Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.797
Filtrar
2.
Rev Med Inst Mex Seguro Soc ; 62(1): 1-7, 2024 Jan 08.
Artigo em Espanhol | MEDLINE | ID: mdl-39116260

RESUMO

Background: 20q11.2 microdeletion syndrome [ORPHA: 444051] is a rare disease, since 16 patients have been reported in literature worldwide. Prevalence ratio is < 1:1,000,000 individuals. Haploinsufficiency on GDF5, SAMHD1 and EPB41L1 genes is important due to phenotypic manifestations in patients. Clinical features can be grouped into craniofacial abnormalities, limb abnormalities, neurological and perinatal disorders. The aim of this report is to present a clinical case of 20q11.21-q11.23 microdeletion, to describe clinical manifestations found, to compare them with features reported in literature, and to contribute to the phenotypic spectrum expansion. Clinical case: 5-year-old female patient who presented hypotonia, psychomotor retardation, microcephaly, facial dysmorphia, pectus excavatum, thoracolumbar scoliosis, right hip subluxation, camptodactyly and clinodactyly. Karyotype test was normal and SNP microarray test reported deletion of chromosomal region 20q11.21-q11.23. Conclusions: It was presented a 20q11.2 microdeletion syndrome confirmed case that shares the features reported in literature, in addition to previously unreported features, such as blepharoptosis, pectus excavatum, scoliosis and hip dysplasia. Interdisciplinary management is important to improve the patient's condition (in her 3 spheres), in order to achieve her best possible health status.


Introducción: el síndrome de microdeleción 20q11.2 [ORPHA: 444051] es una enfermedad rara, pues se han reportado 16 casos a nivel mundial. Su prevalencia se estima en < 1:1,000,000 de nacidos vivos. Induce haploinsuficiencia en los genes GDF5, SAMHD1 y EPB41L1, los cuales son de importancia clínica por las manifestaciones fenotípicas. Se caracteriza por anomalías craneofaciales, anomalías de extremidades, alteraciones neurológicas y perinatales. El objetivo de este reporte es presentar un caso de microdeleción 20q11.21-q11.23, describir las manifestaciones clínicas encontradas, compararlo con lo reportado en la literatura y colaborar en la ampliación del espectro fenotípico. Caso clínico: paciente del sexo femenino de 5 años que presentó hipotonía, retraso psicomotor, microcefalia, dismorfias faciales, pectus excavatum, escoliosis toracolumbar, subluxación de cadera derecha, camptodactilia y clinodactilia. La prueba de cariotipo se reportó sin alteraciones y el ensayo de microarreglo de polimorfismos de un nucleótido (SNP) reportó deleción de la región cromosómica 20q11.21-q11.23. Conclusiones: se presentó un caso confirmado de síndrome de microdeleción 20q11.2 que comparte las características reportadas en la literatura, además de características no reportadas previamente, como ptosis palpebral, pectus excavatum, escoliosis y displasia del desarrollo de cadera. Es importante el manejo interdisciplinario para buscar mejoría en la condición de la paciente (en sus 3 esferas), a fin de alcanzar el mejor estado de salud posible.


Assuntos
Fenótipo , Humanos , Feminino , Pré-Escolar , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/diagnóstico , Deleção Cromossômica
3.
Sci Rep ; 14(1): 17801, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090138

RESUMO

Fever of unknown origin (FUO) remains a formidable diagnostic challenge in the field of medicine. Numerous studies suggest an association between FUO and genetic factors, including chromosomal abnormalities. Here, we report a female patient with a 4.5 Mb Xp microdeletion, who presented with recurrent FUO, bacteremia, colitis, and hematochezia. To elucidate the underlying pathogenic mechanism, we employed a comprehensive approach involving single cell RNA sequencing, T cell receptor sequencing, and flow cytometry to evaluate CD4 T cells. Analysis of peripheral blood mononuclear cells revealed augmented Th1, Th2, and Th17 cell populations, and elevated levels of proinflammatory cytokines in serum. Notably, the patient exhibited impaired Treg cell function, possibly related to deletion of genes encoding FOPX3 and WAS. Single cell analysis revealed specific expansion of cytotoxic CD4 T lymphocytes, characterized by upregulation of various signature genes associated with cytotoxicity. Moreover, interferon-stimulated genes were upregulated in the CD4 T effector memory cluster. Further genetic analysis confirmed maternal inheritance of the Xp microdeletion. The patient and her mother exhibited X chromosome-skewed inactivation, a potential protective mechanism against extensive X chromosome deletions; however, the mother exhibited complete skewing and the patient exhibited incomplete skewing (85:15), which may have contributed to emergence of immunological symptoms. In summary, this case report describes an exceptional instance of FUO stemming from an incompletely inactivated X chromosome microdeletion, thereby increasing our understanding of the genetics underpinning FUO.


Assuntos
Bacteriemia , Deleção Cromossômica , Cromossomos Humanos X , Febre de Causa Desconhecida , Humanos , Feminino , Bacteriemia/genética , Febre de Causa Desconhecida/genética , Cromossomos Humanos X/genética , Adulto
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 994-1000, 2024 Aug 10.
Artigo em Chinês | MEDLINE | ID: mdl-39097286

RESUMO

22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder. Its phenotype is highly variable with incomplete penetrance. 22q11.2DS is a rare disease, and the research progress is relatively slow, which has restricted its treatment and intervention. In recent years, much progress has been made in the pathogenic mechanism and genome-wide association study of 22q11.2DS. In this review, the pathogenesis of 22q11.2DS was summarized. Thereafter, the molecular and pathological mechanisms of TBX1 and DGCR8 genes were clarified. Finally, factors affecting the penetrance of cardiac and immune system phenotypes were reviewed. This review may enhance the understanding of 22q11.2DS and has important clinical implications on the prenatal diagnosis, genetic counseling, treatment and intervention of this disease.


Assuntos
Síndrome de DiGeorge , Humanos , Síndrome de DiGeorge/genética , Proteínas com Domínio T/genética , Cromossomos Humanos Par 22/genética , Deleção Cromossômica
7.
Orphanet J Rare Dis ; 19(1): 292, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135054

RESUMO

Ankyrin repeat domain containing-protein 11 (ANKRD11), a transcriptional factor predominantly localized in the cell nucleus, plays a crucial role in the expression regulation of key genes by recruiting chromatin remodelers and interacting with specific transcriptional repressors or activators during numerous biological processes. Its pathogenic variants are strongly linked to the pathogenesis and progression of multisystem disorder known as KBG syndrome. With the widespread application of high-throughput DNA sequencing technologies in clinical medicine, numerous pathogenic variants in the ANKRD11 gene have been reported. Patients with KBG syndrome usually exhibit a broad phenotypic spectrum with a variable degree of severity, even if having identical variants. In addition to distinctive dental, craniofacial and neurodevelopmental abnormalities, patients often present with skeletal anomalies, particularly postnatal short stature. The relationship between ANKRD11 variants and short stature is not well-understood, with limited knowledge regarding its occurrence rate or underlying biological mechanism involved. This review aims to provide an updated analysis of the molecular spectrum associated with ANKRD11 variants, investigate the prevalence of the short stature among patients harboring these variants, evaluate the efficacy of recombinant human growth hormone in treating children with short stature and ANKRD11 variants, and explore the biological mechanisms underlying short stature from both scientific and clinical perspectives. Our investigation indicated that frameshift and nonsense were the most frequent types in 583 pathogenic or likely pathogenic variants identified in the ANKRD11 gene. Among the 245 KBGS patients with height data, approximately 50% displayed short stature. Most patients showed a positive response to rhGH therapy, although the number of patients receiving treatment was limited. ANKRD11 deficiency potentially disrupts longitudinal bone growth by affecting the orderly differentiation of growth plate chondrocytes. Our review offers crucial insights into the association between ANKRD11 variants and short stature and provides valuable guidance for precise clinical diagnosis and treatment of patients with KBG syndrome.


Assuntos
Fenótipo , Proteínas Repressoras , Humanos , Proteínas Repressoras/genética , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Anormalidades Dentárias/genética , Anormalidades Dentárias/patologia , Craniossinostoses/genética , Craniossinostoses/patologia , Deleção Cromossômica , Doenças do Desenvolvimento Ósseo , Fácies
8.
Zhonghua Nan Ke Xue ; 30(2): 118-122, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-39177343

RESUMO

OBJECTIVE: To investigate the genetic and clinical characteristics of 46, XX testicular disorders of sex development (DSD). METHODS: We collected the clinical data on the patients with 46,XX testicular DSD diagnosed in the Center of Reproductive Medicine of the First Affiliated Hospital of Nanjing Medical University from January 2017 to January 2023, and analyzed their genetic and clinical characteristics and the SRY gene chromosomal location for those with SRY-positive. RESULTS: A total of 26 patients were included in this study, all with 46,XX and deletion of the AZFa, b and c regions, with a mean height of (168.3±5.9) cm, body weight of (64.0±7.5) kg, BMI of (22.66±2.79) kg/m2, left testis volume of (2.53±1.16) ml and right testis volume of (2.74±1.34) ml. The semen volume of the patients averaged 1.35 (0.18-2.78) ml, FSH (36.85±18.01) IU/L, LH (19.71±9.71) IU/L, and T (6.08±2.71) nmol/L. The SRY-negative patients had a higher incidence rate of development disorders in the reproductive system than the SRY-positive ones (5/6 vs 3/20, P = 0.004), but no statistically significant differences were observed in the other parameters. The SRY gene was localized at the end of Xp in 13 of the 14 SRY-positive cases, and at chromosome 15 in the other 1. CONCLUSION: 46,XX testicular DSD has some similarity and heterogeneity in genetics and clinical characteristics.


Assuntos
Testículo , Humanos , Masculino , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Proteína da Região Y Determinante do Sexo/genética , Transtornos do Desenvolvimento Sexual/genética , Cariotipagem , Adulto , Deleção Cromossômica
9.
Clin Chim Acta ; 563: 119903, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39127298

RESUMO

BACKGROUND AND AIMS: DiGeorge syndrome (DGS) is a genetic disorder manifesting in polymorphic symptoms related to developmental abnormalities of various organs including thymus. DGS is caused by microdeletions in the 22q11.2 region between several low copy repeats (LCR) occurring in approximately 1 in 4000 live births. Diagnosis of DGS relies on phenotypic examination, qPCR, ultrasound, FISH, MLPA and NGS which can be relatively inaccurate, time-consuming, and costly. MATERIALS AND METHODS: A novel multiplex droplet digital PCR (ddPCR) assay was designed, optimized and validated for detection and mapping 22q11.2 microdeletions by simultaneous amplification of three targets - TUPLE1, ZNF74, D22S936 - within the deletion areas and one reference target - RPP30 - as an internal control. RESULTS: The assay reliable identified microdeletions when the template concentration was >32 copies per reaction and successfully detected LCR22A-B, LCR22A-C, LCR22A-D, and LCR22B-C deletions in clinical samples from 153 patients with signs of immunodeficiency. In patients with the microdeletions, flow cytometry detected a significant increase in B-cell and natural killer cell counts and percentages, while T-cell percentages and T-cell receptor excision circle (TREC) numbers decreased. CONCLUSION: The designed ddPCR assay is suitable for diagnosing DGS using whole blood and blood spots.


Assuntos
Síndrome de DiGeorge , Reação em Cadeia da Polimerase Multiplex , Humanos , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Cromossomos Humanos Par 22/genética , Deleção Cromossômica
10.
Stem Cell Res ; 80: 103524, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106599

RESUMO

We generated two human induced pluripotent cell (hiPSC) isogenic clones from an 11-year-old patient with 6q27 deletion syndrome. The heterozygous deletion encompasses approximately 240 kilobases, affecting 6 genes (promoter region of WDR27, coding regions of C6orf120, PHF10, DYNLT2, ERMARD, LINC00242). The patient suffered from epilepsy, psychosocial retardation, and a metabolic disorder. The patient also had a history of SHH-medulloblastoma as an infant. The generated hiPSCs represent a useful tool for modelling 6q27 deletion syndrome in vitro and understanding the molecular basis of the disorder.


Assuntos
Deleção Cromossômica , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Criança , Cromossomos Humanos Par 6/genética , Masculino , Células Clonais
11.
Orphanet J Rare Dis ; 19(1): 301, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152504

RESUMO

BACKGROUND: Chromosome 7 has regions enriched with low copy repeats (LCRs), which increase the likelihood of chromosomal microdeletion disorders. Documented microdeletion disorders on chromosome 7 include both well-known Williams syndrome and more rare cases. It is noteworthy that most cases of various microdeletions are characterized by phenotypic signs of neuropsychological developmental disorders, which, however, have a different genetic origin. The localization of the microdeletions, the genes included in the region, as well as the structural features of the sequences of these genes have a cumulative influence on the phenotypic characteristics of the individuals for each specific case and the severity of the manifestations of disorders. The consideration of these features and their detailed analysis is important for a correct and comprehensive assessment of the disease. RESULTS: The article describes a clinical case of 7p22.3 microdeletion in a patient with congenital heart defect and neurological abnormalities - epilepsy, combined with moderate mental and motor developmental delay. CONCLUSIONS: Through detailed genetic analyses, we are improving the clinical description of the rare 7p22.3 microdeletion and thus creating a basis for future genetic counseling and research into targeted therapies.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 7 , Epilepsia , Cardiopatias Congênitas , Feminino , Humanos , Masculino , Cromossomos Humanos Par 7/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Transtornos do Neurodesenvolvimento/genética , Lactente , Linhagem
12.
Neurosci Lett ; 837: 137904, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39029613

RESUMO

Rho-associated protein kinase-2 (ROCK2) is a critical player in many cellular processes and was incriminated in cardiovascular and neurological disorders. Recent evidence has shown that non-selective pharmacological blockage of ROCKs ameliorates behavioral alterations in a mouse model of 16p11.2 haploinsufficiency. We had revealed that 16p11.2-deficient mice also display cerebrovascular abnormalities, including endothelial dysfunction. To investigate whether genetic blockage of ROCK2 also exerts beneficial effects on cognition and angiogenesis, we generated mice with both 16p11.2 and Rock2 haploinsufficiency (16p11.2df/+;Rock2+/-). We find that Rock2 heterozygosity on a 16p11.2df/+ background significantly improved recognition memory. Furthermore, brain endothelial cells from 16p11.2df/+;Rock2+/- mice display improved angiogenic capacity compared to cells from 16p11.2df/+ littermates. Overall, this study implicates Rock2 gene as a modulator of 16p11.2-associated alterations, highlighting its potential as a target for treatment of autism spectrum disorders.


Assuntos
Transtorno Autístico , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 16 , Modelos Animais de Doenças , Quinases Associadas a rho , Animais , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Cromossomos Humanos Par 16/genética , Camundongos , Transtorno Autístico/genética , Transtornos Cromossômicos/genética , Heterozigoto , Reconhecimento Psicológico/fisiologia , Células Endoteliais/metabolismo , Haploinsuficiência , Masculino , Camundongos Endogâmicos C57BL , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética
13.
Proc Natl Acad Sci U S A ; 121(31): e2322834121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042694

RESUMO

We developed a generally applicable method, CRISPR/Cas9-targeted long-read sequencing (CTLR-Seq), to resolve, haplotype-specifically, the large and complex regions in the human genome that had been previously impenetrable to sequencing analysis, such as large segmental duplications (SegDups) and their associated genome rearrangements. CTLR-Seq combines in vitro Cas9-mediated cutting of the genome and pulse-field gel electrophoresis to isolate intact large (i.e., up to 2,000 kb) genomic regions that encompass previously unresolvable genomic sequences. These targets are then sequenced (amplification-free) at high on-target coverage using long-read sequencing, allowing for their complete sequence assembly. We applied CTLR-Seq to the SegDup-mediated rearrangements that constitute the boundaries of, and give rise to, the 22q11.2 Deletion Syndrome (22q11DS), the most common human microdeletion disorder. We then performed de novo assembly to resolve, at base-pair resolution, the full sequence rearrangements and exact chromosomal breakpoints of 22q11.2DS (including all common subtypes). Across multiple patients, we found a high degree of variability for both the rearranged SegDup sequences and the exact chromosomal breakpoint locations, which coincide with various transposons within the 22q11.2 SegDups, suggesting that 22q11DS can be driven by transposon-mediated genome recombination. Guided by CTLR-Seq results from two 22q11DS patients, we performed three-dimensional chromosomal folding analysis for the 22q11.2 SegDups from patient-derived neurons and astrocytes and found chromosome interactions anchored within the SegDups to be both cell type-specific and patient-specific. Lastly, we demonstrated that CTLR-Seq enables cell-type specific analysis of DNA methylation patterns within the deletion haplotype of 22q11DS.


Assuntos
Síndrome de DiGeorge , Humanos , Síndrome de DiGeorge/genética , Sistemas CRISPR-Cas , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 22/genética , Genoma Humano , Rearranjo Gênico , Análise de Sequência de DNA/métodos , Deleção Cromossômica
15.
Ann Hematol ; 103(9): 3805-3810, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38990295

RESUMO

Abnormality of three α-globin genes, either deletion or point mutation results in symptomatic Hemoglobin H (HbH) phenotype. Most of such cases of α-globin defects are inherited from the parents, de-novo cases are exceedingly rare. Herein, a case of HbH is reported where the proband inherited one α-globin gene with a point mutation (αEvanston) from the mother. This was associated with large de-novo deletion of chromosome 16p13.3 resulting in α-thalassemia and mental retardation (ATR-16) syndrome. This deletion also encompassed two α-globin genes from chromosome 16, eventually leading to --/ααEvanston genotype, explaining the clinical presentation of the proband. The challenges in screening of such cases and confirming the molecular diagnosis along with the mode of inheritance has been discussed.


Assuntos
Cromossomos Humanos Par 16 , Fenótipo , Talassemia alfa , Humanos , Talassemia alfa/genética , Talassemia alfa/complicações , Cromossomos Humanos Par 16/genética , Feminino , Masculino , Hemoglobina H/genética , Deficiência Intelectual/genética , Hemoglobinas Anormais/genética , Mutação Puntual , Deleção Cromossômica , alfa-Globinas/genética
16.
Lancet Haematol ; 11(9): e659-e670, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033767

RESUMO

BACKGROUND: Lenalidomide is the standard of care for patients who are transfusion dependent with chromosome 5q deletion (del[5q]) myelodysplastic syndromes. In the SintraREV trial, we aimed to investigate whether an early intervention of low lenalidomide doses for 2 years could delay transfusion dependency in patients with anaemia who were not transfusion dependent. METHODS: This randomised, double-blind, phase 3 trial, was conducted at 22 sites (University Hospitals) in Spain, France, and Germany. Eligible patients were aged 18 years or older diagnosed with low-risk or intermediate-1-risk del(5q) myelodysplastic syndromes with non-transfusion-dependent anaemia (according to the IPSS), were erythropoietin-stimulating agents naive, and had an ECOG performance status of 2 or less. Patients were randomly assigned (2:1) by means of a telephone system to receive lenalidomide 5 mg daily in 28-day cycles versus placebo for 2 years. The primary endpoint was time to transfusion dependency based on blinded independent central review. Analysis were by intent-to-treat (ITT) and evaluable population. Safety analyses included all participants who received at least one dose of treatment. This trial is registered with ClinicalTrials.gov (NCT01243476) and EudraCT (2009-013619-36) and is complete. FINDINGS: Between Feb 15, 2010, and Feb 21, 2018, 61 patients were randomly assigned to receive lenalidomide (n=40; two did not receive treatment) or placebo (n=21). The median age was 72·2 (IQR 65·4-81·9) years, 50 (82%) patients were female, and 11 (18%) were male. The median follow-up time was 60·6 (IQR 32·1-73·9) months. Regarding primary endpoint, median time to transfusion dependency was not reached (95% CI not applicable) in the lenalidomide group versus 11·6 months (95% CI 0·00-30·11) in the placebo group (p=0·0027). Lenalidomide significantly reduced the risk of transfusion dependency by 69·8% (hazard ratio 0·302, 95% CI 0·132-0·692; p=0·0046). The most frequent treatment-related adverse event was neutropenia, occurring in 24 (63%) of 38 patients in the lenalidomide group (grade 3 and 4 in 17 [45%] patients and one [3%], respectively) and in four (19%) of 21 patients in the placebo group (grade 3 in one [5%] patient). Thrombocytopenia was detected in seven (18%) of 38 patients receiving lenalidomide (grade 3 in two [5%] patients). Regarding the non-haematological toxicity, skin disorders (rash nine [23%] of 38 patients) were the most frequently described toxicities among patients receiving lenalidomide, being grade 3 in one (3%) of 38 patients. 19 serious adverse events were reported in 13 patients, 18 in the lenalidomide group and one in the placebo group, five of which were potentially related to the study drug. No treatment-related deaths were identified. INTERPRETATION: An early approach with low doses of lenalidomide across two years delays the time to transfusion dependency and improves the rate and quality of the responses, with a manageable safety profile in patients who are non-transfusion dependent with del(5q) low-risk myelodysplastic syndromes. FUNDING: Bristol Myers Squibb.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 5 , Lenalidomida , Síndromes Mielodisplásicas , Talidomida , Humanos , Lenalidomida/uso terapêutico , Lenalidomida/efeitos adversos , Lenalidomida/administração & dosagem , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Masculino , Feminino , Idoso , Método Duplo-Cego , Pessoa de Meia-Idade , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Talidomida/efeitos adversos , Talidomida/administração & dosagem , Transfusão de Sangue , Idoso de 80 Anos ou mais , Resultado do Tratamento
17.
Am J Hum Genet ; 111(8): 1605-1625, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013458

RESUMO

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 9 , Anormalidades Craniofaciais , Metilação de DNA , Estudos de Associação Genética , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Fenótipo , Humanos , Histona-Lisina N-Metiltransferase/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Cromossomos Humanos Par 9/genética , Metilação de DNA/genética , Feminino , Masculino , Criança , Pré-Escolar , Antígenos de Histocompatibilidade/genética , Adolescente , Cardiopatias Congênitas/genética , Haploinsuficiência/genética , Mutação
18.
Am J Hum Genet ; 111(8): 1626-1642, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013459

RESUMO

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Cromossomos Humanos Par 9 , Anormalidades Craniofaciais , Metilação de DNA , Proteínas de Ligação a DNA , Face , Doenças Hematológicas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Doenças Vestibulares , Humanos , Anormalidades Múltiplas/genética , Doenças Vestibulares/genética , Deficiência Intelectual/genética , Face/anormalidades , Face/patologia , Proteínas de Ligação a DNA/genética , Masculino , Feminino , Doenças Hematológicas/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Craniofaciais/genética , Cromossomos Humanos Par 9/genética , Criança , Metilação de DNA/genética , Pré-Escolar , Proteínas de Neoplasias/genética , Adolescente , Hipertricose/genética , Mutação , Insuficiência de Crescimento/genética , Histona-Lisina N-Metiltransferase/genética , Cardiopatias Congênitas
19.
BMJ Case Rep ; 17(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038875

RESUMO

This patient is an infant with Williams-Beuren syndrome (WBS) who was diagnosed at 2 months of age. He was born by caesarean section with a low birth weight (LBW) of 2.1 kg and was small for gestational age. His para 1+1 (1 alive) mother in her mid-30s had intrauterine growth restriction during pregnancy. On examination at birth, he appeared phenotypically normal, but at 2 weeks old, he had subtle phenotypic features of WBS of fused filtrum, ulnar deviation of fingers and wide anterior fontanelle, a systolic murmur and mild gaseous distension of the abdomen.All neonatal reflexes were normal. The author saw this patient at 6 months of age at the well-baby clinic for his 6-month vaccinations during which examination revealed periorbital fullness. Investigations including chromosomal microarray analysis confirmed the diagnosis of WBS. Laboratory tests were essentially normal except for raised creatinine, chloride and liver aspartate transaminase and viral serology that showed reactive cytomegalovirus antibody IgG, rubella antibody IgG, toxoplasma IgG and positive herpes simplex virus type 1 IgG. Echocardiography revealed mild pulmonary artery stenosis. ECG revealed right ventricular hypertrophy. Abdominal ultrasonography was normal and so was cranial sonography. This is a unique case of early diagnosis of WBS in an infant with atypical chromosome 7 deletion in Qatar, Middle East. The patient is undergoing further multidisciplinary follow-up.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 7 , Síndrome de Williams , Humanos , Síndrome de Williams/genética , Síndrome de Williams/diagnóstico , Cromossomos Humanos Par 7/genética , Masculino , Lactente , Recém-Nascido
20.
BMC Pregnancy Childbirth ; 24(1): 456, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951757

RESUMO

BACKGROUND: TBX6, a member of the T-box gene family, encodes the transcription factor box 6 that is critical for somite segmentation in vertebrates. It is known that the compound heterozygosity of disruptive variants in trans with a common hypomorphic risk haplotype (T-C-A) in the TBX6 gene contribute to 10% of congenital scoliosis (CS) cases. The deletion of chromosome 17q12 is a rare cytogenetic abnormality, which often leads to renal cysts and diabetes mellitus. However, the affected individuals often exhibit clinical heterogeneity and incomplete penetrance. METHODS: We here present a Chinese fetus who was shown to have CS by ultrasound examination at 17 weeks of gestation. Trio whole-exome sequencing (WES) was performed to investigate the underlying genetic defects of the fetus. In vitro functional experiments, including western-blotting and luciferase transactivation assay, were performed to determine the pathogenicity of the novel variant of TBX6. RESULTS: WES revealed the fetus harbored a compound heterozygous variant of c.338_340del (p.Ile113del) and the common hypomorphic risk haplotype of the TBX6 gene. In vitro functional study showed the p.Ile113del variant had no impact on TBX6 expression, but almost led to complete loss of its transcriptional activity. In addition, we identified a 1.85 Mb deletion on 17q12 region in the fetus and the mother. Though there is currently no clinical phenotype associated with this copy number variation in the fetus, it can explain multiple renal cysts in the pregnant woman. CONCLUSIONS: This study is the first to report a Chinese fetus with a single amino acid deletion variant and a T-C-A haplotype of TBX6. The clinical heterogeneity of 17q12 microdeletion poses significant challenges for prenatal genetic counseling. Our results once again suggest the complexity of prenatal genetic diagnosis.


Assuntos
Cromossomos Humanos Par 17 , Haplótipos , Heterozigoto , Proteínas com Domínio T , Humanos , Proteínas com Domínio T/genética , Feminino , Cromossomos Humanos Par 17/genética , Gravidez , Adulto , Deleção Cromossômica , Sequenciamento do Exoma , Deleção de Sequência , Feto/anormalidades , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA