Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.559
Filtrar
1.
J Chem Inf Model ; 64(13): 5285-5294, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38901009

RESUMO

DNA polymerases (Pols) add incoming nucleotides (deoxyribonucleoside triphosphate (dNTPs)) to growing DNA strands, a crucial step for DNA synthesis. The insertion of correct (vs incorrect) nucleotides relates to Pols' fidelity, which defines Pols' ability to faithfully replicate DNA strands in a template-dependent manner. We and others have demonstrated that reactant alignment and correct base pairing at the Pols catalytic site are crucial structural features to fidelity. Here, we first used equilibrium molecular simulations to demonstrate that the local dynamics at the protein-DNA interface in the proximity of the catalytic site is different when correct vs incorrect dNTPs are bound to polymerase ß (Pol ß). Formation and dynamic stability of specific interatomic interactions around the incoming nucleotide influence the overall binding site architecture. This explains why certain Pols' mutants can affect the local catalytic environment and influence the selection of correct vs incorrect nucleotides. In particular, this is here demonstrated by analyzing the interaction network formed by the residue R283, whose mutant R283A has an experimentally measured lower capacity of differentiating correct (G:dCTP) vs incorrect (G:dATP) base pairing in Pol ß. We also used alchemical free-energy calculations to quantify the G:dCTP →G:dATP transformation in Pol ß wild-type and mutant R283A. These results correlate well with the experimental trend, thus corroborating our mechanistic insights. Sequence and structural comparisons with other Pols from the same family suggest that these findings may also be valid in similar enzymes.


Assuntos
DNA Polimerase beta , Simulação de Dinâmica Molecular , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Sítios de Ligação , Nucleotídeos/metabolismo , Nucleotídeos/química , DNA/química , DNA/metabolismo , Domínio Catalítico
2.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892193

RESUMO

The DNA building blocks 2'-deoxynucleotides are enantiomeric, with their natural ß-D-configuration dictated by the sugar moiety. Their synthetic ß-L-enantiomers (ßLdNs) can be used to obtain L-DNA, which, when fully substituted, is resistant to nucleases and is finding use in many biosensing and nanotechnology applications. However, much less is known about the enzymatic recognition and processing of individual ßLdNs embedded in D-DNA. Here, we address the template properties of ßLdNs for several DNA polymerases and the ability of base excision repair enzymes to remove these modifications from DNA. The Klenow fragment was fully blocked by ßLdNs, whereas DNA polymerase κ bypassed them in an error-free manner. Phage RB69 DNA polymerase and DNA polymerase ß treated ßLdNs as non-instructive but the latter enzyme shifted towards error-free incorporation on a gapped DNA substrate. DNA glycosylases and AP endonucleases did not process ßLdNs. DNA glycosylases sensitive to the base opposite their cognate lesions also did not recognize ßLdNs as a correct pairing partner. Nevertheless, when placed in a reporter plasmid, pyrimidine ßLdNs were resistant to repair in human cells, whereas purine ßLdNs appear to be partly repaired. Overall, ßLdNs are unique modifications that are mostly non-instructive but have dual non-instructive/instructive properties in special cases.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , DNA/química , DNA/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Conformação de Ácido Nucleico , DNA Polimerase beta/metabolismo , DNA Polimerase beta/química , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Estereoisomerismo
3.
J Biol Chem ; 300(6): 107355, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718860

RESUMO

Base excision repair (BER) requires a tight coordination between the repair enzymes through protein-protein interactions and involves gap filling by DNA polymerase (pol) ß and subsequent nick sealing by DNA ligase (LIG) 1 or LIGIIIα at the downstream steps. Apurinic/apyrimidinic-endonuclease 1 (APE1), by its exonuclease activity, proofreads 3' mismatches incorporated by polß during BER. We previously reported that the interruptions in the functional interplay between polß and the BER ligases result in faulty repair events. Yet, how the protein interactions of LIG1 and LIGIIIα could affect the repair pathway coordination during nick sealing at the final steps remains unknown. Here, we demonstrate that LIGIIIα interacts more tightly with polß and APE1 than LIG1, and the N-terminal noncatalytic region of LIG1 as well as the catalytic core and BRCT domain of LIGIIIα mediate interactions with both proteins. Our results demonstrated less efficient nick sealing of polß nucleotide insertion products in the absence of LIGIIIα zinc-finger domain and LIG1 N-terminal region. Furthermore, we showed a coordination between APE1 and LIG1/LIGIIIα during the removal of 3' mismatches from the nick repair intermediate on which both BER ligases can seal noncanonical ends or gap repair intermediate leading to products of single deletion mutagenesis. Overall results demonstrate the importance of functional coordination from gap filling by polß coupled to nick sealing by LIG1/LIGIIIα in the presence of proofreading by APE1, which is mainly governed by protein-protein interactions and protein-DNA intermediate communications, to maintain repair efficiency at the downstream steps of the BER pathway.


