Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 927
Filtrar
1.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930859

RESUMO

Turmeric (Curcuma longa) contains curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Nevertheless, curcumin is the most researched active ingredient for its numerous pharmacological effects. We investigated the impact of these curcuminoids found in Ryudai gold, an approved cultivar of Curcuma longa, on wound healing, inflammation, and diabetes. Sub-planter injections of carrageenan induced acute paw inflammation in rats. The wound-healing ability of 1% curcuminoids was examined by making a 6 mm round wound on the shaved dorsum of the mice with a biopsy punch. A single intraperitoneal injection of streptozotocin (50 mg/kg) was used to induce diabetes in mice. Curcuminoids at a dose rate of 100 mg/kg body weight were used with feed and as a gastric gavage to treat diabetes and inflammation in experimental animals. Paw thickness was measured at 1, 3, and 6 h following carrageenan injection. After three hours, mean paw volume was 58% in carrageenan-injected mice, which was 35%, 37%, and 31% in the curcumin, DMC, and BDMC groups, respectively. Histopathology of the paw tissue demonstrated severe infiltration of inflammatory cells and thickening of the dermis, which were remarkably improved by the curcuminoids. The wound-healing abilities were significantly higher in the curcumin- (95.0%), DMC- (93.17%), and BDMC-treated (89.0%) groups, in comparison to that of the control (65.09%) group at day nine. There were no significant differences in wound-healing activity among the groups treated with 1% curcuminoids throughout the study. Streptozotocin-induced diabetes was characterized by an increased blood glucose (552.2 mg/dL) and decreased body weight (31.2 g), compared to that of the control rats (145.6 mg/dL and 46.8 g blood glucose and body weight, respectively). It also caused an increase in serum alanine aminotransferase (ALT; 44.2 U/L) and aspartate aminotransferase (AST; 55.8 U/L) compared to that of the control group (18.6 U/L and 20.1 U/L, respectively). Histopathological examination of the liver showed that diabetes caused hepatic cellular necrosis, congestion of the central vein, and parenchymatous degeneration. However, all three curcuminoids significantly decreased blood glucose levels, ALT, and AST and improved the histopathological score of the liver. These results evidenced that not only curcumin but also DMC and BDMC have potent anti-inflammatory, wound healing, and anti-diabetic efficacy, and the Ryudai gold variety of turmeric could be used as a functional food supplement.


Assuntos
Anti-Inflamatórios , Curcuma , Curcumina , Diabetes Mellitus Experimental , Hipoglicemiantes , Cicatrização , Animais , Curcuma/química , Cicatrização/efeitos dos fármacos , Camundongos , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Curcumina/farmacologia , Curcumina/análogos & derivados , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Carragenina , Inflamação/tratamento farmacológico , Inflamação/patologia , Diarileptanoides/farmacologia , Diarileptanoides/química
2.
Phytochemistry ; 225: 114197, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945281

RESUMO

Five undescribed monoterpene-chalcone conjugates (1-5), one undescribed hypothetical precursor of diarylheptanoid (6), two undescribed diarylheptanoids (7-8), and fourteen known compounds (9-22) were isolated from the seeds of Alpinia katsumadai. Their structures were elucidated through the interpretation of HRESIMS, NMR, ECD, and X-ray diffraction data. MTT assays on human cancer cell lines (HepG2, A549, SGC7901, and SW480) revealed that compounds 3-8, 11, and 13 exhibited broad-spectrum antiproliferative activities with IC50 values ranging from 3.59 to 21.78 µM. B cell lymphoma 2 was predicted as the target of sumadain C (11) by network pharmacology and verified by homogeneous time-resolved fluorescence assay and molecular docking.


Assuntos
Alpinia , Antineoplásicos Fitogênicos , Proliferação de Células , Diarileptanoides , Ensaios de Seleção de Medicamentos Antitumorais , Monoterpenos , Sementes , Alpinia/química , Humanos , Diarileptanoides/química , Diarileptanoides/farmacologia , Diarileptanoides/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Sementes/química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Monoterpenos/química , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia , Relação Estrutura-Atividade , Chalconas/química , Chalconas/farmacologia , Chalconas/isolamento & purificação , Chalcona/química , Chalcona/farmacologia , Chalcona/isolamento & purificação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
3.
Org Lett ; 26(26): 5522-5527, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38900928

RESUMO

Here, we use transcriptomic data from seeds of Musella lasiocarpa to identify five enzymes involved in the formation of dihydrocurcuminoids. Characterization of the substrate specificities of the enzymes reveals two distinct dihydrocurcuminoid pathways leading to phenylphenalenones and linear diarylheptanoid derivatives, the major seed metabolites. Furthermore, we demonstrate the stepwise conversion of dihydrobisdemethoxycurcumin to the phenylphenalenone 4'-hydroxylachnanthocarpone by feeding intermediates to M. lasiocarpa root protein extract.


Assuntos
Diarileptanoides , Fenalenos , Diarileptanoides/química , Fenalenos/química , Estrutura Molecular , Sementes/química , Musa/química , Especificidade por Substrato , População do Leste Asiático
4.
J Chem Inf Model ; 64(13): 5127-5139, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38888100

RESUMO

Molecularly imprinted polymers (MIPs) have emerged as bespoke materials with versatile molecular applications. In this study, we propose a proof of concept for a methodology employing molecular dynamics (MD) simulations to guide the selection of functional monomers for curcuminoid binding in MIPs. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin are phenolic compounds widely employed as spices, pigments, additives, and therapeutic agents, representing the three main curcuminoids of interest. Through MD simulations, we investigated prepolymerization mixtures composed of various functional monomers, including acrylamide (ACA), acrylic acid (AA), methacrylic acid (MAA), and N-vinylpyrrolidone (NVP), with ethylene glycol dimethacrylate (EGDMA) as the cross-linker and acetonitrile as the solvent. Curcumin was selected as the template molecule due to its structural similarity to the other curcuminoids. Notably, the prepolymerization mixture containing NVP as the functional monomer demonstrated superior molecular recognition capabilities toward curcumin. This observation was supported by higher functional monomer molecules surrounding the template, a lower total nonbonded energy between the template and monomer, and a greater number of hydrogen bonds in the aggregate. These findings suggest a stronger affinity between the functional monomer NVP and the template. We synthesized, characterized, and conducted binding tests on the MIPs to validate the MD simulation results. The experimental binding tests confirmed that the MIP-NVP exhibited higher binding capacity. Consequently, based on MD simulations, our computational methodology effectively guided the selection of the functional monomer, leading to MIPs with binding capacity for curcuminoids. The outcomes of this study provide a valuable reference for the rational design of MIPs through MD simulations, facilitating the selection of components for MIPs. This computational approach holds the potential for extension to other templates, establishing a robust methodology for the rational design of MIPs.


Assuntos
Curcumina , Simulação de Dinâmica Molecular , Polímeros Molecularmente Impressos , Curcumina/química , Curcumina/análogos & derivados , Curcumina/metabolismo , Polímeros Molecularmente Impressos/química , Desenho de Fármacos , Impressão Molecular , Metacrilatos/química , Diarileptanoides/química , Conformação Molecular
5.
Int Immunopharmacol ; 134: 112234, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38739976

RESUMO

Ulcerative colitis, a chronic inflammatory condition affecting the rectum and colon to varying degrees, is linked to a dysregulated immune response and the microbiota. Sodium (aS,9R)-3-hydroxy-16,17-dimethoxy-15-oxidotricyclo[12.3.1.12,6]nonadeca-1(18),2,4,6(19),14,16-hexene-9-yl sulfate hydrate (SDH) emerges as a novel diarylheptane compound aimed at treating inflammatory bowel diseases. However, the mechanisms by which SDH modulates these conditions remain largely unknown. In this study, we assessed SDH's impact on the clinical progression of dextran sodium sulfate (DSS)-induced ulcerative colitis. Our results demonstrated that SDH significantly mitigated the symptoms of DSS-induced colitis, reflected in reduced disease activity index scores, alleviation of weight loss, shortening of the colorectum, and reduction in spleen swelling. Notably, SDH decreased the proportion of Th1/Th2/Th17 cells and normalized inflammatory cytokine levels in the colon. Furthermore, SDH treatment modified the gut microbial composition in mice with colitis, notably decreasing Bacteroidetes and Proteobacteria populations while substantially increasing Firmicutes, Actinobacteria, and Patescibacteria. In conclusion, our findings suggest that SDH may protect the colon from DSS-induced colitis through the regulation of Th1/Th2/Th17 cells and gut microbiota, offering novel insights into SDH's therapeutic potential.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Diarileptanoides , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Diarileptanoides/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Colo/microbiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/imunologia , Colite/microbiologia , Masculino , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Humanos
6.
J Chromatogr A ; 1726: 464950, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704964

