Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.078
Filtrar
1.
J Parasitol ; 110(2): 159-169, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629270

RESUMO

Dicyemids (phylum Dicyemida) are the most common and most characteristic endosymbionts in the renal sacs of benthic cephalopod molluscs: octopuses and cuttlefishes. Typically, 2 or 3 dicyemid species are found in a single specimen of the host, and most dicyemids have high host specificity. Host-specific parasites are restricted to a limited range of host species by ecological barriers that impede dispersal and successful establishment; therefore, phylogenies of interacting groups are often congruent due to repeated co-speciation. Most frequently, however, host and parasite phylogenies are not congruent, which can be explained by processes such as host switching and other macro-evolutionary events. Here, the history of dicyemids and their host cephalopod associations were studied by comparing their phylogenies. Dicyemid species were collected from 8 decapodiform species and 12 octopodiform species in Japanese waters. Using whole mitochondrial cytochrome c oxidase subunit 1 (COI) sequences, a phylogeny of 37 dicyemid species, including 4 genera representing the family Dicyemidae, was reconstructed. Phylogenetic trees derived from analyses of COI genes consistently suggested that dicyemid species should be separated into 3 major clades and that the most common genera, Dicyema and Dicyemennea, are not monophyletic. Thus, morphological classification does not reflect the phylogenetic relationships of these 2 genera. Divergence (speciation) of dicyemid species seems to have occurred within a single host species. Possible host-switching events may have occurred between the Octopodiformes and Decapodiformes or within the Octopodiformes or the Decapodiformes. Therefore, the mechanism of dicyemid speciation may be a mixture of host switching and intra-host speciation. This is the first study in which the process of dicyemid diversification involving cephalopod hosts has been evaluated with a large number of dicyemid species and genera.


Assuntos
Octopodiformes , Parasitos , Animais , Filogenia , Invertebrados/anatomia & histologia , Invertebrados/genética , Decapodiformes/parasitologia
2.
Int J Biol Macromol ; 267(Pt 2): 131286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583851

RESUMO

Polymer-based nanomotors are attracting increasing interest in the biomedical field due to their microscopic size and kinematic properties which support overcoming biological barriers, completing cellular uptake and targeted blasting in limited spaces. However, their applications are limited by the complex viscous physiological environment and lack of sufficient biocompatibility. This manuscript firstly reports a natural melanin nano-missile of MNP@HA-EDA@Urease@AIE PS (MHUA) based on photothermally accelerated urease-driven to achieve chemodrug-free phototherapy. Compared to conventional nano-missiles that only provide driving force, this photothermally accelerated urease-driven nanomotor is independent of chemodrug to maximise biocompatibility, and achieve ideal therapeutic effect through targeted PTT/PDT. In particular, the thermal effect can not only boost the catalytic activity of urease but also achieve ideally anti-tumor effect. In addition, guided by and AIE PS, the nanomotor can generate 1O2 to achieve PDT and be traced in real time serving as an effective fluorescent bio-radar for intracellular self-reporting during cancer treatment. Finally, the targeting ability of MUHA is provided by hyaluronan. Taken together, this MHUA platform provides a simple and effective strategy for target/fluorescence radar detective-guided PTT/PDT combination, and achieves good therapeutic results without chemodrug under thermal accelerated strategy, providing a new idea for the construction of chemodrug-free nanomotor-therapy system.


Assuntos
Ácido Hialurônico , Melaninas , Urease , Humanos , Linhagem Celular Tumoral , Decapodiformes , Ácido Hialurônico/química , Melaninas/química , Nanopartículas/química , Fototerapia/métodos , Urease/química , Urease/metabolismo , Animais
3.
Mol Biol Cell ; 35(6): ar79, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598294

