sex-matched controls, 30). Associations of serum phosphorus levels with clinical features, heart-to-mediastinum (H/M) ratio on cardiac 123I-metaiodobenzylguanidine scintigraphy and striatal specific binding ratio of 123I-2-carbomethoxy-3-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (123I-FP-CIT) were examined. RESULTS: Serum phosphorus levels were 3.4 ± 0.5 mg/dL in patients with PD and were not different from those in controls after controlling for age and sex (p = 0.850). Serum phosphorus levels were significantly lower in patients with PD and decreased H/M ratio than in those with PD and normal H/M ratio (3.3 ± 0.4 mg/dL vs. 3.6 ± 0.5 mg/dL, p = 0.003). Lower serum phosphorus levels were significantly associated with more severe degeneration of nigrostriatal dopaminergic neurons in patients with PD and decreased H/M ratio. However, this association was not observed in patients with PD and normal H/M ratio. CONCLUSIONS: Serum phosphorus levels and their association with nigrostriatal dopaminergic degeneration are different between patients with decreased H/M ratio and those with normal H/M ratio. Serum phosphorus levels may reflect the degree of nigrostriatal dopaminergic degeneration in patients with decreased H/M ratio, namely, Body-First PD.


Assuntos
Corpo Estriado , Doença de Parkinson , Fósforo , Substância Negra , Humanos , Masculino , Feminino , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico por imagem , Fósforo/sangue , Idoso , Pessoa de Meia-Idade , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Tropanos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
5.
BMJ Open ; 14(8): e081800, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142668

RESUMO

INTRODUCTION: Structural and functional abnormalities in the cortical-striatal network (CSN) are hypothesised to play a key role in the pathogenesis of neurological disease-associated fatigue. Some small-scale functional MRI (fMRI) studies have suggested that poststroke fatigue (PSF) is related to focal functional connectivity (FC) changes. To date, there has been no published large-scale fMRI study on PSF. This planned study will examine the role of the CSN FC on PSF. METHODS AND ANALYSIS: The planned study will be a prospective cohort study conducted at the Neurology Unit of the Prince of Wales Hospital. We will recruit 738 participants. The project duration will be 36 months. A psychiatrist will administer the Fatigue Severity Scale (FSS) at 3 months (P1) following the index stroke. PSF is defined as an FSS Score≥4.0. PSF severity will be defined by the FSS total score at P1. Participants with PSF at P1 will undergo two follow-up assessments at 9 (P2) and 15 (P3) months post stroke. PSF remission at P2 or P3 will be defined as a 50% reduction in FSS. Participants will undergo MRI examinations within 2 weeks of the 3-month poststroke assessment. Structural MRI, resting-state fMRI and diffusion tensor imaging will be performed. FC, structural connectivity, infarcts, cerebral microbleeds and white matter hyperintensities will be analysed. For the primary analysis, the effect of PSF on the FC, structural connectivity and diffusion metrics of CSN of stroke survivors, voxel-wise two-sample t-tests will be performed with FDR correction for multiple comparison and significance level set at p<0.05. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Joint Chinese University of Hong Kong-New Territories East Cluster clinical research ethics committee. The study findings will be shared through peer-reviewed journal publications, national and international conferences and social media platforms.


Assuntos
Fadiga , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral , Humanos , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Estudos de Casos e Controles , Estudos Prospectivos , Fadiga/etiologia , Fadiga/fisiopatologia , Feminino , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Masculino , Adulto , Pessoa de Meia-Idade
7.
Sci Rep ; 14(1): 18919, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143173

RESUMO

A large-scale biophysical network model for the isolated striatal body is developed to optimise potential intrastriatal deep brain stimulation applied to, e.g. obsessive-compulsive disorder. The model is based on modified Hodgkin-Huxley equations with small-world connectivity, while the spatial information about the positions of the neurons is taken from a detailed human atlas. The model produces neuronal spatiotemporal activity patterns segregating healthy from pathological conditions. Three biomarkers were used for the optimisation of stimulation protocols regarding stimulation frequency, amplitude and localisation: the mean activity of the entire network, the frequency spectrum of the entire network (rhythmicity) and a combination of the above two. By minimising the deviation of the aforementioned biomarkers from the normal state, we compute the optimal deep brain stimulation parameters, regarding position, amplitude and frequency. Our results suggest that in the DBS optimisation process, there is a clear trade-off between frequency synchronisation and overall network activity, which has also been observed during in vivo studies.