RESUMO

In this investigation, we successfully isolated and purified natural diarylheptanoids using an orthogonal offline two-dimensional RPLC × SFC approach, employing only the phenyl/tetrazole stationary phase. First, a styrene-divinylbenzene matrix medium pretreatment liquid chromatography system effectively processed chlorophyll-containing plant extract solution with a recovery rate of 33.8 %, obviating the need for concentration steps. Subsequently, an offline two-dimensional RPLC × SFC employing only the phenyl/tetrazole stationary phase achieved a remarkable 96.38 % orthogonality and was established and utilized in the preparative separation and purification of natural products. Finally, the constructed single stationary phase highly orthogonal RPLC × SFC system was successfully applied in the preparative separation and purification of natural diarylheptanoids from the Saxifraga tangutica target fraction and yielded four diarylheptanoids with purities exceeding 95 %.


Assuntos
Cromatografia de Fase Reversa , Cromatografia com Fluido Supercrítico , Diarileptanoides , Tetrazóis , Diarileptanoides/química , Diarileptanoides/isolamento & purificação , Cromatografia de Fase Reversa/métodos , Cromatografia com Fluido Supercrítico/métodos , Tetrazóis/química , Tetrazóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
7.
Inorg Chem ; 63(17): 7955-7965, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38634659

RESUMO

Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin (THcurcH), and tetrahydrobisdesmethoxycurcumin (THbdcurcH) were prepared and characterized. The neutral complexes [Ru(arene)(THcurc)Cl] and [Ru(arene)(THbdcurc)Cl] (arene = cymene, benzene, or hexamethylbenzene) were characterized by NMR spectroscopy and ESI mass spectrometry, and the crystal structures of the three complexes were determined by X-ray diffraction analysis. Compared to curcuminoids, these metabolites lose their conjugated double bond system responsible for their planarity, showing unique closed conformation structures. Both closed and open conformations have been analyzed and rationalized by using density functional theory (DFT). The cytotoxicity of the complexes was evaluated in vitro against human ovarian carcinoma cells (A2780 and A2780cisR), human breast adenocarcinoma cells (MCF-7 and MCF-7CR), as well as against non-tumorigenic human embryonic kidney cells (HEK293) and human breast (MCF-10A) cells and compared to the free ligands, cisplatin, and RAPTA-C. There is a correlation between cellular uptake and the cytotoxicity of the compounds, suggesting that cellular uptake and binding to nuclear DNA may be the major pathway for cytotoxicity. However, the levels of complex binding to DNA do not strictly correlate with the cytotoxic potency, indicating that other mechanisms are also involved. In addition, treatment of MCF-7 cells with [Ru(cym)(THcurc)Cl] showed a significant decrease in p62 protein levels, which is generally assumed as a noncisplatin-like mechanism of action involving autophagy. Hence, a cisplatin- and a noncisplatin-like concerted mechanism of action, involving both apoptosis and autophagy, is possible.


Assuntos
Antineoplásicos , Complexos de Coordenação , Curcumina , Ensaios de Seleção de Medicamentos Antitumorais , Rutênio , Humanos , Curcumina/farmacologia , Curcumina/química , Curcumina/análogos & derivados , Curcumina/metabolismo , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Diarileptanoides/química , Diarileptanoides/farmacologia , Diarileptanoides/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Modelos Moleculares , Teoria da Densidade Funcional , Sobrevivência Celular/efeitos dos fármacos , Células HEK293
8.
BMC Complement Med Ther ; 24(1): 172, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654265

RESUMO

BACKGROUND: To assess the efficacy of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin [BDC]) and their analogs (tetrahydrocurcumin [THC], tetrahydrodemethoxycurcumin [THDC], tetrahydrobisdemethoxycurcumin) in reducing inflammatory cytokines and their toxicity to primary human corneal limbal epithelial cells, these cells were cultured and exposed to these compounds. METHODS: The PrestoBlue assay assessed cell viability after treatment. Anti-inflammatory effects on hyperosmotic cells were determined using real-time polymerase chain reaction and significance was gauged using one-way analysis of variance and Tukey's tests, considering p-values < 0.05 as significant. RESULTS: Curcuminoids and their analogs, at 1, 10, and 100 µM, exhibited no effect on cell viability compared to controls. However, cyclosporin A 1:500 significantly reduced cell viability more than most curcuminoid treatments, except 100 µM curcumin and BDC. All tested curcuminoids and analogs at these concentrations significantly decreased mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, IL-17 A, matrix metallopeptidase-9, and intercellular adhesion molecule-1 after 90 mM NaCl stimulation compared to untreated cells. Furthermore, proinflammatory cytokine levels from hyperosmotic cells treated with 1, 10, and 100 µM curcumin, 100 µM BDC, 100 µM THC, 1 and 100 µM THDC mirrored those treated with cyclosporin A 1:500. CONCLUSION: The anti-inflammatory efficiency of 1 and 10 µM curcumin, 100 µM THC, 1 and 100 µM THDC was comparable to that of cyclosporin A 1:500 while maintaining cell viability.


Assuntos
Anti-Inflamatórios , Sobrevivência Celular , Curcumina , Células Epiteliais , Humanos , Curcumina/farmacologia , Curcumina/análogos & derivados , Anti-Inflamatórios/farmacologia , Células Epiteliais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Limbo da Córnea/efeitos dos fármacos , Células Cultivadas , Diarileptanoides/farmacologia , Epitélio Corneano/efeitos dos fármacos
9.
Fitoterapia ; 175: 105980, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685510

RESUMO

Forty-three diarylheptanoids were isolated from Alpinia officinarum rhizomes among them eight ones (1-6) were undescribed compounds whose structures were identified by UV, IR, HRESIMS, and NMR. The neuroprotective effects of these diarylheptanoids were evaluated on H2O2-damaged SH-SY5Y cells. Compounds 7, 10, 12, 20, 22, 25, 28, 33, 35, 37, and 42 presented significant neuroprotective effects than that of the positive control (EGCG) at the concentrations of 5, 10 or 20 µM. Compounds 10, 22, 25, and 33 significantly reduced the ROS levels and inhibited the generations of MDA and NO in oxidative injured cells to display neuroprotective effects. This study lay the foundation for the application of Alpinia officinarum rhizomes.


Assuntos
Alpinia , Diarileptanoides , Fármacos Neuroprotetores , Rizoma , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Diarileptanoides/farmacologia , Diarileptanoides/isolamento & purificação , Diarileptanoides/química , Rizoma/química , Alpinia/química , Estrutura Molecular , Humanos , Linhagem Celular Tumoral , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , China , Estresse Oxidativo/efeitos dos fármacos , Óxido Nítrico/metabolismo
10.
Stem Cell Res Ther ; 15(1): 60, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433217

RESUMO

BACKGROUND: The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown. METHOD: We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs). Flow cytometry and trypan blue exclusion analysis were used to identify nonadherent and adherent cells. Nonadherent cells were harvested to investigate the effect of ASPP 049 on multipotency using LTC-IC and CFU assays. Subsequently, the mechanism of action was explored through transcriptomic profiles, which were validated by qRT-PCR, immunoblotting, and immunofluorescence analysis. RESULT: The supplementation of ASPP 049 increased the number of phenotypically defined primitive HSPCs (CD34+CD45+CD90+) two-fold relative to seeded hiPSC colonies, indicating enhanced HSC derivation from hiPSCs. Under ASPP 049-supplemented conditions, we observed elevated HSPC niches, including CD144+CD73- hemogenic- and CD144+CD73+ vascular-endothelial progenitors, during HSC differentiation. Moreover, harvested ASPP 049-treated cells exhibited improved self-renewal and a significantly larger proportion of different blood cell colonies with unbiased lineages, indicating enhanced HSC stemness properties. Transcriptomics and KEGG analysis of sorted CD34+CD45+ cells-related mRNA profiles revealed that the Hippo signaling pathway is the most significant in responding to WWTR1/TAZ, which correlates with the validation of the protein expression. Interestingly, ASPP 049-supplemented HSPCs upregulated 11 genes similarly to umbilical cord blood-derived HSPCs. CONCLUSION: These findings suggest that ASPP 049 can improve HSC-generating protocols with proliferative potentials, self-renewal ability, unbiased differentiation, and a definable mechanism of action for the clinical perspective of hematopoietic regenerative medicine.


Assuntos
Via de Sinalização Hippo , Células-Tronco Pluripotentes Induzidas , Adulto , Animais , Humanos , Diferenciação Celular , Diarileptanoides/farmacologia , Antígenos CD34
11.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473770

RESUMO

Turmeric, known for its curcuminoid-rich rhizome, particularly curcumin, exhibits notable antioxidant and antiviral properties. The likelihood of microbial contamination necessitates finding reliable techniques for subjecting the sample to radiation from this plant-based raw material. One alternative is to expose curcumin to radiation (e-beam), which was carried out as part of this research. Confirmation of the lack of curcumin decomposition was carried out using HPLC-DAD/MS techniques. Additionally, using the EPR technique, the generated free radicals were defined as radiation effects. Using a number of methods to assess the ability to scavenge free radicals (DPPH, ABTS, CUPRAC, and FRAP), a slight decrease in the activity of curcumin raw material was determined. The analysis of the characteristic bands in the FT-IR spectra allowed us to indicate changes in the phenolic OH groups as an effect of the presence of radicals formed.


Assuntos
Curcumina , Espectroscopia de Infravermelho com Transformada de Fourier , Diarileptanoides , Antioxidantes , Radicais Livres
12.
Toxicol Mech Methods ; 34(6): 676-693, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38481097

RESUMO

Introduction/Background: Curcuma longa, a plant native to the Indian subcontinent has a variety of biological activities. Curcumin is the most abundant and biologically active compound with many therapeutic properties. Demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) - the two other bioactive components present in Curcuma longa, besides curcumin, are collectively termed curcuminoids. Apart from the well-known curcumin, BDMC also has been reported to possess promising biological and pharmacological effects, but very little scientific evidence on its safety assessment has been published.Objective: The present study was undertaken to determine the safety of pure BDMC from Curcuma longa extract in rodents which comprises of general toxicity (both four weeks and three months duration), reproductive/developmental toxicity and genotoxicity studies.Methods: The Good Laboratory Practice studies were carried out in accordance with the test guidelines established by the Organization for Economic Cooperation and Development.Results: No treatment-related adverse findings were seen in general toxicity testing and a no observed adverse effect level (NOAEL) of 1000 mg/kg/day was established after four weeks (sub-acute) and three-months (sub-chronic) dosing. Evaluation of fertility, embryo-fetal, and post-natal reproductive and developmental parameters also showed no adverse findings with a NOAEL of 1000 mg/kg/day established. The results of genotoxicity as evaluated by in vitro reverse mutation assay, and in vivo micronucleus test in mice indicate that BDMC did not induce any genotoxic effects.Conclusion: Oral administration of BDMC is safe in rodents and non-mutagenic, with no adverse effects under experimental conditions.


Assuntos
Curcuma , Diarileptanoides , Rizoma , Animais , Curcuma/química , Masculino , Diarileptanoides/toxicidade , Feminino , Rizoma/química , Extratos Vegetais/toxicidade , Testes para Micronúcleos , Nível de Efeito Adverso não Observado , Curcumina/análogos & derivados , Curcumina/toxicidade , Testes de Mutagenicidade , Ratos Sprague-Dawley , Camundongos , Relação Dose-Resposta a Droga , Ratos , Reprodução/efeitos dos fármacos
13.
Cardiorenal Med ; 14(1): 160-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38350427

RESUMO

INTRODUCTION: The role of curcuminoids, a striking antioxidant, in prevention of contrast-induced acute kidney injury (CI-AKI) remains unknown. We aimed to evaluate the efficacy and safety of curcuminoids in preventing CI-AKI in patients undergoing elective coronary angiography (CAG) and/or percutaneous coronary intervention (PCI). METHODS: We randomized 114 patients who were undergoing elective CAG and/or PCI to receive curcuminoids, 4 g/day (1 day before and 1 day after the procedure, n = 56), or placebo (n = 58). Serum creatinine was assessed at baseline, 12, 24, and 48 h after contrast exposure. The primary endpoint was development of CI-AKI defined as serum creatinine increase ≥0.3 mg/dL within 48 h after contrast exposure. The secondary endpoint was the occurrence of kidney injury defined by >30% increase in urine neutrophil gelatinase-associated lipocalin (NGAL). RESULTS: Baseline characteristics were comparable between the two groups. Seven (12.7%) in curcuminoids group and eight (14.0%) in placebo group developed CI-AKI (p = 0.84). The incidence of increased urine NGAL was comparable in the placebo and curcuminoids group (39.6% vs. 50%, respectively; p = 0.34). None in both groups had drug-related adverse events. CONCLUSION: This is a pilot study to demonstrate the safety and tolerability of curcuminoids in patients undergoing elective CAG and/or PCI. Curcuminoids have no protective effects against kidney injury after elective CAG and/or PCI.


Assuntos
Injúria Renal Aguda , Meios de Contraste , Angiografia Coronária , Intervenção Coronária Percutânea , Humanos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Masculino , Feminino , Método Duplo-Cego , Angiografia Coronária/efeitos adversos , Meios de Contraste/efeitos adversos , Projetos Piloto , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Idoso , Pessoa de Meia-Idade , Lipocalina-2/urina , Creatinina/sangue , Antioxidantes/administração & dosagem , Curcumina/uso terapêutico , Curcumina/administração & dosagem , Diarileptanoides
14.
Food Chem Toxicol ; 186: 114489, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360388

RESUMO

Curcuminoids have many pharmacological effects. They or their metabolites may have side effects by suppressing 17ß-hydroxysteroid dehydrogenase 3 (17ß-HSD3). Herein, we investigated the inhibition of curcuminoids and their metabolites on human and rat 17ß-HSD3 and analyzed their structure-activity relationship (SAR) and performed in silico docking. Curcuminoids and their metabolites ranked in terms of IC50 values against human 17ß-HSD3 were bisdemethoxycurcumin (0.61 µM) > curcumin (8.63 µM) > demethoxycurcumin (9.59 µM) > tetrahydrocurcumin (22.04 µM) > cyclocurcumin (29.14 µM), and those against rat 17ß-HSD3 were bisdemethoxycurcumin (3.94 µM) > demethoxycurcumin (4.98 µM) > curcumin (9.62 µM) > tetrahydrocurcumin (45.82 µM) > cyclocurcumin (143.5 µM). The aforementioned chemicals were mixed inhibitors for both enzymes. Molecular docking analysis revealed that they bind to the domain between the androstenedione and NADPH active sites of 17ß-HSD3. Bivariate correlation analysis showed a positive correlation between LogP and pKa of curcumin derivatives with their IC50 values. Additionally, a 3D-QSAR analysis revealed that a pharmacophore model consisting of three hydrogen bond acceptor regions and one hydrogen bond donor region provided a better fit for bisdemethoxycurcumin compared to curcumin. In conclusion, curcuminoids and their metabolites possess the ability to inhibit androgen biosynthesis by directly targeting human and rat 17ß-HSD3. The inhibitory strength of these compounds is influenced by their lipophilicity and ionization characteristics.


Assuntos
17-Hidroxiesteroide Desidrogenases , Curcumina , Curcumina/análogos & derivados , Diarileptanoides , Piranos , Humanos , Ratos , Animais , Curcumina/farmacologia , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
15.
Immun Inflamm Dis ; 12(2): e1195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38411358

RESUMO

BACKGROUND: The objective of this thesis is to evaluate the effect of bisdemethoxycurcumin (BDMC) on osteoarthritis (OA) and comprehensively evaluate the role of the Nuclear Factor erythroid 2-Related Factor 2 (Nrf2) signalling pathway in chondrocytes. METHOD: In our study, we treated chondrocytes with BDMC in an in vitro chondrocyte assay and measured its influence on extracellular matrix (ECM) expression, downstream heme oxygenase-1 (HO-1) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels. RESULTS: Our study indicates that BDMC significantly activates the Nrf2 signaling pathway in chondrocytes in vitro. Furthermore, the expression of matrix metalloproteinase 3, interleukin 1ß, recombinant a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4 and (ADAMTS)5 was significantly suppressed by BDMC. CONCLUSION: This study confirms the potential for BDMC to activate the Nrf2/HO-1/NLRP3 signalling pathway and alleviate OA symptoms. Therefore, BDMC is a promising therapeutic agent for OA that offers new insights and treatment methods.


Assuntos
Curcumina , Humanos , Curcumina/farmacologia , Condrócitos , Fator 2 Relacionado a NF-E2 , Heme Oxigenase-1 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Diarileptanoides , Inflamação/tratamento farmacológico , Cartilagem
16.
Clin Nutr ESPEN ; 59: 96-106, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38220413

RESUMO

BACKGROUND & AIMS: Turmeric (a source of curcumin) is an excellent food to modulate oxidative stress, inflammation, and gut dysbiosis in patients with chronic kidney disease (CKD). However, no studies report the benefits of curcumin in patients undergoing peritoneal dialysis (PD). This study aims to evaluate the effects of curcuminoid supplementation on oxidative stress, inflammatory markers, and uremic toxins originating from gut microbiota in patients with CKD undergoing PD. METHODS: This longitudinal, randomized, single-blind, placebo-controlled trial evaluated 48 patients who were randomized into two groups: Curcumin (three capsules of 500 mg of Curcuma longa extract, with 98.42 % total curcuminoids) or placebo (three capsules of 500 mg of starch) for twelve weeks. In the peripheral blood mononuclear cells (PBMCs), the transcriptional expression levels of Nrf2, HOX-1 and NF-κB were evaluated by quantitative real-time PCR. Oxidative stress was evaluated by malondialdehyde (MDA) and total Thiol (T-SH). TNF-α and IL-6 plasma levels were measured by ELISA. P-cresyl sulphate plasma level, a uremic toxin, was evaluated by high-performance liquid chromatography (HPLC) with fluorescent detection. RESULTS: Twenty-four patients finished the study: 10 in the curcumin group (57.5 ± 11.6 years) and 14 in the placebo group (56.5 ± 10.0 years). The plasma levels of MDA were reduced after 12 weeks in the curcumin group (p = 0.01), while the placebo group remained unchanged. However, regarding the difference between the groups at the endpoint, no change was observed in MDA. Still, there was a trend to reduce the p-CS plasma levels in the curcumin group compared to the placebo group (p = 0.07). Likewise, the concentrations of protein thiols, mRNA expression of Nrf2, HOX-1, NF-κB, and cytokines plasma levels did not show significant changes. CONCLUSION: Curcuminoid supplementation for twelve weeks attenuates lipid peroxidation and might reduce uremic toxin in patients with CKD undergoing PD. This study was registered on Clinicaltrials.gov as NCT04413266.


Assuntos
Curcumina , Diálise Peritoneal , Insuficiência Renal Crônica , Uremia , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Leucócitos Mononucleares/metabolismo , Método Simples-Cego , Inflamação , Estresse Oxidativo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Diarileptanoides/farmacologia , Diarileptanoides/uso terapêutico , Suplementos Nutricionais , Uremia/tratamento farmacológico
17.
Chem Pharm Bull (Tokyo) ; 72(1): 127-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296515

RESUMO

Although curcumin and its analogs exhibit anticancer activity, they are still not used as anticancer drugs because of their water insolubility and extremely poor bioavailability. This study describes the development of water-soluble prodrugs of GO-Y030, a potent antitumor C5-curcuminoid, in an attempt to enhance its bioavailability. These prodrugs release the parent compound via a retro-thia-Michael reaction. To endow sufficient hydrophilicity onto GO-Y030 via a single thia-Michael reaction of an aqueous entity, we used a modified glycoconjugate with a thiol group. The water-solubilizing motif was installed on GO-Y030 by the thia-Michael reaction of propargyl-polyethylene glycol (PEG)-thiol and subsequent click chemistry (CuAAC) reaction with 1-glycosyl azide. Turbidity measurements revealed a significantly improved water solubility of the prodrugs, demonstrating that disaccharide conjugates were completely dissolved in water at 100 µM. Their cytotoxicity was comparable to that of the parent compound GO-Y030, indicating the gradual in situ release of GO-Y030. The release of GO-Y030 from GO-Y199 via the retro-thia-Michael reaction was demonstrated through a degradation study in water. Our retro-thia-Michael reaction-based prodrug system can be used for targeting cancer cells.


Assuntos
Derivados de Benzeno , Cetonas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Diarileptanoides , Água , Compostos de Sulfidrila , Solubilidade
18.
BMC Complement Med Ther ; 24(1): 31, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212737

RESUMO

Aging or senescence is part of human life development with many effects on the physical, mental, and physiological aspects which may lead to age-related deterioration in many organs. Genus Curcuma family Zingieraceae represents one of the well-studied and medically important genera with more than eighty species. The genus is reported to contain different classes of biologically active compounds that are mainly presented in diphenylheptanoids, diphenylpentanoids, diphenylalkanoids, phenylpropene derivatives, alkaloids, flavonoids, chromones, terpenoids, phenolic acids and volatile constituents. Rhizomes and roots of such species are rich with main phytoconstituents viz. curcumin, demethoxycurcumin and bis-demethoxycurcumin. A wide variety of biological activities were demonstrated for different extracts and essential oils of genus Curcuma members including antioxidant, anti-inflammatory, cytotoxic and neuroprotective. Thus, making them as an excellent safe source for nutraceutical products and as a continuous promising area of research on lead compounds that may help in the slowing down of the aging process especially the neurologic and mental deterioration that are usually experienced upon aging. In this review different species of the genus Curcuma were summarized with their phytochemical and biological activities highlighting their role as antiaging agents. The data were collected from different search engines viz. Pubmed®, Google Scholar®, Scopus® and Web of Science® limiting the search to the period between 2003 up till now.


Assuntos
Alcaloides , Diarileptanoides , Fitoterapia , Humanos , Curcuma/química , Etnofarmacologia , Alcaloides/química
19.
Phytochemistry ; 219: 113975, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215811

RESUMO

Two previously undescribed chain diarylheptanoid derivatives (2-3), five previously undescribed dimeric diarylheptanoids (4-8), together with one known cyclic diarylheptanoid (1) were isolated from Zingiber officinale. Their structures were elucidated by extensive spectroscopic analyses (HR-ESI-MS, IR, UV, 1D and 2D NMR) and ECD calculations. Biological evaluation of compounds 1-8 revealed that compounds 2, 3 and 4 could inhibit nitrite oxide and IL-6 production in lipopolysaccharide induced RAW264.7 cells in a dose-dependent manner.


Assuntos
Zingiber officinale , Diarileptanoides/farmacologia , Diarileptanoides/química , Espectroscopia de Ressonância Magnética , Anti-Inflamatórios/farmacologia , Estrutura Molecular
20.
J Biomol Struct Dyn ; 42(5): 2570-2585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37116195

RESUMO

Malaria is among the top-ranked parasitic diseases that pose a threat to the existence of the human race. This study evaluated the antimalarial effect of the rhizome of Zingiber officinale in infected mice, performed secondary metabolite profiling and detailed computational antimalarial evaluation through molecular docking, molecular dynamics (MD) simulation and density functional theory methods. The antimalarial potential of Z. officinale was performed using the in vivo chemosuppressive model; secondary metabolite profiling was carried out using liquid chromatography-mass spectrometry (LC-MS). Molecular docking was performed with Autodock Vina while the MD simulation was performed with Schrodinger desmond suite for 100 ns and DFT calculations with B3LYP (6-31G) basis set. The extract showed 64% parasitaemia suppression, with a dose-dependent increase in activity up to 200 mg/kg. The chemical profiling of the extract tentatively identified eight phytochemicals. The molecular docking studies with plasmepsin II and Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) identified gingerenone A as the hit molecule, and MMGBSA values corroborate the binding energies obtained. The electronic parameters of gingerenone A revealed its significant antimalarial potential. The antimalarial activity elicited by the extract of Z. officinale and the bioactive chemical constituent supports its usage in ethnomedicine.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Diarileptanoides , Antagonistas do Ácido Fólico , Zingiber officinale , Humanos , Animais , Camundongos , Antimaláricos/química , Simulação de Acoplamento Molecular , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antagonistas do Ácido Fólico/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Plasmodium falciparum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA