Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.200
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 159, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937432

RESUMO

The ORF9b protein, derived from the nucleocapsid's open-reading frame in both SARS-CoV and SARS-CoV-2, serves as an accessory protein crucial for viral immune evasion by inhibiting the innate immune response. Despite its significance, the precise regulatory mechanisms underlying its function remain elusive. In the present study, we unveil that the ORF9b protein of SARS-CoV-2, including emerging mutant strains like Delta and Omicron, can undergo ubiquitination at the K67 site and subsequent degradation via the proteasome pathway, despite certain mutations present among these strains. Moreover, our investigation further uncovers the pivotal role of the translocase of the outer mitochondrial membrane 70 (TOM70) as a substrate receptor, bridging ORF9b with heat shock protein 90 alpha (HSP90α) and Cullin 5 (CUL5) to form a complex. Within this complex, CUL5 triggers the ubiquitination and degradation of ORF9b, acting as a host antiviral factor, while HSP90α functions to stabilize it. Notably, treatment with HSP90 inhibitors such as GA or 17-AAG accelerates the degradation of ORF9b, leading to a pronounced inhibition of SARS-CoV-2 replication. Single-cell sequencing data revealed an up-regulation of HSP90α in lung epithelial cells from COVID-19 patients, suggesting a potential mechanism by which SARS-CoV-2 may exploit HSP90α to evade the host immunity. Our study identifies the CUL5-TOM70-HSP90α complex as a critical regulator of ORF9b protein stability, shedding light on the intricate host-virus immune response dynamics and offering promising avenues for drug development against SARS-CoV-2 in clinical settings.


Assuntos
COVID-19 , Proteínas Culina , Proteínas de Choque Térmico HSP90 , SARS-CoV-2 , Ubiquitinação , Replicação Viral , Humanos , Proteínas Culina/genética , Proteínas Culina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , COVID-19/virologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/imunologia , Ubiquitinação/genética , Células HEK293 , Benzoquinonas/farmacologia , Estabilidade Proteica , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Lactamas Macrocíclicas
2.
Cells ; 13(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38920658

RESUMO

The development of cell-type-specific dendritic arbors is integral to the proper functioning of neurons within their circuit networks. In this study, we examine the regulatory relationship between the cytosolic chaperonin CCT, key insulin pathway genes, and an E3 ubiquitin ligase (Cullin1) in dendritic development. CCT loss of function (LOF) results in dendritic hypotrophy in Drosophila Class IV (CIV) multi-dendritic larval sensory neurons, and CCT has recently been shown to fold components of the TOR (Target of Rapamycin) complex 1 (TORC1) in vitro. Through targeted genetic manipulations, we confirm that an LOF of CCT and the TORC1 pathway reduces dendritic complexity, while overexpression of key TORC1 pathway genes increases the dendritic complexity in CIV neurons. Furthermore, both CCT and TORC1 LOF significantly reduce microtubule (MT) stability. CCT has been previously implicated in regulating proteinopathic aggregation, thus, we examine CIV dendritic development in disease conditions as well. The expression of mutant Huntingtin leads to dendritic hypotrophy in a repeat-length-dependent manner, which can be rescued by Cullin1 LOF. Together, our data suggest that Cullin1 and CCT influence dendritic arborization through the regulation of TORC1 in both health and disease.


Assuntos
Proteínas Culina , Dendritos , Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas Culina/metabolismo , Proteínas Culina/genética , Dendritos/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Larva/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Microtúbulos/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Fatores de Transcrição , Chaperonina com TCP-1
3.
Sci Rep ; 14(1): 14912, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942922

RESUMO

Breast cancer is a prevalent and significant cause of mortality in women, and manifests as six molecular subtypes. Its further histologic classification into non-invasive ductal or lobular carcinoma (DCIS) and invasive carcinoma (ILC or IDC) underscores its heterogeneity. The ubiquitin-proteasome system plays a crucial role in breast cancer, with inhibitors targeting the 26S proteasome showing promise in clinical treatment. The Cullin-RING ubiquitin ligases, including CUL3, have direct links to breast cancer. This study focuses on CUL3 as a potential biomarker, leveraging high-throughput sequencing, gene expression profiling, experimental and data analysis tools. Through comprehensive analysis using databases like GEPIA2 and UALCAN, as well as TCGA datasets, CUL3's expression and its association with prognostic values were assessed. Additionally, the impact of CUL3 overexpression was explored in MCF-7 and MDA-MB-231 breast cancer cell lines, revealing distinct differences in molecular and phenotypic characteristics. We further profiled its expression and localization in breast cancer tissues identifying prominent differences between luminal A and TNBC tumors. Conclusively, CUL3 was found to be associated with cell cycle progression, and DNA damage response, exhibiting diverse roles depending on the tumor's molecular type. It exhibits a tendency to act as an oncogene in triple-negative tumors and as a tumor suppressor in luminal A types, suggesting a potential significance in breast cancer progression and therapeutic directions.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteínas Culina , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Culina/metabolismo , Proteínas Culina/genética , Feminino , Prognóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Células MCF-7 , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Int Ophthalmol ; 44(1): 288, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937308

RESUMO

PURPOSE: Age-related cataract (ARC) is the most common cause of visual impairment and blindness in older adults. However, the role of CUL4B in the ARC remains unclear. Therefore, we investigated CUL4B expression and its effects on apoptosis. MATERIALS AND METHODS: CUL4B expression levels were detected by a quantitative real-time polymerase chain reaction from the anterior lens capsules of patients with ARC and HLE-B3 cells treated with different concentrations of H2O2. CUL4B expression was silenced by siRNA transfection to evaluate apoptosis. CUL4B and apoptotic proteins B cell lymphoma 2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), caspase-3, cleaved caspase-3, Bax, Bak, and Bid were assessed using western blot analysis. Apoptosis was monitored using the TUNEL assay. RESULTS: CUL4B expression was downregulated in the anterior lens capsules (P < 0.0001) and H2O2-treated HLE-B3 cells (P = 0.0405). CUL4B protein levels were significantly lower in 100 µmol/L (P = 0.0012) and 200 µmol/L (P = 0.0041) H2O2-treated HLE-B3 cells than in the untreated cells. CUL4B expression was significantly knocked down at the mRNA (P = 0.0043) and protein levels (P = 0.0002) in HLE-B3 cells. Bcl-2 (P = 0.0199), Mcl-1 (P = 0.0042), and caspase-3 (P = 0.0142) were significantly downregulated, whereas cleaved caspase-3 (P = 0.0089) and Bak (P = 0.009) were significantly upregulated in the knockdown group. The TUNEL assay showed a greater induction of apoptosis. CONCLUSIONS: CUL4B downregulation promotes the apoptosis of lens epithelial cells. Our study may help in understanding the role of CUL4B in ARC pathogenesis.


Assuntos
Apoptose , Catarata , Proteínas Culina , Humanos , Catarata/metabolismo , Catarata/genética , Catarata/etiologia , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas Culina/biossíntese , Masculino , Feminino , Idoso , Western Blotting , Reação em Cadeia da Polimerase em Tempo Real , Pessoa de Meia-Idade , Envelhecimento , Regulação da Expressão Gênica , Cápsula do Cristalino/metabolismo , Cápsula do Cristalino/patologia , Marcação In Situ das Extremidades Cortadas
5.
Aging (Albany NY) ; 16(10): 8898-8921, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38787355

RESUMO

BACKGROUND: As a member of the Cullin family, Cullin2 (CUL2) is involved in the development and spread of different types of cancers. However, the precise role of CUL2 in human cancer remains largely elusive. METHODS: In this study, various databases were applied to observe the CUL2 expression. Kaplan-Meier and Spearman correlation analyses were employed to investigate the potential links between CUL2 level, patient prognosis, and the infiltration of immune cells. In addition, the association between CUL2 and the efficacy of immunotherapy in an immunotherapy cohort was investigated. Moreover, the expression and distribution of CUL2 in cells were observed using the Human Protein Atlas (THPA) database. Finally, clinical tissue specimens and in vitro function assays were conducted to validate the expressions and effects of CUL2 on the biological functions in hepatocellular carcinoma (HCC) cells. RESULTS: While there are variations in CUL2 expression across different organs and cell types, it is notably upregulated in a majority of tumor tissues. In addition, CUL2 gene mutations are common in multiple cancers with low mutation rates and CUL2 is closely related to the prognosis of some cancer's patients, some immune regulatory factors, TMB, MSI, MMR genes, and DNA methylation. Further, our results found that downregulating CUL2 inhibits the proliferation, and migration abilities. CONCLUSIONS: The expression of CUL2 has an impact on the prognosis of various tumors, and this correlation is particularly noteworthy due to its significant association with the infiltration of immune cells within tumors. CUL2 was an oncogene contributing to the progression of HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas Culina , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas Culina/genética , Proteínas Culina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Proliferação de Células/genética , Mutação , Movimento Celular/genética
6.
Zhonghua Yi Xue Za Zhi ; 104(20): 1868-1878, 2024 May 28.
Artigo em Chinês | MEDLINE | ID: mdl-38782756

RESUMO

Objective: To investigate the effects of ubiquitin ligase Cullin3 (CUL3) on the proliferation, migration and invasion ability of triple-negative breast cancer (TNBC) cells and its mechanism of action. Methods: Bioinformatics-based methods were used to obtain CUL3 gene and protein expression data in TNBC tissues, and to assess the expression of CUL3 in tumour tissues of TNBC patients (n=160) and in normal breast tissues (n=572), and its relationship with clinical prognosis. The effects of overexpression of CUL3 on the proliferation, migration and invasion ability of TNBC cells in vitro were detected by CCK8 cell proliferation assay, scratch assay and transwell assay; proteins that might interact with CUL3 were screened by immunoprecipitation combined with mass spectrometry analysis, and the substrate protein regulated by CUL3 was identified as Glutathione S-Transferase Pi 1 (GSTP1); the effects of overexpression of GSTP1 on the migration and invasion ability of TNBC cells were detected by scratch assay and Transwell assay, and it was explored whether overexpression of CUL3 could reverse the effects of GSTP1 on the migration and invasion ability of cells; and the effects of overexpression of GSTP1 on the migration and invasion ability of cells were detected by Western blot and IP (Immunoprecipitation) to detect the effect of CUL3 on the ubiquitination modification of GSTP1 protein, and to verify the molecular mechanism by which CUL3 regulates the expression of GSTP1 to affect TNBC migration and invasion. Results: CUL3 expression was significantly higher in TNBC (P<0.000 1), and high CUL3 expression was closely associated with poor prognosis of TNBC patients (OS, P=0.018; RFS, P=0.008); overexpression of CUL3 significantly increased the proliferation of TNBC cells (F=11.97, P=0.002 for the 231-cell group, F=51.92, P<0.001 for the 468-cell group), migration [74.7±4.0 and 128.0±6.1 perforating cells in the overexpression groups of 231 and 468 cell lines, compared with 21.0±2.7 and 70.0±6.6 in the blank control (NC) group, and the t-values of 231 and 468 cell groups were-19.24 and-11.23, with P-values<0.001] and invasive ability (48 h cell proliferation rates were 56.6%±4.4% and 51.6%±3.7% in the 231 and 468 cell line overexpression groups, compared with 40.5%±2.9% and 32.9%±4.8% in the NC group, respectively, t=-5.26, P=0.006 3 in the 231 cell group; t=-5.38 in the 468 cell group, P=0.005 8); GSTP1 expression was reduced in TNBC, and up-regulation of GSTP1 inhibited TNBC cell migration (the number of membrane-penetrating cells in the overexpression groups of 231 and 468 cell lines were 16.3±6.5 and 33.0±6.2, respectively, compared with 34.3±2.5 and 77.3±5.0 in the NC group, and t=5.44 in the 231 cell group, P=0.006; 468 cell group t=7.20, P=0.002) and invasion (48 h cell proliferation rates of 49.6%±1.7% and 36.2%±1.4% in the 231 and 468 cell line overexpression groups, compared to 59.4%±4.7% and 53.0%±1.7% in the NC group, t=3.42, P=0.027 in the 231 cell group; 468 cell group t=13.18, P<0.001), whereas up-regulation of CUL3 reversed the effects of GSTP1 on cell migration (37.0±1.0 and 67.0±5.3 membrane-penetrating cells in the overexpression groups of 231 and 468 cell lines, respectively, 231 cell group t=-3.97, P=0.017; 468 cell group t=-6.12, P=0.004), and invasion (48 h cell proliferation rates of 71.9%±3.6% and 59.4%±2.1% in the 231 and 468 cell line overexpression groups, respectively, with t-values of -9.61 and -16.01 in the 231 and 468 cell groups, respectively, P-values<0.001) inhibitory effects; and CUL3, by increasing GSTP1 ubiquitylation modification, promotes ubiquitin-proteasome system to degrade GSTP1 protein, thereby reducing the stability of GSTP1 protein. Conclusion: Overexpression of CUL3 promotes TNBC development by promoting GSTP1 ubiquitination degradation inducing cell migration and invasion.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas Culina , Invasividade Neoplásica , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Culina/metabolismo , Linhagem Celular Tumoral , Feminino , Prognóstico , Ubiquitinação
7.
Nat Commun ; 15(1): 3890, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719850

RESUMO

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Assuntos
Proteínas de Bactérias , Septinas , Shigella flexneri , Transdução de Sinais , Ubiquitina , Ubiquitinação , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Septinas/metabolismo , Septinas/genética , Humanos , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Interações Hospedeiro-Patógeno , Células HeLa , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Disenteria Bacilar/microbiologia , Disenteria Bacilar/metabolismo
8.
Nat Commun ; 15(1): 3789, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710693

RESUMO

The CUL3-RING E3 ubiquitin ligases (CRL3s) play an essential role in response to extracellular nutrition and stress stimuli. The ubiquitin ligase function of CRL3s is activated through dimerization. However, how and why such a dimeric assembly is required for its ligase activity remains elusive. Here, we report the cryo-EM structure of the dimeric CRL3KLHL22 complex and reveal a conserved N-terminal motif in CUL3 that contributes to the dimerization assembly and the E3 ligase activity of CRL3KLHL22. We show that deletion of the CUL3 N-terminal motif impairs dimeric assembly and the E3 ligase activity of both CRL3KLHL22 and several other CRL3s. In addition, we found that the dynamics of dimeric assembly of CRL3KLHL22 generates a variable ubiquitination zone, potentially facilitating substrate recognition and ubiquitination. These findings demonstrate that a CUL3 N-terminal motif participates in the assembly process and provide insights into the assembly and activation of CRL3s.


Assuntos
Motivos de Aminoácidos , Microscopia Crioeletrônica , Proteínas Culina , Receptores de Interleucina-17 , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Culina/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Multimerização Proteica , Sequência Conservada , Ligação Proteica , Modelos Moleculares
9.
Neoplasia ; 53: 101005, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38761506

RESUMO

Colorectal cancer (CRC) stands as a prevalent malignancy globally. A pivotal event in CRC pathogenesis involves the loss-of-function mutation in the APC gene, leading to the formation of benign polyps. Despite the well-established role of APC, the contribution of CUL4B to CRC initiation in the pre-tumorous stage remains poorly understood. In this investigation, we generated a murine model by crossing ApcMin/+ mice with Cul4bΔIEC mice to achieve specific deletion of Cul4b in the gut epithelium against an ApcMin/+ background. By employing histological methods, RNA-sequencing (RNA-seq), and flow cytometry, we assessed alterations and characterized the immune microenvironment. Our results unveiled that CUL4B deficiency in gut epithelium expedited ApcMin/+ adenoma formation. Notably, CUL4B in adenomas restrained the accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). In vivo inhibition of MDSCs significantly delayed the growth of CUL4B deleted ApcMin/+ adenomas. Furthermore, the addition of MDSCs to in vitro cultured ApcMin/+; Cul4bΔIEC adenoma organoids mitigated their alterations. Mechanistically, CUL4B directly interacted with the promoter of Csf3, the gene encoding granulocyte-colony stimulating factor (G-CSF) by coordinating with PRC2. Inhibiting CUL4B epigenetically activated the expression of G-CSF, promoting the recruitment of MDSCs. These findings offer novel insights into the tumor suppressor-like roles of CUL4B in regulating ApcMin/+ adenomas, suggesting a potential therapeutic strategy for CRC initiation and progression in the context of activated Wnt signaling.


Assuntos
Adenoma , Proteínas Culina , Modelos Animais de Doenças , Células Supressoras Mieloides , Animais , Proteínas Culina/genética , Proteínas Culina/metabolismo , Camundongos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Adenoma/patologia , Adenoma/genética , Adenoma/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Humanos , Microambiente Tumoral/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/etiologia , Deleção de Genes , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo
10.
Cell Rep ; 43(6): 114279, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795346

RESUMO

Heat shock can be a lethal stressor. Previously, we described a CUL-6/cullin-ring ubiquitin ligase complex in the nematode Caenorhabditis elegans that is induced by intracellular intestinal infection and proteotoxic stress and that promotes improved survival upon heat shock (thermotolerance). Here, we show that CUL-6 promotes thermotolerance by targeting the heat shock protein HSP-90 for degradation. We show that CUL-6-mediated lowering of HSP-90 protein levels, specifically in the intestine, improves thermotolerance. Furthermore, we show that lysosomal function is required for CUL-6-mediated promotion of thermotolerance and that CUL-6 directs HSP-90 to lysosome-related organelles upon heat shock. Altogether, these results indicate that a CUL-6 ubiquitin ligase promotes organismal survival upon heat shock by promoting HSP-90 degradation in intestinal lysosomes. Thus, HSP-90, a protein commonly associated with protection against heat shock and promoting degradation of other proteins, is itself degraded to protect against heat shock.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Choque Térmico HSP90 , Intestinos , Lisossomos , Termotolerância , Animais , Lisossomos/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteólise , Proteínas Culina/metabolismo , Resposta ao Choque Térmico , Ubiquitina-Proteína Ligases/metabolismo
11.
Free Radic Biol Med ; 219: 76-87, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604315

RESUMO

Diabetic retinopathy (DR) is a highly hazardous and widespread complication of diabetes mellitus (DM). The accumulated reactive oxygen species (ROS) play a central role in DR development. The aim of this research was to examine the impact and mechanisms of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEV) on regulating ROS and retinal damage in DR. Intravitreal injection of sEV inhibited Cullin3 neddylation, stabilized Nrf2, decreased ROS, reduced retinal inflammation, suppressed Müller gliosis, and mitigated DR. Based on MSC-sEV miRNA sequencing, bioinformatics software, and dual-luciferase reporter assay, miR-143-3p was identified to be the key effector for MSC-sEV's role in regulating neural precursor cell expressed developmentally down-regulated 8 (NEDD8)-mediated neddylation. sEV were able to be internalized by Müller cells. Compared to advanced glycation end-products (AGEs)-induced Müller cells, sEV coculture decreased Cullin3 neddylation, activated Nrf2 signal pathway to combat ROS-induced inflammation. The barrier function of endothelial cells was impaired when endothelial cells were treated with the supernatant of AGEs-induced Müller cells, but was restored when treated with supernatant of AGEs-induced Müller cells cocultured with sEV. The protective effect of sEV was, however, compromised when miR-143-3p was inhibited in sEV. Moreover, the protective efficacy of sEV was diminished when NEDD8 was overexpressed in Müller cells. These findings showed MSC-sEV delivered miR-143-3p to inhibit Cullin3 neddylation, stabilizing Nrf2 to counteract ROS-induced inflammation and reducing vascular leakage. Our findings suggest that MSC-sEV may be a potential nanotherapeutic agent for DR, and that Cullin3 neddylation could be a new target for DR therapy.


Assuntos
Retinopatia Diabética , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Proteína NEDD8 , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Animais , Humanos , Camundongos , Proteínas Culina/metabolismo , Proteínas Culina/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Retinopatia Diabética/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Produtos Finais de Glicação Avançada/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
12.
Nat Commun ; 15(1): 3558, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670995

RESUMO

The E3 ligase-degron interaction determines the specificity of the ubiquitin‒proteasome system. We recently discovered that FEM1B, a substrate receptor of Cullin 2-RING ligase (CRL2), recognizes C-degrons containing a C-terminal proline. By solving several cryo-EM structures of CRL2FEM1B bound to different C-degrons, we elucidate the dimeric assembly of the complex. Furthermore, we reveal distinct dimerization states of unmodified and neddylated CRL2FEM1B to uncover the NEDD8-mediated activation mechanism of CRL2FEM1B. Our research also indicates that, FEM1B utilizes a bipartite mechanism to recognize both the C-terminal proline and an upstream aromatic residue within the substrate. These structural findings, complemented by in vitro ubiquitination and in vivo cell-based assays, demonstrate that CRL2FEM1B-mediated polyubiquitination and subsequent protein turnover depend on both FEM1B-degron interactions and the dimerization state of the E3 ligase complex. Overall, this study deepens our molecular understanding of how Cullin-RING E3 ligase substrate selection mediates protein turnover.


Assuntos
Microscopia Crioeletrônica , Proteína NEDD8 , Receptores de Interleucina-17 , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Prolina/metabolismo , Multimerização Proteica , Células HEK293 , Ligação Proteica , Especificidade por Substrato , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Modelos Moleculares , Proteínas Culina/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Degrons
13.
Cell Mol Life Sci ; 81(1): 165, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578457

RESUMO

The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Ubiquitina-Proteína Ligases , Feminino , Humanos , Proteínas Culina/genética , Proteínas Culina/metabolismo , DNA/metabolismo , Metilação de DNA , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Oócitos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Signal Transduct Target Ther ; 9(1): 85, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575611

RESUMO

NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.


Assuntos
Proteínas Culina , Neoplasias , Humanos , Proteínas Culina/metabolismo , Ubiquitinas/genética , Ubiquitina-Proteína Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias/tratamento farmacológico , Neoplasias/genética
15.
Proc Natl Acad Sci U S A ; 121(17): e2315018121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625940

RESUMO

Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gßγ and reduces Gßγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gß1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gßγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gßγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gß and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gßγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.


Assuntos
Proteínas de Transporte , Ubiquitina-Proteína Ligases , Ligação Proteica , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/metabolismo , Ubiquitina/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
16.
Sci Rep ; 14(1): 9906, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689033

RESUMO

CUL4B, a crucial scaffolding protein in the largest E3 ubiquitin ligase complex CRL4B, is involved in a broad range of physiological and pathological processes. While previous research has shown that CUL4B participates in maintaining intestinal homeostasis and function, its involvement in facilitating intestinal recovery following ionizing radiation (IR) damage has not been fully elucidated. Here, we utilized in vivo and in vitro models to decipher the role of CUL4B in intestinal repair after IR-injury. Our findings demonstrated that prior to radiation exposure, CUL4B inhibited the ubiquitination modification of PSME3, which led to the accumulation of PSME3 and subsequent negative regulation of p53-mediated apoptosis. In contrast, after radiation, CUL4B dissociated from PSME3 and translocated into the nucleus at phosphorylated histones H2A (γH2AX) foci, thereby impeding DNA damage repair and augmenting p53-mediated apoptosis through inhibition of BRCA1 phosphorylation and RAD51. Our study elucidated the dynamic role of CUL4B in the repair of radiation-induced intestinal damage and uncovered novel molecular mechanisms underlying the repair process, suggesting a potential therapeutic strategy of intestinal damage after radiation therapy for cancers.


Assuntos
Apoptose , Proteínas Culina , Intestinos , Regeneração , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Apoptose/efeitos da radiação , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas Culina/metabolismo , Proteínas Culina/genética , Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Intestinos/efeitos da radiação , Intestinos/patologia , Camundongos Endogâmicos C57BL , Fosforilação/efeitos da radiação , Rad51 Recombinase/metabolismo , Radiação Ionizante , Regeneração/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
17.
Int J Hyperthermia ; 41(1): 2325489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38632954

RESUMO

BACKGROUND: Hyperthermia can play a synergistic role with chemotherapy in combination therapy. Although the association between caspase activation, apoptosis, and pyroptosis have been published for both cisplatin (CDDP) and hyperthermia therapies independently, the interactions between these molecular pathways in combination therapy are unknown. The present study aimed to investigate the possible interactions between caspase 8 activation, apoptosis, and pyroptosis in combination therapy. METHODS: Cells were treated with CDDP (15 µg/ml), followed by hyperthermia at optimized temperature (42.5 °C) in water-bath. After combination therapy, cell viability was analyzed by CCK-8, and cell death was analyzed by Annexin-V-FITC/PI and caspases activation. Immuno-staining and co-immuno-precipitation were used to examine the interaction between p62 and caspase-8. Pyroptosis was investigated by western blotting and transmission electron microscopy. E3 ligase Cullin 3 was knockdown by siRNA. In addition, caspase-8 activation was modulated by CRISPR-Cas9 gene-editing or pharmacological inhibition. RESULTS: Combination therapy promoted K63-linked polyubiquitination of caspase-8 and cellular accumulation of caspase-8. In turn, polyubiquitinated caspase-8 interacted with p62 and led to the activation of caspase-3. Knockdown of the E3 ligase Cullin 3 by siRNA reduced caspase-8 polyubiquitination and activation. In addition, combination therapy induced release of the pore-forming N-terminus from gasdermins and promoted pyroptosis along with caspase-8 accumulation and activation. Knockdown of caspase-8 by CRISPR/Cas9 based gene editing reduced the sensitivity of tumor cells to apoptosis and pyroptosis. CONCLUSIONS: Our study presented a novel mechanism in which hyperthermia synergized with chemotherapy in promoting apoptosis and pyroptosis in a caspase-8 dependent manner.


Assuntos
Antineoplásicos , Cisplatino , Hipertermia Induzida , Neoplasias , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 3/farmacologia , Caspase 8/efeitos dos fármacos , Caspase 8/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteínas Culina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Piroptose/efeitos dos fármacos , RNA Interferente Pequeno
18.
Proc Natl Acad Sci U S A ; 121(17): e2320934121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630726

RESUMO

Cullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined. Here, we report that hepatocyte Cul3 knockout results in rapid resolution of steatosis in obese mice. However, the remarkable resistance of hepatocyte Cul3 knockout mice to developing steatosis does not lead to overall metabolic improvement but causes systemic metabolic disturbances. Liver transcriptomics analysis identifies that CRL3 inactivation causes persistent activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant defense pathway, which also reprograms the lipid transcriptional network to prevent TG storage. Furthermore, global metabolomics reveals that NRF2 activation induces numerous NAD+-consuming aldehyde dehydrogenases to increase the cellular NADH/NAD+ ratio, a redox imbalance termed NADH reductive stress that inhibits the glycolysis-citrate-lipogenesis axis in Cul3 knockout livers. As a result, this NRF2-induced cellular lipid storage defect promotes hepatic ceramide accumulation, elevates circulating fatty acids, and worsens systemic insulin resistance in a vicious cycle. Hepatic lipid accumulation is restored, and liver injury and hyperglycemia are attenuated when NRF2 activation and NADH reductive stress are abolished in hepatocyte Cul3/Nrf2 double-knockout mice. The resistance to hepatic steatosis, hyperglycemia, and NADH reductive stress are observed in hepatocyte Keap1 knockout mice with NRF2 activation. In summary, our study defines a critical role of CRL3 in hepatic metabolic regulation and demonstrates that the CRL3 downstream NRF2 overactivation causes hepatic metabolic maladaptation to obesity and insulin resistance.


Assuntos
Fígado Gorduroso , Hiperglicemia , Resistência à Insulina , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , NAD/metabolismo , Proteínas Culina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Camundongos Knockout , Lipídeos
19.
Sci Rep ; 14(1): 8597, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615119

RESUMO

Oral poisoning can trigger diverse physiological reactions, determined by the toxic substance involved. One such consequence is hyperchloremia, characterized by an elevated level of chloride in the blood and leads to kidney damage and impairing chloride ion regulation. Here, we conducted a comprehensive genome-wide analysis to investigate genes or proteins linked to hyperchloremia. Our analysis included functional enrichment, protein-protein interactions, gene expression, exploration of molecular pathways, and the identification of potential shared genetic factors contributing to the development of hyperchloremia. Functional enrichment analysis revealed that oral poisoning owing hyperchloremia is associated with 4 proteins e.g. Kelch-like protein 3, Serine/threonine-protein kinase WNK4, Serine/threonine-protein kinase WNK1 and Cullin-3. The protein-protein interaction network revealed Cullin-3 as an exceptional protein, displaying a maximum connection of 18 nodes. Insufficient data from transcriptomic analysis indicates that there are lack of information having direct associations between these proteins and human-related functions to oral poisoning, hyperchloremia, or metabolic acidosis. The metabolic pathway of Cullin-3 protein revealed that the derivative is Sulfonamide which play role in, increasing urine output, and metabolic acidosis resulted in hypertension. Based on molecular docking results analysis it found that Cullin-3 proteins has the lowest binding energies score and being suitable proteins. Moreover, no major variations were observed in unbound Cullin-3 and all three peptide bound complexes shows that all systems remain compact during 50 ns simulations. The results of our study revealed Cullin-3 proteins be a strong foundation for the development of potential drug targets or biomarker for future studies.


Assuntos
Cloretos , Proteínas Culina , Humanos , Acidose , Biomarcadores , Cloretos/efeitos adversos , Cloretos/toxicidade , Proteínas Culina/metabolismo , Halogênios , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
20.
Leuk Lymphoma ; 65(7): 978-988, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38489672

RESUMO

Adult T-cell leukemia (ATL), caused by HTLV-1, is the most lethal hematological malignancy. NEDD8-activating enzyme (NAE) is a component of the NEDD8 conjunction pathway that regulates cullin-RING ubiquitin ligase (CRL) activity. HTLV-1-infected T cells expressed higher levels of NAE catalytic subunit UBA3 than normal peripheral blood mononuclear cells. NAE1 knockdown inhibited proliferation of HTLV-1-infected T cells. The NAE1 inhibitor MLN4924 suppressed neddylation of cullin and inhibited the CRL-mediated turnover of tumor suppressor proteins. MLN4924 inhibited proliferation of HTLV-1-infected T cells by inducing DNA damage, leading to S phase arrest and caspase-dependent apoptosis. S phase arrest was associated with CDK2 and cyclin A downregulation. MLN4924-induced apoptosis was mediated by the upregulation of pro-apoptotic and downregulation of anti-apoptotic proteins. Furthermore, MLN4924 inhibited NF-κB, AP-1, and Akt signaling pathways and activated JNK. Therefore, neddylation inhibition is an attractive strategy for ATL therapy. Our findings support the use of MLN4924 in ATL clinical trials.


Assuntos
Apoptose , Proliferação de Células , Ciclopentanos , Vírus Linfotrópico T Tipo 1 Humano , Proteína NEDD8 , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Pirimidinas , Transdução de Sinais , Fator de Transcrição AP-1 , Enzimas Ativadoras de Ubiquitina , Humanos , Pirimidinas/farmacologia , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Ciclopentanos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Proteína NEDD8/metabolismo , Proliferação de Células/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Ubiquitinas/metabolismo , Proteínas Culina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...