Assuntos
Estimulação Encefálica Profunda , Modelos Neurológicos , Estimulação Encefálica Profunda/métodos , Humanos , Corpo Estriado/fisiologia , Neurônios/fisiologia , Rede Nervosa/fisiologia , Transtorno Obsessivo-Compulsivo/terapia , Transtorno Obsessivo-Compulsivo/fisiopatologia
8.
Sci Rep ; 14(1): 20025, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198481

RESUMO

Due to its central role in cognitive control, the dorso-lateral prefrontal cortex (dlPFC) has been the target of multiple brain modulation studies. In the context of the present pilot study, the dlPFC was the target of eight repeated neurofeedback (NF) sessions with functional near infrared spectroscopy (fNIRS) to assess the brain responses during NF and with functional and resting state magnetic resonance imaging (task-based fMRI and rsMRI) scanning. Fifteen healthy participants were recruited. Cognitive task fMRI and rsMRI were performed during the 1st and the 8th NF sessions. During NF, our data revealed an increased activity in the dlPFC as well as in brain regions involved in cognitive control and self-regulation learning (pFWE < 0.05). Changes in functional connectivity between the 1st and the 8th session revealed increased connectivity between the posterior cingulate cortex and the dlPFC, and between the posterior cingulate cortex and the dorsal striatum (pFWE < 0.05). Decreased left dlPFC-left insula connectivity was also observed. Behavioural results revealed a significant effect of hunger and motivation on the participant control feeling and a lower control feeling when participants did not identify an effective mental strategy, providing new insights on the effects of behavioural factors that may affect the NF learning.


Assuntos
Córtex Pré-Frontal Dorsolateral , Imageamento por Ressonância Magnética , Neurorretroalimentação , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Neurorretroalimentação/métodos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Adulto Jovem , Corpo Estriado/fisiologia , Corpo Estriado/diagnóstico por imagem , Mapeamento Encefálico/métodos , Projetos Piloto , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Cognição/fisiologia
9.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201299

RESUMO

The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.


Assuntos
Astrócitos , Corpo Estriado , Dopamina , Receptor A2A de Adenosina , Receptores de Dopamina D2 , Transdução de Sinais , Astrócitos/metabolismo , Animais , Receptor A2A de Adenosina/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/citologia , Receptores de Dopamina D2/metabolismo , Dopamina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/genética , Humanos , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Camundongos
10.
Proc Natl Acad Sci U S A ; 121(32): e2402206121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39088390

RESUMO

Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.


Assuntos
Cílios , Neurônios Dopaminérgicos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Neuroproteção , Doença de Parkinson , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Cílios/metabolismo , Animais , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Humanos , Camundongos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neuroproteção/genética , Mutação , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Masculino
11.
Neurotox Res ; 42(5): 39, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190189

RESUMO

There is a public health concern about the use of methylphenidate (MPH) since the higher prescription for young individuals and non-clinical purposes is addressed to the limited understanding of its neurochemical and psychiatric consequences. This study aimed to evaluate the impact of early and chronic MPH treatment on the striatum focusing on amino acid profile, glutamatergic excitotoxicity, redox status, neuroinflammation and glial cell responses. Male Wistar rats were treated with MPH (2.0 mg/kg) or saline solution from the 15th to the 44th postnatal day. Biochemical and histological analyses were conducted after the last administration. MPH altered the amino acid profile in the striatum, increasing glutamate and ornithine levels, while decreasing the levels of serine, phenylalanine, and branched-chain amino acids (leucine, valine, and isoleucine). Glutamate uptake and Na+,K+-ATPase activity were decreased in the striatum of MPH-treated rats as well as increased ATP levels, as indicator of glutamatergic excitotoxicity. Moreover, MPH caused lipid peroxidation and nitrative stress, increased TNF alpha expression, and induced high levels of astrocytes, and led to a decrease in BDNF levels. In summary, our results suggest that chronic early-age treatment with MPH induces parallel activation of damage-associated pathways in the striatum and increases its vulnerability during the juvenile period. In addition, data presented here contribute to shedding light on the mechanisms underlying MPH-induced striatal damage and its potential implications for neurodevelopmental disorders.


Assuntos
Aminoácidos , Astrócitos , Estimulantes do Sistema Nervoso Central , Corpo Estriado , Ácido Glutâmico , Metilfenidato , Ratos Wistar , Animais , Masculino , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Metilfenidato/toxicidade , Metilfenidato/farmacologia , Ácido Glutâmico/metabolismo , Ratos , Estimulantes do Sistema Nervoso Central/toxicidade , Estimulantes do Sistema Nervoso Central/farmacologia , Aminoácidos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
12.
Sheng Li Xue Bao ; 76(4): 622-630, 2024 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-39192794

RESUMO

Parkinson's disease (PD), a prevalent neurodegenerative condition, manifests predominantly through the degeneration of nigrostriatal dopaminergic (DA) pathways, culminating in a notable depletion of striatal dopamine. This pathophysiological process critically impairs the DA-mediated regulation of motor behaviors within the basal ganglia circuitry, particularly impacting various subtypes of striatal medium spiny neurons. Recent advancements in neuroscientific research have illuminated the pivotal role of D2-dopamine receptor expressing medium spiny neurons (D2-MSNs) plasticity in coordinating motor control in PD. Intriguingly, aerobic exercise emerges as a potent therapeutic intervention, capable of preventing or improving motor impairments. This ameliorative effect is mediated through the modulation of DA receptor activity and the consequent activation of downstream extracellular signal-regulated kinase (Erk) signaling pathway. This article meticulously reviewed the intricate regulatory mechanisms governing the structural and functional plasticity of striatal D2-MSNs in the context of PD. It particularly emphasized the transformative impact of aerobic exercise on motor deficits in PD, attributing this effect to the modulation of striatal D2-MSNs.


Assuntos
Corpo Estriado , Plasticidade Neuronal , Doença de Parkinson , Receptores de Dopamina D2 , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/fisiologia , Plasticidade Neuronal/fisiologia , Humanos , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Animais , Exercício Físico/fisiologia , Terapia por Exercício/métodos
13.
J Pharmacol Sci ; 156(2): 77-81, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179337

RESUMO

Dopamine (DA) D2 receptors (D2Rs) have 2 isoforms, a long form (D2L) and a short form (D2S). D2L is predominantly postsynaptic in the striatal medium spiny neurons and cholinergic interneurons. D2S is principally presynaptic autoreceptors in the nigrostriatal DA neurons. Recently, we demonstrated that L-3,4-dihydroxyphenylalanine (L-DOPA) augments D2L function through the coupling between D2L and GPR143, a receptor of L-DOPA that was originally identified as the gene product of ocular albinism 1. Here we show that GPR143 modifies the functions of D2L and D2S in an opposite manner. Haloperidol-induced catalepsy was attenuated in DA neuron-specific Gpr143 gene-deficient (Dat-cre;Gpr143flox/y) mice, compared with wild-type (Wt) mice. Haloperidol increased in vivo DA release from the dorsolateral striatum, and this increase was augmented in Gpr143-/y mice compared with Wt mice. A D2R agonist quinpirole-induced increase in the phosphorylation of GSK3ß(pGSK3ß(S9)) was enhanced in Chinese hamster ovary (CHO) cells coexpressing D2L and GPR143 compared with cells expressing D2L alone, while it was suppressed in cells coexpressing D2S and GPR143 compared with D2S alone, suggesting that GPR143 differentially modifies D2R functions depending on its isoforms of D2L and D2S.