Assuntos
DNA Ligase Dependente de ATP , DNA Polimerase beta , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Polimerase beta/metabolismo , DNA Polimerase beta/química , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/química , Humanos , Ligação Proteica , Reparo por Excisão , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas de Xenopus
4.
Biochemistry ; 63(11): 1412-1422, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780930

RESUMO

The catalytic function of DNA polymerase ß (pol ß) fulfills the gap-filling requirement of the base excision DNA repair pathway by incorporating a single nucleotide into a gapped DNA substrate resulting from the removal of damaged DNA bases. Most importantly, pol ß can select the correct nucleotide from a pool of similarly structured nucleotides to incorporate into DNA in order to prevent the accumulation of mutations in the genome. Pol ß is likely to employ various mechanisms for substrate selection. Here, we use dCTP analogues that have been modified at the ß,γ-bridging group of the triphosphate moiety to monitor the effect of leaving group basicity of the incoming nucleotide on precatalytic conformational changes, which are important for catalysis and selectivity. It has been previously shown that there is a linear free energy relationship between leaving group pKa and the chemical transition state. Our results indicate that there is a similar relationship with the rate of a precatalytic conformational change, specifically, the closing of the fingers subdomain of pol ß. In addition, by utilizing analogue ß,γ-CHX stereoisomers, we identified that the orientation of the ß,γ-bridging group relative to R183 is important for the rate of fingers closing, which directly influences chemistry.


Assuntos
DNA Polimerase beta , Conformação Proteica , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , DNA Polimerase beta/genética , Humanos , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxicitosina/química , Especificidade por Substrato , Modelos Moleculares , Cinética , DNA/metabolismo , DNA/química , Reparo do DNA
5.
Biomolecules ; 14(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38785954

RESUMO

In the cell, DNA polymerase ß (Polß) is involved in many processes aimed at maintaining genome stability and is considered the main repair DNA polymerase participating in base excision repair (BER). Polß can fill DNA gaps formed by other DNA repair enzymes. Single-nucleotide polymorphisms (SNPs) in the POLB gene can affect the enzymatic properties of the resulting protein, owing to possible amino acid substitutions. For many SNP-associated Polß variants, an association with cancer, owing to changes in polymerase activity and fidelity, has been shown. In this work, kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring polymorphic variants G274R, G290C, and R333W. Previously, the amino acid substitutions at these positions have been found in various types of tumors, implying a specific role of Gly-274, Gly-290, and Arg-333 in Polß functioning. All three polymorphic variants had reduced polymerase activity. Two substitutions-G274R and R333W-led to the almost complete disappearance of gap-filling and primer elongation activities, a decrease in the deoxynucleotide triphosphate-binding ability, and a lower polymerization constant, due to alterations of local contacts near the replaced amino acid residues. Thus, variants G274R, G290C, and R333W may be implicated in an elevated level of unrepaired DNA damage.


Assuntos
Substituição de Aminoácidos , DNA Polimerase beta , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único , DNA Polimerase beta/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/química , Humanos , Cinética , Reparo do DNA/genética , Nucleotídeos/metabolismo , Nucleotídeos/genética
6.
Transl Psychiatry ; 14(1): 207, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789433

RESUMO

Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLß). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLß expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Transtorno Bipolar , Dano ao DNA , DNA Glicosilases , Reparo do DNA , Estresse Oxidativo , Irmãos , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Feminino , Masculino , Adulto , DNA Glicosilases/genética , Estresse Oxidativo/genética , Pessoa de Meia-Idade , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Estudos de Casos e Controles , Adulto Jovem , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Reparo por Excisão
7.
Environ Mol Mutagen ; 65 Suppl 1: 57-71, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619421

RESUMO

Gene knock-out (KO) mouse models for DNA polymerase beta (Polß) revealed that loss of Polß leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polß in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polß. Such KI mouse models have helped uncover the importance of key Polß active site residues or specific Polß enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polß protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polß protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polß.


