RESUMO
In this paper, we have performed an in-depth study of the complete set of the satellite DNA (satDNA) families (i.e. the satellitomes) in the genome of two barley species of agronomic value in a breeding framework, H. chilense (H1 and H7 accessions) and H. vulgare (H106 accession), which can be useful tools for studying chromosome associations during meiosis. The study has led to the analysis of a total of 18 satDNA families in H. vulgare, 25 satDNA families in H. chilense (accession H1) and 27 satDNA families in H. chilense (accession H7) that constitute 46 different satDNA families forming 36 homology groups. Our study highlights different important contributions of evolutionary and applied interests. Thus, both barley species show very divergent satDNA profiles, which could be partly explained by the differential effects of domestication versus wildlife. Divergence derives from the differential amplification of different common ancestral satellites and the emergence of new satellites in H. chilense, usually from pre-existing ones but also random sequences. There are also differences between the two H. chilense accessions, which support genetically distinct groups. The fluorescence in situ hybridization (FISH) patterns of some satDNAs yield distinctive genetic markers for the identification of specific H. chilense or H. vulgare chromosomes. Some of the satellites have peculiar structures or are related to transposable elements which provide information about their origin and expansion. Among these, we discuss the existence of different (peri)centromeric satellites that supply this region with some plasticity important for centromere evolution. These peri(centromeric) satDNAs and the set of subtelomeric satDNAs (a total of 38 different families) are analyzed in the framework of breeding as the high diversity found in the subtelomeric regions might support their putative implication in chromosome recognition and pairing during meiosis, a key point in the production of addition/substitution lines and hybrids.
Assuntos
Cromossomos de Plantas , DNA Satélite , Hordeum , Hibridização in Situ Fluorescente , Hordeum/genética , DNA Satélite/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Genoma de Planta/genética , Filogenia , Variação Genética , Meiose/genética , Evolução Molecular , Especificidade da EspécieRESUMO
Do all birds' sex chromosomes follow the same canonical one-way direction of evolution? We combined cytogenetic and genomic approaches to analyze the process of the W chromosomal differentiation in two selected Passeriform species, named the Pale-breasted Thrush Turdus leucomelas and the Rufous-bellied thrush T. rufiventris. We characterized the full catalog of satellite DNAs (satellitome) of T. leucomelas, and the 10 TleSatDNA classes obtained together with 16 microsatellite motifs were in situ mapped in both species. Additionally, using Comparative Genomic Hybridization (CGH) assays, we investigated their intragenomic variations. The W chromosomes of both species did not accumulate higher amounts of both heterochromatin and repetitive sequences. However, while T. leucomelas showed a heterochromatin-poor W chromosome with a very complex evolutionary history, T. rufiventris showed a small and partially heterochromatic W chromosome that represents a differentiated version of its original autosomal complement (Z chromosome). The combined approach of CGH and sequential satDNA mapping suggest the occurrence of a former W-autosomal translocation event in T. leucomelas, which had an impact on the W chromosome in terms of sequence gains and losses. At the same time, an autosome, which is present in both males and females in a polymorphic state, lost sequences and integrated previously W-specific ones. This putative W-autosomal translocation, however, did not result in the emergence of a multiple-sex chromosome system. Instead, the generation of a neo-W chromosome suggests an unexpected evolutionary trajectory that deviates from the standard canonical model of sex chromosome evolution.