Assuntos
Cricetulus , Dopamina , Haloperidol , Receptores de Dopamina D2 , Animais , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Haloperidol/farmacologia , Células CHO , Dopamina/metabolismo , Corpo Estriado/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Camundongos , Levodopa/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/genética , Catalepsia/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Quimpirol/farmacologia , Neurônios Dopaminérgicos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo
14.
Actas Esp Psiquiatr ; 52(4): 503-511, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129697

RESUMO

BACKGROUND: Recent research has demonstrated that the dorsal striatum is directly associated with the integration of cognitive, sensory-motor, and motivational/emotional data. Disruptions in the corticostriatal circuit have been implicated in the pathophysiology of psychosis. The dorsal striatum was reported to show lateralized pathology in psychotic disorders. In this study, we aimed to analyze the laterality of the dorsal striatum with texture analysis of T2-weighted magnetic resonance imaging (MRI) images from schizoaffective disorder (SAD) patients. METHODS: Twenty SAD patients, met the inclusion criteria and had available cranial MRI data were assigned as the patient group. Twenty healthy individuals were determined as the control group. Texture analysis values were obtained from striatum region of interests (ROI) generated from T2-weighted MRI images. Data are presented as mean and standard deviation. The suitability of the data for normal distribution was analyzed with the Kolmogorov-Smirnov test. Analysis of variance (ANOVA) test (Post Hoc TUKEY) was employed to compare the group data based on test findings. RESULTS: There was no significant difference between the groups in terms of gender and age. There were differences in the values of texture analysis parameters of both caudate and putamen nuclei in comparison to controls. We identified differences in the left dorsal striatum nuclei in SAD. The differences in the putamen were more and more pronounced than in the caudate. CONCLUSIONS: Texture analyses suggest that the left dorsal striatum nuclei may be different in SAD patients. Further studies are needed to determine the pathophysiology of SAD and how it may affect disease treatment.


Assuntos
Corpo Estriado , Lateralidade Funcional , Imageamento por Ressonância Magnética , Transtornos Psicóticos , Humanos , Masculino , Feminino , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/fisiopatologia , Adulto , Corpo Estriado/diagnóstico por imagem , Lateralidade Funcional/fisiologia , Pessoa de Meia-Idade , Estudos de Casos e Controles
15.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125878

RESUMO

Copper is a trace element whose electronic configuration provides it with essential structural and catalytic functions. However, in excess, both its high protein affinity and redox-catalyzing properties can lead to hazardous consequences. In addition to promoting oxidative stress, copper is gaining interest for its effects on neurotransmission through modulation of GABAergic and glutamatergic receptors and interaction with the dopamine reuptake transporter. The aim of the present study was to investigate the effects of copper overexposure on the levels of dopamine, noradrenaline, and serotonin, or their main metabolites in rat's striatum extracellular fluid. Copper was injected intraperitoneally using our previously developed model, which ensured striatal overconcentration (2 mg CuCl2/kg for 30 days). Subsequently, extracellular fluid was collected by microdialysis on days 0, 15, and 30. Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and noradrenaline (NA) levels were then determined by HPLC coupled with electrochemical detection. We observed a significant increase in the basal levels of DA and HVA after 15 days of treatment (310% and 351%), which was maintained after 30 days (358% and 402%), with no significant changes in the concentrations of 5-HIAA, DOPAC, and NA. Copper overload led to a marked increase in synaptic DA concentration, which could contribute to the psychoneurological alterations and the increased oxidative toxicity observed in Wilson's disease and other copper dysregulation states.


Assuntos
Cobre , Corpo Estriado , Dopamina , Líquido Extracelular , Ácido Homovanílico , Animais , Dopamina/metabolismo , Cobre/metabolismo , Ácido Homovanílico/metabolismo , Ratos , Masculino , Líquido Extracelular/metabolismo , Corpo Estriado/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ratos Wistar , Serotonina/metabolismo , Norepinefrina/metabolismo
16.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39128939

RESUMO

The anterior cingulate cortex (ACC) has been implicated across multiple highly specialized cognitive functions-including task engagement, motivation, error detection, attention allocation, value processing, and action selection. Here, we ask if ACC lesions disrupt task performance and firing in dorsomedial striatum (DMS) during the performance of a reward-guided decision-making task that engages many of these cognitive functions. We found that ACC lesions impacted several facets of task performance-including decreasing the initiation and completion of trials, slowing reaction times, and resulting in suboptimal and inaccurate action selection. Reductions in movement times towards the end of behavioral sessions further suggested attenuations in motivation, which paralleled reductions in directional action selection signals in the DMS that were observed later in recording sessions. Surprisingly, however, beyond altered action signals late in sessions-neural correlates in the DMS were largely unaffected, even though behavior was disrupted at multiple levels. We conclude that ACC lesions result in overall deficits in task engagement that impact multiple facets of task performance during our reward-guided decision-making task, which-beyond impacting motivated action signals-arise from dysregulated attentional signals in the ACC and are mediated via downstream targets other than DMS.