RESUMO

The symbiotic relationship between the bioluminescent bacterium Vibrio fischeri and the bobtail squid Euprymna scolopes serves as a valuable system to investigate bacterial growth and peptidoglycan (PG) synthesis within animal tissues. To better understand the growth dynamics of V. fischeri in the crypts of the light-emitting organ of its juvenile host, we showed that, after the daily dawn-triggered expulsion of most of the population, the remaining symbionts rapidly proliferate for ∼6 h. At that point the population enters a period of extremely slow growth that continues throughout the night until the next dawn. Further, we found that PG synthesis by the symbionts decreases as they enter the slow-growing stage. Surprisingly, in contrast to the most mature crypts (i.e., Crypt 1) of juvenile animals, most of the symbiont cells in the least mature crypts (i.e., Crypt 3) were not expelled and, instead, remained in the slow-growing state throughout the day, with almost no cell division. Consistent with this observation, the expression of the gene encoding the PG-remodeling enzyme, L,D-transpeptidase (LdtA), was greatest during the slowly growing stage of Crypt 1 but, in contrast, remained continuously high in Crypt 3. Finally, deletion of the ldtA gene resulted in a symbiont that grew and survived normally in culture, but was increasingly defective in competing against its parent strain in the crypts. This result suggests that remodeling of the PG to generate additional 3-3 linkages contributes to the bacterium's fitness in the symbiosis, possibly in response to stresses encountered during the very slow-growing stage.


Assuntos
Aliivibrio fischeri , Decapodiformes , Peptidoglicano , Simbiose , Simbiose/fisiologia , Aliivibrio fischeri/fisiologia , Aliivibrio fischeri/metabolismo , Animais , Decapodiformes/microbiologia , Decapodiformes/fisiologia , Peptidoglicano/metabolismo , Peptidoglicano/biossíntese , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
4.
Int J Biol Macromol ; 268(Pt 1): 131815, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670192

RESUMO

We report on the extraction of ß-chitin from pens (or Gladius) of Uroteuthis edulis, a squid species prevalent in the Pacific coastal regions of East Asia. In particular, we employ cryogenic mechanical grinding (or cryomilling) as a pre-treatment process for the raw squid pens. We show that the cryomilling step enables an effective pulverization of the raw materials, which facilitates the removal of protein residues allowing the extraction of high-purity ß-chitin with a high acetylation degree (∼97 %) and crystallinity (∼82 %). We also demonstrate that the Uroteuthis edulis extract ß-chitin affords a free-standing film with excellent optical transmittance and mechanical properties.


Assuntos
Quitina , Decapodiformes , Quitina/química , Quitina/isolamento & purificação , Decapodiformes/química , Animais , Acetilação
5.
Proc Biol Sci ; 291(2021): 20240156, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654644

RESUMO

Alternative reproductive tactics (ARTs) are discontinuous phenotypes associated with reproduction, observed in males of many species. Typically, large males adopt a tactic of competing with rivals for mating, while small males adopt a tactic of stealing fertilization opportunities from the large males. The 'birth date hypothesis', proposing that the date of birth influences the determination of each male's reproductive tactic, has been tested only in teleost fish to date. Here, the birth date hypothesis was tested in ARTs of Japanese spear squid Heterololigo bleekeri (consort/sneaker) by analysing statolith growth increments. The birth date significantly differed between consorts (early-hatched) and sneakers (late-hatched). However, no differences were detected in growth history up to 100 days from hatching. Most immature males caught during the reproductive season were larger than sneakers, and their hatch date was similar to that of consorts, suggesting that these immature males had already been following a life-history pathway as a consort. These results indicate that ARTs of H. bleekeri are determined based on their hatch date in early life. This study firstly suggests that the birth date hypothesis applies to aquatic invertebrates, suggesting that the mechanism by which birth date determines the individual phenotype is a phenomenon more common than previously believed.