Assuntos
DNA Satélite , Evolução Molecular , Heterocromatina , Cromossomos Sexuais , Animais , DNA Satélite/genética , Cromossomos Sexuais/genética , Feminino , Masculino , Heterocromatina/genética , Hibridização Genômica Comparativa , Repetições de Microssatélites/genética , Passeriformes/genética , Hibridização in Situ FluorescenteRESUMO
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
Assuntos
Caraciformes , DNA Satélite , Hibridização in Situ Fluorescente , Cromossomos Sexuais , Animais , DNA Satélite/genética , Cromossomos Sexuais/genética , Masculino , Caraciformes/genética , Feminino , Evolução Molecular , Meiose/genética , Cariótipo , Cromossomo Y/genéticaRESUMO
INTRODUCTION: The mapping of the satellite DNA on chromosomes is vital to understanding the distribution and evolution of repetitions in the genome since these chromosomal studies have shown the origin, evolutionary mode, and function of repetitive sequences. This study aimed to prospect the satellitome and determine its location in the genome of two cryptic species of Hypostomus, H. aff. ancistroides and H. ancistroides, with and without XX/XY sexual chromosome system. METHODS: Mitotic chromosomes and DNA extraction were obtained according to protocols. After the whole genome sequencing, the satDNAs were retrieved, amplified, and hybridized in chromosome preparations for male and female individuals. RESULTS: We found 30 satellite families (47 variants, two superfamilies) in H. ancistroides and 38 satellite families (45 variants, four superfamilies) in H. aff. ancistroides. The sequences varied from 14 bp to 2,662 bp in H. ancistroides and from 14 bp to 2,918 bp in H. aff. ancistroides. We did not observe any tandem repeats that were exclusive to each of the libraries; however, many sequences showed very different abundances and copy numbers between the libraries. Four satDNAs did not hybridize on the chromosomes of either species. Conversely, one satDNA hybridized in both species, HxySat1-80. However, the phenotypes found varied among species, populations, and in the same individual. There was no sign of HanSat3-464 and HanSat11-335 in any individuals of H. aff. ancistroides, but markings were in the chromosomes of H. ancistroides. HxySat12-1127 and HxySat8-52, on the other hand, were only hybridized in H. aff. ancistroides, while H. ancistroides had a negative sign. No hybridization of satDNAs was found in the X and Y sex chromosomes as they were mostly composed of euchromatin. CONCLUSION: We distinguish H. aff. ancistroides as genetically different from H. ancistroides, recognizing that such characteristics go far beyond morphological, karyotypic, and molecular data. Our data support the differential abundance and location of satellite DNAs and confirm that many organisms, including fish, have repetitive sequences that validate the library hypothesis. All found and validated satDNAs and the characterization of the satellitomes of the two species represent important contributions to cytogenomic studies of the genus Hypostomus.
Assuntos
Peixes-Gato , DNA Satélite , Animais , DNA Satélite/genética , Peixes-Gato/genética , Peixes-Gato/classificação , Masculino , Feminino , Simulação por Computador , Hibridização in Situ Fluorescente , Especificidade da EspécieRESUMO
Satellite DNA (satDNA) consists of tandem repeat sequences that typically evolve rapidly through evolutionary mechanisms, including unequal crossover, transposition events, and others. The evolutionary history of Euchroma gigantea is marked by complex chromosomal evolution between lineages, making this species an interesting model for understanding satDNA evolution at intraspecies level. Therefore, our aim was to comprehend the potential contribution of satDNAs to the greater chromosomal differentiation of evolutionary lineages in E. gigantea by investigating the differential patterns of amplification and contraction of the repeats. To achieve this, we employed de novo identification of satDNA using RepeatExplorer and TAREAN, allowing the satellitome characterization between lineages. A total of 26 satDNA families were identified, ranging from 18 to 1101 nucleotides in length, with most families being shared between individuals/lineages, as predicted by the library hypothesis, except for the satDNA EgiSat21-168 that was absent for Northeast Lineage. The total satDNA content of the individuals was less than 11.2%, and it appeared to increase in two directions following the chromosomal evolution model. Thirteen satDNAs exhibited different patterns of amplification, and nine ones were contracted among individuals. Additionally, most repeats showed a divergence of about 10% for these satDNAs, indicating satellitome differentiation for each lineage/individual. This scenario suggests that the expansion of the satellitome occurred differentially among individuals/lineages of E. gigantea, with the contribution of various DNA turnover mechanisms after geographical isolation, and that they could be involved with karyotype evolution.
Assuntos
Besouros , DNA Satélite , Evolução Molecular , DNA Satélite/genética , Animais , Besouros/genética , Besouros/classificação , FilogeniaRESUMO
BACKGROUND: Tandem repeats are specific sequences in genomic DNA repeated in tandem that are present in all organisms. Among the subcategories of TRs we have Satellite repeats, that is divided into macrosatellites, minisatellites, and microsatellites, being the last two of specific interest because they can identify polymorphisms between organisms due to their instability. Currently, most mining tools focus on Simple Sequence Repeats (SSR) mining, and only a few can identify SSRs in the coding regions. RESULTS: We developed a microsatellite mining software called SATIN (Micro and Mini SATellite IdentificatioN tool) based on a new sliding window algorithm written in C and Python. It represents a new approach to SSR mining by addressing the limitations of existing tools, particularly in coding region SSR mining. SATIN is available at https://github.com/labgm/SATIN.git . It was shown to be the second fastest for perfect and compound SSR mining. It can identify SSRs from coding regions plus SSRs with motif sizes bigger than 6. Besides the SSR mining, SATIN can also analyze SSRs polymorphism on coding-regions from pre-determined groups, and identify SSRs differentially abundant among them on a per-gene basis. To validate, we analyzed SSRs from two groups of Escherichia coli (K12 and O157) and compared the results with 5 known SSRs from coding regions. SATIN identified all 5 SSRs from 237 genes with at least one SSR on it. CONCLUSIONS: The SATIN is a novel microsatellite search software that utilizes an innovative sliding window technique based on a numerical list for repeat region search to identify perfect, and composite SSRs while generating comprehensible and analyzable outputs. It is a tool capable of using files in fasta or GenBank format as input for microsatellite mining, also being able to identify SSRs present in coding regions for GenBank files. In conclusion, we expect SATIN to help identify potential SSRs to be used as genetic markers.
Assuntos
Mineração de Dados , Repetições de Microssatélites , Polimorfismo Genético , Software , Repetições de Microssatélites/genética , Mineração de Dados/métodos , Algoritmos , Fases de Leitura Aberta/genética , DNA Satélite/genéticaRESUMO
Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper Abracris flavolineata across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among A. flavolineata populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serve as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.
Assuntos
Cromossomos de Insetos , Gafanhotos , Animais , Gafanhotos/genética , Cromossomos de Insetos/genética , Heterocromatina/genética , Evolução Molecular , DNA Satélite/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Elementos de DNA TransponíveisRESUMO
The underlying processes behind the formation, evolution, and long-term maintenance of multiple sex chromosomes have been largely neglected. Among vertebrates, fishes represent the group with the highest diversity of multiple sex chromosome systems and, with six instances, the Neotropical fish genus Harttia stands out by presenting the most remarkable diversity. However, although the origin mechanism of their sex chromosome systems is well discussed, little is known about the importance of some repetitive DNA classes in the differentiation of multiple systems. In this work, by employing a combination of cytogenetic and genomic procedures, we evaluated the satellite DNA composition of H. carvalhoi with a focus on their role in the evolution, structure, and differentiation process of the rare XY1Y2 multiple-sex chromosome system. The genome of H. carvalhoi contains a total of 28 satellite DNA families, with the Aâ +â T content ranging between 38.1% and 68.1% and the predominant presence of long satellites. The in situ hybridization experiments detected 15 satellite DNAs with positive hybridization signals mainly on centromeric and pericentromeric regions of almost all chromosomes or clustered on a few pairs. Five of them presented clusters on X, Y1, and/or Y2 sex chromosomes which were therefore selected for comparative hybridization in the other three congeneric species. We found several conserved satellites accumulated on sex chromosomes and also in regions that were involved in chromosomal rearrangements. Our results provide a new contribution of satellitome studies in multiple sex chromosome systems in fishes and represent the first satellitome study for a Siluriformes species.
Assuntos
Peixes-Gato , DNA Satélite , Cromossomos Sexuais , Animais , DNA Satélite/genética , Peixes-Gato/genética , Cromossomos Sexuais/genética , Masculino , Feminino , Evolução Molecular , Hibridização in Situ FluorescenteRESUMO
The species Passiflora alata, P. cincinnata, and P. edulis have great economic value due to the use of their fruits for human consumption. In this study, we compared the repetitive genome fractions of these three species. The compositions of the repetitive DNA of these three species' genomes were analyzed using clustering and identification of the repetitive sequences with RepeatExplorer. It was found that repetitive DNA content represents 74.70%, 66.86%, and 62.24% of the genome of P. alata, P. edulis, and P. cincinnata, respectively. LTR Ty3/Gypsy retrotransposons represent the highest genome proportions in P. alata and P. edulis, while Ty1/Copia comprises the largest proportion of P. cincinnata genome. Chromosomal mapping by Fluorescent In Situ Hybridization (FISH) showed that LTR retrotransposons have a dispersed distribution along chromosomes. The subtelomeric region of chromosomes is where 145 bp satellite DNA is located, suggesting that these elements may play important roles in genome structure and organization in these species. In this work, we obtained the first global characterization of the composition of repetitive DNA in Passiflora, showing that an increase in genome size is related to an increase in repetitive DNA, which represents an important evolutionary route for these species.
Assuntos
DNA Satélite , Genoma de Planta , Passiflora , Retroelementos , Passiflora/genética , DNA Satélite/genética , Retroelementos/genética , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Hibridização in Situ Fluorescente , Mapeamento CromossômicoRESUMO
INTRODUCTION: Eukaryotic genomes are composed of simple, repetitive sequences, including satellite DNAs (satDNA), which are noncoding sequences arranged in tandem arrays. These sequences play a crucial role in genomic functions and innovations, influencing processes such as the maintenance of nuclear material, the formation of heterochromatin and the differentiation of sex chromosomes. In this genomic era, advances in next-generation sequencing and bioinformatics tools have facilitated the exhaustive cataloging of repetitive elements in genomes, particularly in non-model species. This study focuses on the satDNA content of Ancistrus sp., a diverse species of fish from the Loricariidae family. The genus Ancistrus shows significant karyotypic evolution, with extensive variability from the ancestral diploid number. METHODS: By means of bioinformatic approaches, 40 satDNA families in Ancistrus sp., constituting 5.19% of the genome were identified. Analysis of the abundance and divergence landscape revealed diverse profiles, indicating recent amplification and homogenization of these satDNA sequences. RESULTS: The most abundant satellite, AnSat1-142, constitutes 2.1% of the genome, while the least abundant, AnSat40-52, represents 0.0034%. The length of the monomer repeat varies from 16 to 142 base pairs, with an average length of 61 bp. These results contribute to understanding the genomic dynamics and evolution of satDNAs in Ancistrus sp. CONCLUSION: The study underscores the variability of satDNAs between fish species and provides valuable information on chromosome organization and the evolution of repetitive elements in non-model organisms.
Assuntos
Peixes-Gato , Biologia Computacional , DNA Satélite , Genômica , DNA Satélite/genética , Animais , Peixes-Gato/genética , Peixes-Gato/classificação , Biologia Computacional/métodos , Genômica/métodos , Evolução Molecular , Genoma/genética , Sequências Repetitivas de Ácido Nucleico/genética , Masculino , Feminino , Filogenia , Hibridização in Situ FluorescenteRESUMO
Juncus is the largest genus of Juncaceae and was considered holocentric for a long time. Recent findings, however, indicated that 11 species from different clades of the genus have monocentric chromosomes. Thus, the Juncus centromere organization and evolution need to be reassessed. We aimed to investigate the major repetitive DNA sequences of two accessions of Juncus effusus and its centromeric structure by employing whole-genome analyses, fluorescent in situ hybridization, CENH3 immunodetection, and chromatin immunoprecipitation sequencing. We showed that the repetitive fraction of the small J. effusus genome (~270 Mbp/1C) is mainly composed of Class I and Class II transposable elements (TEs) and satellite DNAs. Three identified satellite DNA families were mainly (peri)centromeric, with two being associated with the centromeric protein CENH3, but not strictly centromeric. Two types of centromere organization were discerned in J. effusus: type 1 was characterized by a single CENH3 domain enriched with JefSAT1-155 or JefSAT2-180, whereas type 2 showed multiple CENH3 domains interrupted by other satellites, TEs or genes. Furthermore, while type 1 centromeres showed a higher degree of satellite identity along the array, type 2 centromeres had less homogenized arrays along the multiple CENH3 domains per chromosome. Although the analyses confirmed the monocentric organization of J. effusus chromosomes, our data indicate a more dynamic arrangement of J. effusus centromeres than observed for other plant species, suggesting it may constitute a transient state between mono- and holocentricity.
Assuntos
Centrômero , Cromossomos de Plantas , DNA Satélite , Hibridização in Situ Fluorescente , Centrômero/genética , Cromossomos de Plantas/genética , DNA Satélite/genética , Genoma de Planta/genética , Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Among the repetitive elements, satellite DNA (SatDNA) emerges as extensive arrays of highly similar tandemly repeated units, spanning megabases in length. Given that the satDNA PboSat01-176, previously characterized in P. boiei, prompted our interest for having a high abundance in P. boiei and potential for centromeric satellite, here, we employed various approaches, including low coverage genome sequencing, followed by computational analysis and chromosomal localization techniques in four Proceratophrys species and, investigating the genomic presence and sharing, as well as its potential for chromosomal centromere marker in Proceratophrys frog species. Our findings demonstrate that PboSat01-176 exhibits high abundance across all four Proceratophrys species, displaying distinct characteristics that establish it as the predominant repetitive DNA element in these species. The satellite DNA is prominently clustered in the peri/centromeric region of the chromosomes, particularly in the heterochromatic regions. The widespread presence of PboSat01-176 in closely related Proceratophrys species reinforces the validity of the library hypothesis for repetitive sequences. Thus, this study highlighted the utility of the satDNA family PboSat01-176 as a reliable centromeric marker in Proceratophrys species, with potential to be applied in other species of anuran amphibians. The observed sharing and maintenance of this sequence within the genus suggest possibilities for future research, particularly through expanded sampling to elucidate parameters that underlie the library hypothesis and the evolutionary dynamics of satDNA sequences.
Assuntos
Anuros , Centrômero , DNA Satélite , Animais , Centrômero/genética , DNA Satélite/genética , Anuros/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente , Sequências Repetitivas de Ácido Nucleico , Especificidade da EspécieRESUMO
Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.
Assuntos
Charadriiformes , Animais , Charadriiformes/genética , DNA Satélite/genética , Heterocromatina/genética , Sequências Repetitivas de Ácido Nucleico , Cromossomos Sexuais/genética , Cariótipo , Aves/genética , Evolução MolecularRESUMO
Vanellus (Charadriidae; Charadriiformes) comprises around 20 species commonly referred to as lapwings. In this study, by integrating cytogenetic and genomic approaches, we assessed the satellite DNA (satDNA) composition of one typical species, Vanellus chilensis, with a highly conserved karyotype. We additionally underlined its role in the evolution, structure, and differentiation process of the present ZW sex chromosome system. Seven distinct satellite DNA families were identified within its genome, accumulating on the centromeres, microchromosomes, and the W chromosome. However, these identified satellite DNA families were not found in two other Charadriiformes members, namely Jacana jacana and Calidris canutus. The hybridization of microsatellite sequences revealed the presence of a few repetitive sequences in V. chilensis, with only two out of sixteen displaying positive hybridization signals. Overall, our results contribute to understanding the genomic organization and satDNA evolution in Charadriiform birds.
Assuntos
Charadriiformes , Animais , Charadriiformes/genética , DNA Satélite/genética , Aves/genética , Cromossomos Sexuais , Sequências Repetitivas de Ácido NucleicoRESUMO
Satellite DNAs (satDNAs) are highly repetitive sequences that occur in virtually all eukaryotic genomes and can undergo rapid copy number and nucleotide sequence variation among relatives. After chromosomal mapping of the satDNA JcSAT1, it was found a large accumulation at subtelomeres of Jatropha curcas (subgenus Curcas), but an absence of these monomers in J. integerrima (subgenus Jatropha). This fact suggests a dynamic scenario for this satellite repeat in Jatropha genomes. Here, we used a multitasking approach (sequence analysis, DNA blotting and chromosomal mapping) to investigate the molecular organization and chromosomal abundance and distribution of JcSAT1 in a broader group of species from the subgenus Jatropha (J. gossypiifolia, J. mollissima, J. podagrica, and J. multifida) in addition to J. curcas, with the aiming of understanding the evolution of this satDNA. Based on the analysis of BAC clone sequences of J. curcas, a large array (~ 30 kb) of 80 homogeneous monomers of JcSAT1 was identified in BAC 23J11. The monomer size was conserved (~ 358 bp) and contained a telomeric motif at the 5' end. PCR amplification coupled with a Southern blot revealed the presence of JcSAT1-like sequences in all species examined. However, a large set of genome copies was identified only in J. curcas, where a ladder-like pattern with multimers of different sizes was observed. In situ hybridization of BAC 23J11 confirmed the subtelomeric pattern for J. curcas, but showed no signals on chromosomes of species from the subgenus Jatropha. Our data indicate that JcSAT1 is a highly homogeneous satDNA that originated from a region near the telomeres and spread throughout the chromosomal subtermini, possibly due to frequent ectopic recombination between these regions. The abundance of JcSAT1 in the genome of J. curcas suggests that an amplification event occurred either at the base of the subgenus Curcas or at least in this species, although the repeat is shared by all species of the genus studied so far.
Assuntos
Euphorbiaceae , Jatropha , Jatropha/genética , Euphorbiaceae/genética , DNA Satélite/genética , Filogenia , Heterocromatina , Telômero/genéticaRESUMO
BACKGROUND: Crocodilians are one of the oldest extant vertebrate lineages, exhibiting a combination of evolutionary success and morphological resilience that has persisted throughout the history of life on Earth. This ability to endure over such a long geological time span is of great evolutionary importance. Here, we have utilized the combination of genomic and chromosomal data to identify and compare the full catalogs of satellite DNA families (satDNAs, i.e., the satellitomes) of 5 out of the 8 extant Alligatoridae species. As crocodilian genomes reveal ancestral patterns of evolution, by employing this multispecies data collection, we can investigate and assess how satDNA families evolve over time. RESULTS: Alligators and caimans displayed a small number of satDNA families, ranging from 3 to 13 satDNAs in A. sinensis and C. latirostris, respectively. Together with little variation both within and between species it highlighted long-term conservation of satDNA elements throughout evolution. Furthermore, we traced the origin of the ancestral forms of all satDNAs belonging to the common ancestor of Caimaninae and Alligatorinae. Fluorescence in situ experiments showed distinct hybridization patterns for identical orthologous satDNAs, indicating their dynamic genomic placement. CONCLUSIONS: Alligators and caimans possess one of the smallest satDNA libraries ever reported, comprising only four sets of satDNAs that are shared by all species. Besides, our findings indicated limited intraspecific variation in satellite DNA, suggesting that the majority of new satellite sequences likely evolved from pre-existing ones.
Assuntos
Jacarés e Crocodilos , DNA Satélite , Animais , DNA Satélite/genética , Jacarés e Crocodilos/genética , Cromossomos , Genômica , Evolução MolecularRESUMO
Structural karyotype changes result from ectopic recombination events frequently associated with repetitive DNA. Although most Phaseolus species present relatively stable karyotypes with 2n = 22 chromosomes, the karyotypes of species of the Leptostachyus group show high rates of structural rearrangements, including a nested chromosome fusion that led to the dysploid chromosome number of the group (2n = 20). We examined the roles of repetitive landscapes in the rearrangements of species of the Leptostachyus group using genome-skimming data to characterize the repeatome in a range of Phaseolus species and compared them to species of that group (P. leptostachyus and P. macvaughii). LTR retrotransposons, especially the Ty3/gypsy lineage Chromovirus, were the most abundant elements in the genomes. Differences in the abundance of Tekay, Retand, and SIRE elements between P. macvaughii and P. leptostachyus were reflected in their total amounts of Ty3/gypsy and Ty1/copia. The satellite DNA fraction was the most divergent among the species, varying both in abundance and distribution, even between P. leptostachyus and P. macvaughii. The rapid turnover of repeats in the Leptostachyus group may be associated with the several rearrangements observed.
Assuntos
Phaseolus , Phaseolus/genética , DNA de Plantas/genética , DNA Satélite/genética , Retroelementos , Filogenia , Genoma de Planta , Evolução MolecularRESUMO
Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.
Assuntos
Caraciformes , Animais , DNA Satélite/genética , Cromossomos Sexuais/genética , Aberrações Cromossômicas , CariotipagemRESUMO
Satellite DNAs (satDNAs) are highly repeated tandem sequences primarily located in heterochromatin, although their occurrence in euchromatin has been reported. Here, our aim was to advance the understanding of satDNA and multiple sex chromosome evolution in heteropterans. We combined cytogenetic and genomic approaches to study, for the first time, the satDNA composition of the genome in an Oxycarenidae bug, Oxycarenus hyalinipennis. The species exhibits a male karyotype of 2n = 19 (14A + 2 m + X1 X2 Y), with a highly differentiated Y chromosome, as demonstrated by C-banding and comparative genomic hybridization, revealing an enrichment of repeats from the male genome. Additionally, comparative analysis between males and females revealed that the 26 identified satDNA families are significantly biased towards male genome, accumulating in discrete regions in the Y chromosome. Exceptionally, the OhyaSat04-125 family was found to be distributed virtually throughout the entire extension of the Y chromosome. This suggests an important role of satDNA in Y chromosome differentiation, in comparison of other repeats, which collectively shows similar abundance between sexes, about 50%. Furthermore, chromosomal mapping of all satDNA families revealed an unexpected high spread in euchromatic regions, covering the entire extension, irrespective of their abundance. Only discrete regions of heterochromatin on the Y chromosome and of the m-chromosomes (peculiar chromosomes commonly observed in heteropterans) were enriched with satDNAs. The putative causes of the intense enrichment of satDNAs in euchromatin are discussed, including the possible existence of burst cycles similar to transposable elements and as a result of holocentricity. These data challenge the classical notion that euchromatin is not enriched with satDNAs.
Assuntos
DNA Satélite , Hemípteros , Humanos , Feminino , Masculino , Animais , Eucromatina , Hemípteros/genética , Heterocromatina , Hibridização Genômica Comparativa , Hibridização in Situ Fluorescente , Cromossomos Sexuais , Evolução MolecularRESUMO
Chili peppers (Solanaceae family) have great commercial value. They are commercialized in natura and used as spices and for ornamental and medicinal purposes. Although three whole genomes have been published, limited information about satellite DNA sequences, their composition, and genomic distribution has been provided. Here, we exploited the noncoding repetitive fraction, represented by satellite sequences, that tends to accumulate in blocks along chromosomes, especially near the chromosome ends of peppers. Two satellite DNA sequences were identified (CDR-1 and CDR-2), characterized and mapped in silico in three Capsicum genomes (C. annuum, C. chinense, and C. baccatum) using data from the published high-coverage sequencing and repeats finding bioinformatic tools. Localization using FISH in the chromosomes of these species and in two others (C. frutescens and C. chacoense), totaling five species, showed signals adjacent to the rDNA sites. A sequence comparison with existing Solanaceae repeats showed that CDR-1 and CDR-2 have different origins but without homology to rDNA sequences. Satellites occupied subterminal chromosomal regions, sometimes collocated with or adjacent to 35S rDNA sequences. Our results expand knowledge about the diversity of subterminal regions of Capsicum chromosomes, showing different amounts and distributions within and between karyotypes. In addition, these sequences may be useful for future phylogenetic studies.