Assuntos
DNA Polimerase beta , Camundongos , Animais , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Camundongos Endogâmicos C57BL , Reparo do DNA , Dano ao DNA , Linhagem Celular , Camundongos Knockout
8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673769

RESUMO

Base excision repair (BER), which involves the sequential activity of DNA glycosylases, apurinic/apyrimidinic endonucleases, DNA polymerases, and DNA ligases, is one of the enzymatic systems that preserve the integrity of the genome. Normal BER is effective, but due to single-nucleotide polymorphisms (SNPs), the enzymes themselves-whose main function is to identify and eliminate damaged bases-can undergo amino acid changes. One of the enzymes in BER is DNA polymerase ß (Polß), whose function is to fill gaps in DNA. SNPs can significantly affect the catalytic activity of an enzyme by causing an amino acid substitution. In this work, pre-steady-state kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring variants of Polß that have the substitutions L19P and G66R in the dRP-lyase domain. Despite the substantial distance between the dRP-lyase domain and the nucleotidyltransferase active site, it was found that the capacity to form a complex with DNA and with an incoming dNTP is significantly altered by these substitutions. Therefore, the lower activity of the tested polymorphic variants may be associated with a greater number of unrepaired DNA lesions.


Assuntos
Substituição de Aminoácidos , DNA Polimerase beta , Simulação de Dinâmica Molecular , Polimorfismo de Nucleotídeo Único , DNA Polimerase beta/química , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Humanos , Reparo do DNA , Cinética , Domínio Catalítico , DNA/metabolismo , DNA/genética , DNA/química , Domínios Proteicos
9.
Nucleic Acids Res ; 52(9): 5392-5405, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38634780

RESUMO

N6-(2-deoxy-α,ß-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase ß (Pol ß), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol ß incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.


Assuntos
DNA Polimerase beta , Replicação do DNA , Formamidas , Furanos , Pirimidinas , Humanos , Cristalografia por Raios X , DNA/química , DNA/metabolismo , DNA Polimerase beta/metabolismo , DNA Polimerase beta/química , Cinética , Modelos Moleculares , Pirimidinas/química , Pirimidinas/metabolismo , Furanos/química , Furanos/metabolismo , Formamidas/metabolismo , Mutagênese
10.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619457

RESUMO

In our recent publication, we have proposed a revised base excision repair pathway in which DNA polymerase ß (Polß) catalyzes Schiff base formation prior to the gap-filling DNA synthesis followed by ß-elimination. In addition, the polymerase activity of Polß employs the "three-metal ion mechanism" instead of the long-standing "two-metal ion mechanism" to catalyze phosphodiester bond formation based on the fact derived from time-resolved x-ray crystallography that a third Mg2+ was captured in the polymerase active site after the chemical reaction was initiated. In this study, we develop the models of the uncross-linked and cross-linked Polß complexes and investigate the "three-metal ion mechanism" vs the "two-metal ion mechanism" by using the quantum mechanics/molecular mechanics molecular dynamics simulations. Our results suggest that the presence of the third Mg2+ ion stabilizes the reaction-state structures, strengthens correct nucleotide binding, and accelerates phosphodiester bond formation. The improved understanding of Polß's catalytic mechanism provides valuable insights into DNA replication and damage repair.


Assuntos
DNA Polimerase beta , Catálise , Replicação do DNA , Magnésio , Simulação de Dinâmica Molecular , Biocatálise
11.
DNA Repair (Amst) ; 136: 103645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428373

RESUMO

DNA polymerases lambda (Polλ) and mu (Polµ) are X-Family polymerases that participate in DNA double-strand break (DSB) repair by the nonhomologous end-joining pathway (NHEJ). Both polymerases direct synthesis from one DSB end, using template derived from a second DSB end. In this way, they promote the NHEJ ligation step and minimize the sequence loss normally associated with this pathway. The two polymerases differ in cognate substrate, as Polλ is preferred when synthesis must be primed from a base-paired DSB end, while Polµ is required when synthesis must be primed from an unpaired DSB end. We generated a Polλ variant (PolλKGET) that retained canonical Polλ activity on a paired end-albeit with reduced incorporation fidelity. We recently discovered that the variant had unexpectedly acquired the activity previously unique to Polµ-synthesis from an unpaired primer terminus. Though the sidechains of the Loop1 region make no contact with the DNA substrate, PolλKGET Loop1 amino acid sequence is surprisingly essential for its unique activity during NHEJ. Taken together, these results underscore that the Loop1 region plays distinct roles in different Family X polymerases.


Assuntos
DNA Polimerase beta , DNA Polimerase Dirigida por DNA , DNA Polimerase Dirigida por DNA/metabolismo , Mutação com Ganho de Função , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA/metabolismo , Reparo do DNA por Junção de Extremidades
12.
DNA Repair (Amst) ; 137: 103666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492429

RESUMO

Mitochondrial DNA (mtDNA) plays a key role in mitochondrial and cellular functions. mtDNA is maintained by active DNA turnover and base excision repair (BER). In BER, one of the toxic repair intermediates is 5'-deoxyribose phosphate (5'dRp). Human mitochondrial DNA polymerase γ has weak dRp lyase activities, and another known dRp lyase in the nucleus, human DNA polymerase ß, can also localize to mitochondria in certain cell and tissue types. Nonetheless, whether additional proteins have the ability to remove 5'dRp in mitochondria remains unknown. Our prior work on the AP lyase activity of mitochondrial transcription factor A (TFAM) has prompted us to examine its ability to remove 5'dRp residues in vitro. TFAM is the primary DNA-packaging factor in human mitochondria and interacts with mitochondrial DNA extensively. Our data demonstrate that TFAM has the dRp lyase activity with different DNA substrates. Under single-turnover conditions, TFAM removes 5'dRp residues at a rate comparable to that of DNA polymerase (pol) ß, albeit slower than that of pol λ. Among the three proteins examined, pol λ shows the highest single-turnover rates in dRp lyase reactions. The catalytic effect of TFAM is facilitated by lysine residues of TFAM via Schiff base chemistry, as evidenced by the observation of dRp-lysine adducts in mass spectrometry experiments. The catalytic effect of TFAM observed here is analogous to the AP lyase activity of TFAM reported previously. Together, these results suggest a potential role of TFAM in preventing the accumulation of toxic DNA repair intermediates.


Assuntos
DNA Polimerase beta , Liases , Fósforo-Oxigênio Liases , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Liases/metabolismo , Lisina , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Polimerase gama/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição , Proteínas Mitocondriais/metabolismo
13.
Nucleic Acids Res ; 52(7): 3810-3822, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38366780

RESUMO

Base excision repair (BER) involves the tightly coordinated function of DNA polymerase ß (polß) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polß to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polß leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polß to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polß and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.


Assuntos
DNA Ligase Dependente de ATP , DNA Polimerase beta , Reparo do DNA , DNA Polimerase beta/metabolismo , DNA Polimerase beta/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/genética , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA/metabolismo , DNA/genética , Dano ao DNA , DNA Ligases/metabolismo , DNA Ligases/genética , Reparo por Excisão
14.
Cell Death Dis ; 15(1): 78, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245510

RESUMO

The circadian-controlled DNA repair exhibits a strong diurnal rhythm. Disruption in circadian clock and DNA repair is closely linked with hepatocellular carcinoma (HCC) progression, but the mechanism remains unknown. Here, we show that polymerase beta (POLB), a critical enzyme in the DNA base excision repair pathway, is rhythmically expressed at the translational level in mouse livers. Hepatic POLB dysfunction dampens clock homeostasis, whereas retards HCC progression, by mediating the methylation of the 4th CpG island on the 5'UTR of clock gene Per1. Clinically, POLB is overexpressed in human HCC samples and positively associated with poor prognosis. Furthermore, the hepatic rhythmicity of POLB protein expression is orchestrated by Calreticulin (CALR). Our findings provide important insights into the molecular mechanism underlying the synergy between clock and food signals on the POLB-driven BER system and reveal new clock-dependent carcinogenetic effects of POLB. Therefore, chronobiological modulation of POLB may help to promote precise interventions for HCC.


Assuntos
Carcinoma Hepatocelular , Relógios Circadianos , DNA Polimerase beta , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Desmetilação , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Epigênese Genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Circadianas Period/genética
15.
Plant Mol Biol ; 114(1): 3, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217735

RESUMO

Base excision repair (BER) generates gapped DNA intermediates containing a 5'-terminal 2-deoxyribose-5-phosphate (5'-dRP) group. In mammalian cells, gap filling and dRP removal are catalyzed by Pol ß, which belongs to the X family of DNA polymerases. In higher plants, the only member of the X family of DNA polymerases is Pol λ. Although it is generally believed that plant Pol λ participates in BER, there is limited experimental evidence for this hypothesis. Here we have characterized the biochemical properties of Arabidopsis thaliana Pol λ (AtPol λ) in a BER context, using a variety of DNA repair intermediates. We have found that AtPol λ performs gap filling inserting the correct nucleotide, and that the rate of nucleotide incorporation is higher in substrates containing a C in the template strand. Gap filling catalyzed by AtPol λ is most efficient with a phosphate at the 5'-end of the gap and is not inhibited by the presence of a 5'-dRP mimic. We also show that AtPol λ possesses an intrinsic dRP lyase activity that is reduced by mutations at two lysine residues in its 8-kDa domain, one of which is present in Pol λ exclusively and not in any Pol ß homolog. Importantly, we also found that the dRP lyase activity of AtPol λ allows efficient completion of uracil repair in a reconstituted short-patch BER reaction. These results suggest that AtPol λ plays an important role in plant BER.


Assuntos
Arabidopsis , DNA Polimerase beta , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Reparo por Excisão , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Reparo do DNA , Nucleotídeos , Fosfatos , Mamíferos/metabolismo
16.
Biochimie ; 219: 84-95, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37573020

RESUMO

Mammalian Base Excision Repair (BER) DNA ligases I and IIIα (LigI, LigIIIα) are major determinants of DNA repair fidelity, alongside with DNA polymerases. Here we compared activities of human LigI and LigIIIα on specific and nonspecific substrates representing intermediates of distinct BER sub-pathways. The enzymes differently discriminate mismatches in the nicked DNA, depending on their identity and position, but are both more selective against the 3'-end non-complementarity. LigIIIα is less active than LigI in premature ligation of one-nucleotide gapped DNA and more efficiently discriminates misinsertion products of DNA polymerase ß-catalyzed gap filling, that reinforces a leading role of LigIIIα in the accuracy of short-patch BER. LigI and LigIIIα reseal the intermediate of long-patch BER containing an incised synthetic AP site (F) with different efficiencies, depending on the DNA sequence context, 3'-end mismatch presence and coupling of the ligation reaction with DNA repair synthesis. Processing of this intermediate in the absence of flap endonuclease 1 generates non-canonical DNAs with bulged F site, which are very inefficiently repaired by AP endonuclease 1 and represent potential mutagenic repair products. The extent of conversion of the 5'-adenylated intermediates of specific and nonspecific substrates is revealed to depend on the DNA sequence context; a higher sensitivity of LigI to the sequence is in line with the enzyme structural feature of DNA binding. LigIIIα exceeds LigI in generation of potential abortive ligation products, justifying importance of XRCC1-mediated coordination of LigIIIα and aprataxin activities for the efficient DNA repair.


Assuntos
DNA Polimerase beta , Reparo do DNA , Animais , Humanos , DNA/genética , DNA/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Ligases/genética , DNA Ligases/metabolismo , Reparo por Excisão , Mamíferos/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
17.
Biochimie ; 216: 126-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37806619

RESUMO

Coordination of enzymatic activities in the course of base excision repair (BER) is essential to ensure complete repair of damaged bases. Two major mechanisms underlying the coordination of BER are known today: the "passing the baton" model and a model of preassembled stable multiprotein repair complexes called "repairosomes." In this work, we aimed to elucidate the coordination between human apurinic/apyrimidinic (AP) endonuclease APE1 and DNA polymerase Polß in BER through studying an impact of APE1 on Polß-catalyzed nucleotide incorporation into different model substrates that mimic different single-strand break (SSB) intermediates arising along the BER pathway. It was found that APE1's impact on separate stages of Polß's catalysis depends on the nature of a DNA substrate. In this complex, APE1 removed 3' blocking groups and corrected Polß-catalyzed DNA synthesis in a coordinated manner. Our findings support the hypothesis that Polß not only can displace APE1 from damaged DNA within the "passing the baton" model but also performs the gap-filling reaction in the ternary complex with APE1 according to the "repairosome" model. Taken together, our results provide new insights into coordination between APE1 and Polß during the BER process.


Assuntos
DNA Polimerase beta , Humanos , DNA Polimerase beta/metabolismo , Reparo do DNA , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Complexos Multiproteicos , DNA/química , Endonucleases/genética , Endonucleases/metabolismo
18.
J Mol Biol ; 436(4): 168410, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135179

RESUMO

Base excision repair (BER) requires a coordination from gap filling by DNA polymerase (pol) ß to subsequent nick sealing by DNA ligase (LIG) IIIα at downstream steps of the repair pathway. X-ray cross-complementing protein 1 (XRCC1), a non-enzymatic scaffolding protein, forms repair complexes with polß and LIGIIIα. Yet, the impact of the polß mutations that affect XRCC1 interaction and protein stability on the repair pathway coordination during nick sealing by LIGIIIα remains unknown. Our results show that the polß colon cancer-associated variant T304 exhibits a reduced interaction with XRCC1 and the mutations in the interaction interface of V303 loop (L301R/V303R/V306R) and at the lysine residues (K206A/K244A) that prevent ubiquitin-mediated degradation of the protein exhibit a diminished repair protein complex formation with XRCC1. Furthermore, we demonstrate no significant effect on gap and nick DNA binding affinity of wild-type polß by these mutations. Finally, our results reveal that XRCC1 leads to an efficient channeling of nick repair products after nucleotide incorporation by polß variants to LIGIIIα, which is compromised by the L301R/V303R/V306R and K206A/K244A mutations. Overall, our findings provide insight into how the mutations in the polß/XRCC1 interface and the regions affecting protein stability could dictate accurate BER pathway coordination at the downstream steps involving nick sealing by LIGIIIα.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Ligase Dependente de ATP , DNA Polimerase beta , Reparo por Excisão , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Humanos , DNA Ligase Dependente de ATP/química , DNA Polimerase beta/química , Ligação Proteica , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/química , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
19.
Dokl Biochem Biophys ; 512(1): 245-250, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38093124

RESUMO

DNA polymerase λ (Polλ) belongs to the same structural X-family as DNA polymerase ß, the main polymerase of base excision repair. The role of Polλ in this process remains not fully understood. A significant difference between the two DNA polymerases is the presence of an extended non-catalytic N-terminal region in the Polλ structure. The influence of this region on the interaction of Polλ with DNA and multifunctional proteins, poly(ADP-ribose)polymerase 1 (PARP1) and replication protein A (RPA), was studied in detail for the first time. The data obtained suggest that non-catalytic Polλ domains play a suppressor role both in relation to the polymerase activity of the enzyme and in interaction with DNA and PARP1.


Assuntos
DNA Polimerase beta , Reparo do DNA , DNA Polimerase beta/metabolismo , DNA
20.
Cell Biochem Biophys ; 81(4): 765-776, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37695502

RESUMO

Free fatty acids (FFAs) hepatic accumulation and the resulting oxidative stress contribute to several chronic liver diseases including nonalcoholic steatohepatitis. However, the underlying pathological mechanisms remain unclear. In this study, we propose a novel mechanism whereby the toxicity of FFAs detrimentally affects DNA repair activity. Specifically, we have discovered that oleic acid (OA), a prominent dietary free fatty acid, inhibits the activity of DNA polymerase ß (Pol ß), a crucial enzyme involved in base excision repair (BER), by actively competing with 2'-deoxycytidine-5'-triphosphate. Consequently, OA hinders the efficiency of BER, leading to the accumulation of DNA damage in hepatocytes overloaded with FFAs. Additionally, the excessive presence of both OA and palmitic acid (PA) lead to mitochondrial dysfunction in hepatocytes. These findings suggest that the accumulation of FFAs hampers Pol ß activity and contributes to mitochondrial dysfunction, shedding light on potential pathogenic mechanisms underlying FFAs-related diseases.


Assuntos
DNA Polimerase beta , Ácido Oleico , Ácido Oleico/farmacologia , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Reparo do DNA , Hepatócitos/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...