Assuntos
Decapodiformes , Reprodução , Comportamento Sexual Animal , Animais , Masculino , Decapodiformes/fisiologia , Feminino
6.
Mar Drugs ; 22(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667773

RESUMO

The industrial processing of Argentine shortfin squid to obtain rings generates a significant amount of protein-rich waste, including the skin, which is rich in collagen and attached myofibrillar proteins. This waste is generally discarded. In this study, skin was used as a source of proteins that were hydrolysed using Trypsin, Esperase® or Alcalase®, which released peptides with antioxidant potential and, in particular, antihypertensive (ACE inhibition), hypoglycemic (DPP-IV inhibition) and/or nootropic (PEP inhibition) potential. Among the three enzymes tested, Esperase® and Alcalase produced hydrolysates with potent ACE-, DPP-IV- and PEP-inhibiting properties. These hydrolysates underwent chromatography fractionation, and the composition of the most bioactive fractions was analysed using HPLC-MS-MS. The fractions with the highest bioactivity exhibited very low IC50 values (16 and 66 µg/mL for ACE inhibition, 97 µg/mL for DPP-IV inhibition and 55 µg/mL for PEP inhibition) and were mainly derived from the hydrolysate obtained using Esperase®. The presence of Leu at the C-terminal appeared to be crucial for the ACE inhibitory activity of these fractions. The DPP-IV inhibitory activity of peptides seemed to be determined by the presence of Pro or Ala in the second position from the N-terminus, and Gly and/or Pro in the last C-terminal positions. Similarly, the presence of Pro in the peptides present in the best PEP inhibitory fraction seemed to be important in the inhibitory effect. These results demonstrate that the skin of the Argentine shortfin squid is a valuable source of bioactive peptides, suitable for incorporation into human nutrition as nutraceuticals and food supplements.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Decapodiformes , Inibidores da Dipeptidil Peptidase IV , Peptídeos , Animais , Decapodiformes/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Peptídeos/química , Peptídeos/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Hidrólise , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Pele , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Antioxidantes/farmacologia , Antioxidantes/química
7.
J Mater Chem B ; 12(17): 4172-4183, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591253

RESUMO

Traumatic hemorrhage is one of the main causes of mortality in civilian and military accidents. This study aimed to evaluate the effectiveness of cuttlefish bone (cuttlebone, CB) and CB loaded with cuttlefish ink (CB-CFI) nanoparticles for hemorrhage control. CB and CB-CFI were prepared and characterized using different methods. The hemostasis behavior of constructed biocomposites was investigated in vitro and in vivo using a rat model. Results showed that CFI nanoparticles (NPs) are uniformly dispersed throughout the CB surface. CB-CFI10 (10 mg CFI in 1.0 g of CB) showed the best blood clotting performance in both in vitro and in vivo tests. In vitro findings revealed that the blood clotting time of CB, CFI, and CB-CFI10 was found to be 275.4 ± 12.4 s, 229.9 ± 19.9 s, and 144.0 ± 17.5 s, respectively. The bleeding time in rat liver injury treated with CB, CFI, and CB-CFI10 was 158.1 ± 9.2 s, 114.0 ± 5.7 s, and 46.8 ± 2.7 s, respectively. CB-CFI10 composite resulted in more reduction of aPTT (11.31 ± 1.51 s) in comparison with CB (17.34 ± 2.12 s) and CFI (16.79 ± 1.46 s) (p < 0.05). Furthermore, CB and CB-CFI10 exhibited excellent hemocompatibility. The CB and CB-CFI did not show any cytotoxicity on human foreskin fibroblast (HFF) cells. The CB-CFI has a negative surface charge and may activate coagulation factors through direct contact with their components, including CaCO3, chitin, and CFI-NPs with blood. Thus, the superior hemostatic potential, low cost, abundant, simple, and time-saving preparation process make CB-CFI a very favorable hemostatic material for traumatic bleeding control in clinical applications.


Assuntos
Decapodiformes , Hemostáticos , Tinta , Nanopartículas , Animais , Ratos , Hemostáticos/química , Hemostáticos/farmacologia , Nanopartículas/química , Decapodiformes/química , Hemorragia/tratamento farmacológico , Masculino , Coagulação Sanguínea/efeitos dos fármacos , Ratos Sprague-Dawley , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Hemostasia/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Tamanho da Partícula
8.
Int J Biol Macromol ; 267(Pt 2): 131554, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615864

RESUMO

Cuttlefish bone biowaste is a potential source of a composite matrix based on chitin and aragonite. In the present work, we propose for the first time the elaboration of biocomposites based on chitosan and aragonite through the valorization of bone waste. The composition of the ventral and dorsal surfaces of bone is well studied by ICP-OES. An extraction process has been applied to the dorsal surface to extract ß-chitin and chitosan with controlled physico-chemical characteristics. In parallel, aragonite isolation was carried out on the ventral side. The freeze-drying method was used to incorporate aragonite into the chitosan polymer to form CHS/ArgS biocomposites. Physicochemical characterizations were performed by FT-IR, SEM, XRD, 1H NMR, TGA/DSC, potentiometry and viscometry. The ICP-OES method was used to evaluate in vitro the bioactivity level of biocomposite in simulated human plasma (SBF), enabling analysis of the interactions between the material and SBF. The results obtained indicate that the CHS/ArgS biocomposite derived from cuttlefish bone exhibits bioactivity, and that chitosan enhances the bioactivity of aragonite. The CHS/ArgS biocomposite showed excellent ability to form an apatite layer on its surface. After three days' immersion, FTIR and SEM analyses confirmed the formation of this layer.


Assuntos
Materiais Biocompatíveis , Carbonato de Cálcio , Quitosana , Decapodiformes , Quitosana/química , Decapodiformes/química , Animais , Carbonato de Cálcio/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Químicos , Humanos
9.
Mar Pollut Bull ; 202: 116371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657492

RESUMO

Comparative microplastic (MP) data for cephalopods between oceans is scarce. Our aim was to quantify, characterise, and compare MPs in gills, digestive gland, and mantle of chokka squid from the South Atlantic Ocean (SAO) and Indian Ocean (IO) off the coast of South Africa. South African squid had more MPs compared with other studies (means = 2.0 and 0.4 in SAO and IO squid mantle, respectively). Blue fibres were dominant. Identifiable MPs were polyethylene. Despite IO water having higher MP concentrations than the SAO, SAO squid had higher MP concentrations. Dilution by growth is the likely reason for the lower MP concentrations. Fibres were shorter in SAO than IO squid. However, we could not explain why fibre and mantle lengths from both oceans were positively correlated. Squid may not be the best indicator of marine MPs. The characteristics of MPs in squid can be used to track stocks and migrations.


Assuntos
Decapodiformes , Monitoramento Ambiental , Brânquias , Microplásticos , Poluentes Químicos da Água , Animais , Oceano Atlântico , Brânquias/metabolismo , Poluentes Químicos da Água/análise , Oceano Índico , Músculos/metabolismo , África do Sul , Sistema Digestório
10.
Arch Microbiol ; 206(4): 139, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436732

RESUMO

Salmonella exhibits a strong inducible acid tolerance response (ATR) under weak acid conditions, and can also induce high-risk strains that are highly toxic, acid resistant, and osmotic pressure resistant to aquatic products. However, the induction mechanism is not yet clear. Therefore, this study aims to simulate the slightly acidic, low-temperature, and high-protein environment during squid processing and storage. Through λRed gene knockout, exploring the effects of low-acid induction, long-term low-temperature storage, and two-component regulation on Salmonella ATR. In this study, we found the two-component system, PhoP/PhoQ and PmrA/PmrB in Salmonella regulates the amino acid metabolism system and improves bacterial acid tolerance by controlling arginine and lysine. Compared with the two indicators of total biogenic amine and diamine content, biogenic amine index and quality index were more suitable for evaluating the quality of aquatic products. The result showed that low-temperature treatment could inhibit Salmonella-induced ATR, which further explained the ATR mechanism from the amino acid metabolism.


Assuntos
Arginina , Diaminas , Animais , Decapodiformes , Salmonella/genética , Aminas Biogênicas
11.
J Food Sci ; 89(5): 2909-2920, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551034

RESUMO

The accurate detection of biogenic amines (BAs) is an important means of ensuring the quality and safety of cephalopod seafood products. In this study, the pre-column derivatization of high-performance liquid chromatography (HPLC) was optimized using dansyl chloride (Dns-Cl) to detect BAs in octopus, cuttlefish, and squid. The reasons for the formation of BAs were investigated by assessing their decarboxylase activity and the rates of decomposition. The findings demonstrated that using Dns-Cl to optimize pre-column derivatization enabled the separation of nine different BAs. The detection limits ranged from 0.07 to 0.25 mg/L, and the results exhibited a high level of linearity (R2 ≥ 0.997). The decarboxylase activity and biodegradation rate positively correlated with the formation of BAs at temperatures below 0°C. Notably, the decarboxylase activity of octopus, cuttlefish, and squid exhibited a significant increase with prolonged storage time, and formyltransferase and carbamate kinase may be the key decarboxylase in cephalopod products. These findings serve as a valuable reference for further investigations into the mechanisms behind BAs production and the development of control technologies for BAs in cephalopod products. This study has successfully demonstrated the effectiveness of the Dns-Cl pre-column derivatization-HPLC method in accurately and efficiently detecting BAs in octopus, cuttlefish, and squid. Moreover, it highlights the influence of decarboxylase content and biodegradation rate on the formation of BAs. Importantly, this method can serve as a reference for detecting BAs in various seafood products.


Assuntos
Aminas Biogênicas , Cefalópodes , Compostos de Dansil , Alimentos Marinhos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Compostos de Dansil/química , Cefalópodes/química , Aminas Biogênicas/análise , Alimentos Marinhos/análise , Decapodiformes/química , Limite de Detecção , Carboxiliases/metabolismo
12.
Sci Rep ; 14(1): 6513, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499615

RESUMO

Optically pumped magnetometers (OPMs) offer a new wearable means to measure magnetoencephalography (MEG) signals, with many advantages compared to conventional systems. However, OPMs are an emerging technology, thus characterizing and replicating MEG recordings is essential. Using OPM-MEG and SQUID-MEG, this study investigated evoked responses, oscillatory power, and functional connectivity during emotion processing in 20 adults, to establish replicability across the two technologies. Five participants with dental fixtures were included to assess the validity of OPM-MEG recordings in those with irremovable metal. Replicable task-related evoked responses were observed in both modalities. Similar patterns of oscillatory power to faces were observed in both systems. Increased connectivity was found in SQUID-versus OPM-MEG in an occipital and parietal anchored network. Notably, high quality OPM-MEG data were retained in participants with metallic fixtures, from whom no useable data were collected using conventional MEG.


Assuntos
Confiabilidade dos Dados , Magnetoencefalografia , Adulto , Animais , Humanos , Decapodiformes , Encéfalo/fisiologia
13.
Mar Drugs ; 22(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535464

RESUMO

The worldwide prevalence of obesity impacts more than 600 million adults. Successfully managing weight is effective in reducing the risk of chronic diseases, but sustaining long-term weight loss remains a challenge. Although there are supplements based on algae that claim to aid in weight loss, there is a notable scarcity of scientific evidence supporting their effectiveness, and their regular consumption safety remains inadequately addressed. In this work, commercially available Arthrospira (Spirulina) platensis Gomont and/or Fucus vesiculosus L. supplements showed moderate capacity to inhibit the activity of carbohydrate-metabolizing enzymes, and to scavenge biologically relevant reactive species. IC25 values varying between 4.54 ± 0.81 and 66.73 ± 5.91 µg of dry extract/mL and between 53.74 ± 8.42 and 1737.96 ± 98.26 µg of dry extract/mL were obtained for α-glucosidase and aldose reductase, respectively. A weaker effect towards α-amylase activity was observed, with a maximum activity of the extracts not going beyond 33%, at the highest concentrations tested. Spirulina extracts showed generally better effects than those from F. vesiculosus. Similar results were observed concerning the antiradical capacity. In a general way, the extracts were able to intercept the in vitro-generated reactive species nitric oxide (•NO) and superoxide anion (O2•-) radicals, with better results for O2•-scavenging with the spirulina samples (IC25 values of 67.16 and 122.84 µg of dry extract/mL). Chemically, similar pigment profiles were observed between spirulina supplements and the authenticated counterpart. However, fucoxanthin, the chemotaxonomic marker of brown seaweeds, was not found in F. vesiculosus samples, pointing to the occurrence of a degradation phenomenon before, during, or after raw material processing. Our findings can contribute to providing data to allow regulatory entities (e.g., EFSA and FDA) to better rule these products in a way that can benefit society.


Assuntos
Decapodiformes , Suplementos Nutricionais , Spirulina , Animais , Óxido Nítrico , Extratos Vegetais
14.
Environ Res ; 250: 118444, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360168

RESUMO

Anthropogenic shifts in seas are reshaping fishing trends, with significant implications for aquatic food sources throughout this century. Examining a 21-year abundance dataset of Argentine shortfin squids Illex argentinus paired with a regional oceanic analysis, we noted strong correlations between squid annual abundance and sea surface temperature (SST) in January and February and eddy kinetic energy (EKE) from March to May in the Southwest Atlantic. A deeper analysis revealed combined ocean-atmosphere interactions, pinpointed as the primary mode in a rotated empirical orthogonal function analysis of SST. This pattern produced colder SST and amplified EKE in the surrounding seas, factors crucial for the unique life stages of squids. Future projections from the CMIP6 archive indicated that this ocean-atmosphere pattern, referred to as the Atlantic symmetric pattern, would persist in its cold SST phase, promoting increased squid abundance. However, rising SSTs due to global warming might counteract the abundance gains. Our findings uncover a previously unrecognized link between squids and specific environmental conditions governed by broader ocean-atmosphere interactions in the Southwest Atlantic. Integrating these insights with seasonal and decadal projections can offer invaluable information to stakeholders in squid fisheries and marine conservation under a changing climate.


Assuntos
Atmosfera , Decapodiformes , Decapodiformes/fisiologia , Animais , Oceano Atlântico , Temperatura , Estações do Ano , Mudança Climática
15.
Int J Biol Macromol ; 262(Pt 1): 130069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340918

RESUMO

Squid pen (SP) is a valuable source of protein and ß-chitin. However, current research has primarily focused on extracting ß-chitin from SP. This study innovatively extracted both SP protein hydrolysates (SPPHs) and SP ß-chitin (SPC) simultaneously using protease hydrolysis. The effects of different proteases on their structural characteristics and bioactivity were evaluated. The results showed that SP alcalase ß-chitin (SPAC) had the highest degree of deproteinization (DP, 98.19 %) and SP alcalase hydrolysates (SPAH) had a degree of hydrolysis (DH) of 24.47 %. The analysis of amino acid composition suggested that aromatic amino acids accounted for 17.44 % in SPAH. Structural characterization revealed that SP flavourzyme hydrolysates (SPFH) had the sparsest structure. SPC exhibited an excellent crystallinity index (CI, over 60 %) and degree of acetylation (DA, over 70 %). During simulated gastrointestinal digestion (SGD), the hydroxyl radical scavenging activity, ABTS radical scavenging activity, Fe2+ chelating activity, and reducing power of the SPPHs remained stable or increased significantly. Additionally, SPFC exhibited substantial inhibitory effects on Staphylococcus aureus and Escherichia coli (S. aureus and E. coli), with inhibition circle diameters measuring 2.4 cm and 2.1 cm. These findings supported the potential use of SPPHs as natural antioxidant alternatives and suggested that SPC could serve as a potential antibacterial supplement.


Assuntos
Peptídeo Hidrolases , Hidrolisados de Proteína , Animais , Peptídeo Hidrolases/metabolismo , Hidrólise , Hidrolisados de Proteína/química , Decapodiformes/química , Quitina , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Antioxidantes/química , Subtilisinas/metabolismo
16.
Appl Environ Microbiol ; 90(3): e0099023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38315021

RESUMO

Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray-Curtis, P = 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%) Opitutae (Verrucomicrobia) and Ruegeria (Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel test r = 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness.IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15-120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host-symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod-bacteria relationships and provides a foundation to explore defensive symbionts in other systems.


Assuntos
Cefalópodes , Microbiota , Humanos , Animais , Feminino , Cefalópodes/genética , Filogenia , RNA Ribossômico 16S/genética , Decapodiformes/microbiologia , Genitália/microbiologia , Bactérias/genética , Simbiose
17.
Int J Biol Macromol ; 262(Pt 2): 130155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365153

RESUMO

Carrageenan is an emerging biopolymer for wound healing and regenerative applications. In this study, reduced graphene oxide (rGO) and hydroxyapatite (HAp) nano-composites infused carrageenan bioactive membrane was fabricated. Here, hydroxyapatite was synthesized from cuttlefish bone (CF-HAp) and its properties were compared with that of chemically synthesized HAp. Crystalline Ca5(PO4)3(OH) and Ca3(PO4)2) phases were obtained in cuttlefish bone derived HAp. Reduced graphene oxide was synthesized and composites were prepared with chemical HAp and CF-HAp. FT-IR spectral analysis showed the imprints of hydroxyapatite on the membrane and also nano-structured particles were evident through morphological estimations that confirm the distribution of nano-particles on the carrageenan membrane. Nano-particulates infused carrageenan membrane showed the maximum tensile strength, in which graphene incorporated carrageenan bioactive membrane showed highest stability of 15.26 MPa. The contact angle of chemical HAp infused carrageenan membrane (CAR-HAp) showed more hydrophilic in nature (48.63° ± 7.47°) compared to control (61.77° ± 1.28°). Bio-compatibility features enunciate the optimal compatibility of fabricated bioactive membrane with fibroblast cell line; simultaneously, CAR-rGO-CF-HAp showed tremendous wound healing behavior with zebrafish model. Hence, fabricated bioactive membrane with the infusion of rGO- hydroxyapatite derived from cuttlefish bone was found to be a versatile biopolymer membrane for wound healing application.


Assuntos
Durapatita , Grafite , Animais , Durapatita/química , Grafite/química , Carragenina , Decapodiformes , Espectroscopia de Infravermelho com Transformada de Fourier , Peixe-Zebra , Biopolímeros
18.
Sci Rep ; 14(1): 2912, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316910

RESUMO

The innate immune response is the first line of defense for all animals to not only detect invading microbes and toxins but also sense and interface with the environment. One such environment that can significantly affect innate immunity is spaceflight. In this study, we explored the impact of microgravity stress on key elements of the NFκB innate immune pathway. The symbiosis between the bobtail squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri was used as a model system under a simulated microgravity environment. The expression of genes associated with the NFκB pathway was monitored over time as the symbiosis progressed. Results revealed that although the onset of the symbiosis was the major driver in the differential expression of NFκB signaling, the stress of simulated low-shear microgravity also caused a dysregulation of expression. Several genes were expressed at earlier time points suggesting that elements of the E. scolopes NFκB pathway are stress-inducible, whereas expression of other pathway components was delayed. The results provide new insights into the role of NFκB signaling in the squid-vibrio symbiosis, and how the stress of microgravity negatively impacts the host immune response. Together, these results provide a foundation to develop mitigation strategies to maintain host-microbe homeostasis during spaceflight.


Assuntos
Vibrio , Ausência de Peso , Animais , Simbiose , Imunidade Inata , Aliivibrio fischeri/fisiologia , Decapodiformes/fisiologia
19.
Curr Protein Pept Sci ; 25(4): 326-338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38243942

RESUMO

BACKGROUND: Neuropeptide pedal peptide (PP) and orcokinin (OK), which are structurally related active peptides, have been widely discovered in invertebrates and constitute the PP/OK neuropeptide family. They have complex structures and play myriad roles in physiological processes. To date, there have been no related reports of PP/OK-type neuropeptide in cephalopods, which possess a highly differentiated multi-lobular brain. METHODS: Rapid Amplification of cDNA Ends (RACE) was employed to obtain the open reading frame (ORF) of PP/OK-type neuropeptide in Sepiella japonica (termed as Sj-PP/OK). Various software were used for sequence analysis. Semi-quantitative PCR was applied to analyze the tissue distribution profile, quantitative real-time PCR (qRT-PCR) was used to study spatio-temporal expression throughout the entire growth and development period, and in situ hybridization (ISH) was employed to observe the tissue location of Sj-PP/OK. RESULTS: in the present study, we identified the ORF of Sj-PP/OK. The putative precursor of Sj-PP/ OK encodes 22 mature peptides, of which only tridecapeptides could undergo post-translationally amidated at C-terminus. Each of these tridecapeptides possesses the most conserved and frequent N-terminus Asp-Ser-Ile (DSI). Sequence analysis revealed that Sj-PP/OK shared comparatively low identity with other invertebrates PP or OK. The tissue distribution profile showed differences in the expression level of Sj-PP/OK between male and female. qRT-PCR data demonstrated that Sj-PP/OK was widely distributed in various tissues, with its expression level increasing continuously in the brain, optic lobe, liver, and nidamental gland throughout the entire growth and development stages until gonad maturation. ISH detected that Sj-PP/OK positive signals existed in almost all regions of the optic lobe except the plexiform zone, the outer edge of all functional lobes in the brain, epithelial cells and the outer membrane layer of the accessory nidamental gland. These findings suggest that Sj-PP/OK might play a role in the regulation of reproduction, such as vitellogenin synthesis, restoration, and ova encapsulation. CONCLUSION: The study indicated that Sj-PP/OK may be involved in the neuroendocrine regulation in cephalopods, providing primary theoretical basis for further studies of its regulation role in reproduction.


Assuntos
Sequência de Aminoácidos , Decapodiformes , Hibridização In Situ , Neuropeptídeos , Animais , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/química , Decapodiformes/genética , Decapodiformes/metabolismo , Hibridização In Situ/métodos , Filogenia , Fases de Leitura Aberta , Clonagem Molecular , Sequência de Bases , Feminino
20.
J Bacteriol ; 206(2): e0037023, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38270381

RESUMO

Multicellular communities of adherent bacteria known as biofilms are often detrimental in the context of a human host, making it important to study their formation and dispersal, especially in animal models. One such model is the symbiosis between the squid Euprymna scolopes and the bacterium Vibrio fischeri. Juvenile squid hatch aposymbiotically and selectively acquire their symbiont from natural seawater containing diverse environmental microbes. Successful pairing is facilitated by ciliary movements that direct bacteria to quiet zones on the surface of the squid's symbiotic light organ where V. fischeri forms a small aggregate or biofilm. Subsequently, the bacteria disperse from that aggregate to enter the organ, ultimately reaching and colonizing deep crypt spaces. Although transient, aggregate formation is critical for optimal colonization and is tightly controlled. In vitro studies have identified a variety of polysaccharides and proteins that comprise the extracellular matrix. Some of the most well-characterized matrix factors include the symbiosis polysaccharide (SYP), cellulose polysaccharide, and LapV adhesin. In this review, we discuss these components, their regulation, and other less understood V. fischeri biofilm contributors. We also highlight what is currently known about dispersal from these aggregates and host cues that may promote it. Finally, we briefly describe discoveries gleaned from the study of other V. fischeri isolates. By unraveling the complexities involved in V. fischeri's control over matrix components, we may begin to understand how the host environment triggers transient biofilm formation and dispersal to promote this unique symbiotic relationship.


Assuntos
Aliivibrio fischeri , Biofilmes , Animais , Humanos , Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adesinas Bacterianas , Decapodiformes/microbiologia , Simbiose , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...