Assuntos
Corpo Estriado , Tomada de Decisões , Giro do Cíngulo , Neurônios , Recompensa , Giro do Cíngulo/fisiologia , Giro do Cíngulo/fisiopatologia , Animais , Masculino , Tomada de Decisões/fisiologia , Neurônios/fisiologia , Corpo Estriado/fisiologia , Corpo Estriado/fisiopatologia , Potenciais de Ação/fisiologia , Tempo de Reação/fisiologia , Motivação/fisiologia , Desempenho Psicomotor/fisiologia
17.
Behav Brain Res ; 471: 115138, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969019

RESUMO

Negative urgency (NU), or the tendency to act rashly when stress of negative affect is high, could be the result of an insufficient control of the ventromedial prefrontal cortex (vmPFC) over the striatum, through an impaired dopamine (DA) transmission. Therefore, we investigated in vivo human stress-induced DA release in the vmPFC, its relation with fronto-striatal functional connectivity (FC), and NU in daily life. In total, 12 female healthy participants performed a simultaneous [18 F]fallypride PET and fMRI scan during which stress was induced. Regions displaying stress-induced DA release were identified and used to investigate stress-induced changes in fronto-striatal FC. Additionally, participants enrolled in an experience sampling study, reporting on daily life stress and rash actions over a 12-month-long period. Mixed models explored whether stress-induced DA release and FC moderated NU in daily life. Stress led to a lower FC between the vmPFC and dorsal striatum, but a higher FC between the vmPFC and contralateral ventral striatum. Participants with a higher FC between the vmPFC and dorsal striatum displayed more NU in daily life. A higher stress-induced DA release in the vmPFC was related to a higher stress-induced change in FC between the vmPFC and striatum. Participants with a higher DA release in the vmPFC displayed more NU in daily life. In conclusion, stress could differentially impact fronto-striatal FC whereby the connectivity with the dorsal striatum is especially important for NU in daily life. This could be mediated by a higher, but not a lower, stress-induced DA release in the vmPFC.


Assuntos
Corpo Estriado , Dopamina , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Córtex Pré-Frontal , Estresse Psicológico , Humanos , Feminino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem , Adulto , Dopamina/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Estresse Psicológico/diagnóstico por imagem , Corpo Estriado/metabolismo , Corpo Estriado/diagnóstico por imagem , Adulto Jovem , Benzamidas , Imagem Multimodal , Comportamento Impulsivo/fisiologia , Pirrolidinas
18.
eNeuro ; 11(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39054055

RESUMO

The frontal cortex-striatum circuit plays a pivotal role in adaptive goal-directed behaviors. However, it remains unclear how decision-related signals are mediated through cross-regional transmission between the medial frontal cortex and the striatum by neuronal ensembles in making decision based on outcomes of past action. Here, we analyzed neuronal ensemble activity obtained through simultaneous multiunit recordings in the secondary motor cortex (M2) and dorsal striatum (DS) in rats performing an outcome-based left-or-right choice task. By adopting tensor component analysis (TCA), a single-trial-based unsupervised dimensionality reduction approach, for concatenated ensembles of M2 and DS neurons, we identified distinct three spatiotemporal neural dynamics (TCA components) at the single-trial level specific to task-relevant variables. Choice-position-selective neural dynamics reflected the positions chosen and was correlated with the trial-to-trial fluctuation of behavioral variables. Intriguingly, choice-pattern-selective neural dynamics distinguished whether the incoming choice was a repetition or a switch from the previous choice before a response choice. Other neural dynamics was selective to outcome and increased within-trial activity following response. Our results demonstrate how the concatenated ensembles of M2 and DS process distinct features of decision-related signals at various points in time. Thereby, the M2 and DS collaboratively monitor action outcomes and determine the subsequent choice, whether to repeat or switch, for action selection.


Assuntos
Comportamento de Escolha , Corpo Estriado , Tomada de Decisões , Neurônios , Animais , Masculino , Corpo Estriado/fisiologia , Tomada de Decisões/fisiologia , Comportamento de Escolha/fisiologia , Neurônios/fisiologia , Córtex Motor/fisiologia , Ratos , Ratos Long-Evans , Potenciais de Ação/fisiologia , Lobo Frontal/fisiologia , Vias Neurais/fisiologia
19.
J Affect Disord ; 362: 391-403, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986877

RESUMO

BACKGROUND: Considering the high comorbidity, shared risk factors, and genetic pathways between irritable bowel syndrome (IBS) and major depressive disorder (MDD), we hypothesized that there would be both shared and disorder-specific alterations in brain function. METHODS: A total of 39 IBS patients, 39 MDD patients, and 40 healthy controls (HCs) were enrolled and matched for sex, age, and educational level. All subjects underwent resting-state functional MRI. The clinical variables of anxiety, depression, gastrointestinal symptoms and alexithymia were recorded. The 12 subregions of the striatum were employed as seeds to assess their functional connectivity (FC) with every voxel throughout the whole brain. RESULTS: Compared to HC, IBS and MDD patients exhibited aberrant frontal-striatal circuitry. We observed a common decrease in FC between the dorsal striatum and regions of the hippocampus, sensorimotor cortex, and prefrontal cortex (PFC) in both IBS and MDD patients. Patients with IBS exhibited disorder-specific decreases in FC within the striatum, along with reduced connectivity between the ventral striatum and sensorimotor cortex. In contrast, MDD patients showed disorder-specific hyperconnectivity in the medial PFC-limbic system. Receiver operating characteristic curve analysis showed that frontal-striatal FC values could serve as transdiagnostic markers of IBS and MDD. Within the IBS group, striatal connectivity was not only negatively associated with weekly abdominal pain days but also negatively correlated with the levels of anxiety and alexithymia. CONCLUSIONS: This exploratory analysis indicated that patients with IBS and MDD exhibited both shared and disorder-specific frontal-striatal circuit impairments, potentially explaining both comorbidity and distinct phenotypes.


Assuntos
Corpo Estriado , Transtorno Depressivo Maior , Síndrome do Intestino Irritável , Imageamento por Ressonância Magnética , Humanos , Transtorno Depressivo Maior/fisiopatologia , Feminino , Masculino , Síndrome do Intestino Irritável/fisiopatologia , Síndrome do Intestino Irritável/psicologia , Adulto , Corpo Estriado/fisiopatologia , Corpo Estriado/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Estudos de Casos e Controles , Adulto Jovem
20.
Nat Commun ; 15(1): 5691, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971801

RESUMO

Cholinergic striatal interneurons (ChIs) express the vesicular glutamate transporter 3 (VGLUT3) which allows them to regulate the striatal network with glutamate and acetylcholine (ACh). In addition, VGLUT3-dependent glutamate increases ACh vesicular stores through vesicular synergy. A missense polymorphism, VGLUT3-p.T8I, was identified in patients with substance use disorders (SUDs) and eating disorders (EDs). A mouse line was generated to understand the neurochemical and behavioral impact of the p.T8I variant. In VGLUT3T8I/T8I male mice, glutamate signaling was unchanged but vesicular synergy and ACh release were blunted. Mutant male mice exhibited a reduced DA release in the dorsomedial striatum but not in the dorsolateral striatum, facilitating habit formation and exacerbating maladaptive use of drug or food. Increasing ACh tone with donepezil reversed the self-starvation phenotype observed in VGLUT3T8I/T8I male mice. Our study suggests that unbalanced dopaminergic transmission in the dorsal striatum could be a common mechanism between SUDs and EDs.


Assuntos
Corpo Estriado , Dopamina , Animais , Masculino , Dopamina/metabolismo , Camundongos , Corpo Estriado/metabolismo , Humanos , Acetilcolina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/genética , Transdução de Sinais/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Interneurônios/efeitos dos fármacos , Transtornos da Alimentação e da Ingestão de Alimentos/metabolismo , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Camundongos Endogâmicos C57BL , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Mutação , Mutação de Sentido Incorreto , Proteínas Vesiculares de Transporte de Acetilcolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA