Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.926
Filtrar
1.
Harmful Algae ; 134: 102626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705614

RESUMO

Harmful algal bloom (HAB) is a rapidly expanding marine ecological hazard. Although numerous studies have been carried out about the ecological impact and the ecological mechanism of HAB outbreaks, few studies have comprehensively addressed the shifts of species composition, metabolic activity level, driving factors and community assembly mechanisms of microeukaryotic plankton in the course of the bloom event. To fill the gap of research, we conducted 18S ribosomal DNA and RNA sequencing during the initiation, development, sustenance and decline stages of a Scrippsiella acuminata (S. acuminata) bloom at the coastal sea of Fujian Province, China. We found that the bloom event caused a decrease in microeukaryotic plankton species diversity and increase in community homogeneity. Our results revealed that the RNA- and DNA-inferred communities were similar, but α-diversity was more dynamic in RNA- than in DNA-inferred communities. The main taxa with high projected metabolic activity (with RNA:DNA ratio as the proxy) during the bloom included dinoflagellates, Cercozoa, Chlorophyta, Protalveolata, and diatoms. The role of deterministic processes in microeukaryotic plankton community assembly increased during the bloom, but stochastic processes were always the dominant assembly mechanism throughout the bloom process. Our findings improve the understanding of temporal patterns, driving factors and assembly mechanisms underlying the microeukarytic plankton community in a dinoflagellate bloom.


Assuntos
Biodiversidade , Dinoflagellida , Proliferação Nociva de Algas , Dinoflagellida/genética , Dinoflagellida/fisiologia , China , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/análise , Plâncton/genética , Diatomáceas/genética , Diatomáceas/fisiologia
2.
Nat Commun ; 15(1): 4048, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744821

RESUMO

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Assuntos
Bactérias , Ciclo do Carbono , Glucanos , Glucanos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Fitoplâncton/metabolismo , Biomassa , Diatomáceas/metabolismo , Eutrofização , Carbono/metabolismo , Zooplâncton/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/química , Proteínas de Bactérias/metabolismo
3.
Harmful Algae ; 134: 102625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705619

RESUMO

There is a concern that harmful algal bloom (HAB) species may increase under climate change. Yet, we lack understanding of how ecological interactions will be affected under ocean warming and acidification (OWA) conditions. We tested the antagonistic effects of three strains of the dinoflagellate HAB species Alexandrium catenella on three target species (the chlorophyte Tetraselmis sp., the cryptomonad Rhodomonas salina, and the diatom Thalassiosira weissflogii) at various biomass ratios between species, at ambient (16 °C and 400 µatm CO2) and OWA (20 °C and 2000 µatm CO2) conditions. In these experiments the Alexandrium strains had been raised under OWA conditions for ∼100 generations. All three non-HAB species increased their growth rate under OWA relative to ambient conditions. Growth rate inhibition was evident for R. salina and Tetraselmis sp. under OWA conditions, but not under ambient conditions. These negative effects were exacerbated at higher concentrations of Alexandrium relative to non-HAB species. By contrast, T. weissflogii showed positive growth in the presence of two strains of Alexandrium under ambient conditions, whereas growth was unaffected under OWA. Contrary to our expectations, A. catenella had a slight negative response in the presence of the diatom. These results demonstrate that Alexandrium exerts higher antagonistic effects under OWA compared to ambient conditions, and these effects are species-specific and density dependent. These negative effects may shift phytoplankton community composition under OWA conditions.


Assuntos
Dinoflagellida , Dinoflagellida/fisiologia , Concentração de Íons de Hidrogênio , Água do Mar/química , Proliferação Nociva de Algas/fisiologia , Diatomáceas/fisiologia , Mudança Climática
4.
Environ Monit Assess ; 196(6): 508, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703265

RESUMO

To cope with the water shortage in Sous Massa region of Morocco, agricultural producers in the region have resorted to different types of water supply basins, known as "irrigation basins" but the phenomenon of eutrophication has hindered the continuity of agricultural productivity by altering the quality of the water used for irrigation on the one hand, and causing economic damage to agricultural producers due to the clogging of the water pumping network on the other. We began by characterising the physico-chemical quality of the water to determine the causes of its high nutrient content, then we determined the taxonomy of the algal species in the irrigation basins to which we had access. A qualitative study of the water in the irrigation basins in order to better explain the inventory obtained from the taxonomic identification of the algal biomass collected, which proved the existence of new species, not previously identified, characterising the freshwaters of the Moroccan region, is under the scope of this work. The species studied belong mainly to the following groups: green algae (11 genera of Chlorophyta and 7 genera of Charophyta), blue algae (7 genera of Cyanobacteria), brown algae (7 genera of Diatoms), and one genus of Euglenophyta.


Assuntos
Irrigação Agrícola , Clorófitas , Monitoramento Ambiental , Eutrofização , Monitoramento Ambiental/métodos , Marrocos , Cianobactérias , Phaeophyceae , Diatomáceas , Abastecimento de Água , Microalgas , Água Doce
5.
Bioresour Technol ; 401: 130708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636878

RESUMO

In this study, the biochemical response of Phaeodactylum tricornutum to varying concentrations of inorganic selenium (Se) was investigated. It was observed that, when combined with fulvic acid, P. tricornutum exhibited enhanced uptake and biotransformation of inorganic Se, as well as increased microalgal lipid biosynthesis. Notably, when subjected to moderate (5 and 10 mg/L) and high (20 and 40 mg/L) concentrations of selenite under fulvic acid treatment, there was a discernible redirection of carbon flux towards lipogenesis and protein biosynthesis from carbohydrates. In addition, the key parameters of microalgae-based biofuels aligned with the necessary criteria outlined in biofuel regulations. Furthermore, the Se removal capabilities of P. tricornutum, assisted by fulvic acid, were coupled with the accumulation of substantial amounts of organic Se, specifically SeCys. These findings present a viable and successful approach to establish a microalgae-based system for Se uptake and biotransformation.


Assuntos
Benzopiranos , Biocombustíveis , Biotransformação , Diatomáceas , Diatomáceas/metabolismo , Benzopiranos/metabolismo , Ácido Selenioso/metabolismo , Microalgas/metabolismo
6.
Mar Pollut Bull ; 202: 116299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581736

RESUMO

The neurotoxin ß-N-methylamino-L-alanine (BMAA) has emerged as an environmental factor related to neurodegenerative diseases. BMAA is produced by various microorganisms including cyanobacteria and diatoms, in diverse ecosystems. In the diatom Phaeodactylum tricornutum, BMAA is known to inhibit growth. The present study investigated the impact of BMAA on the diatom Thalassiosira pseudonana by exposing it to different concentrations of exogenous BMAA. Metabolomics was predominantly employed to investigate the effect of BMAA on T. pseudonana, and MetaboAnalyst (https://www.metabo-analyst.ca/) was used to identify BMAA-associated metabolisms/pathways in T. pseudonana. Furthermore, to explore the unique response, specific metabolites were compared between treatments. When the growth was obstructed by BMAA, 17 metabolisms/pathways including nitrogen and glutathione (i.e. oxidative stress) metabolisms, were influenced in T. pseudonana. This study has further determined that 11 out of 17 metabolisms/pathways could be essentially affected by BMAA, leading to the inhibition of diatom growth.


Assuntos
Diamino Aminoácidos , Toxinas de Cianobactérias , Diatomáceas , Metabolômica , Neurotoxinas , Diatomáceas/efeitos dos fármacos , Neurotoxinas/toxicidade
7.
Sci Rep ; 14(1): 9512, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664593

RESUMO

Continuous research on obtaining an even more efficient production of very long-chain polyunsaturated fatty acids (VLC-PUFAs) in plants remains one of the main challenges of scientists working on plant lipids. Since crops are not able to produce these fatty acids due to the lack of necessary enzymes, genes encoding them must be introduced exogenously from native organisms producing VLC-PUFAs. In this study we reported, in tobacco leaves, the characterization of three distinct ∆6-desaturases from diatom Phaeodactylum tricornutum, fungi Rhizopus stolonifer and microalge Osterococcus tauri and two different ∆5-desaturases from P. tricornutum and single-celled saprotrophic eukaryotes Thraustochytrium sp. The in planta agroinfiltration of essential ∆6-desaturases, ∆6-elongases and ∆5-desaturases allowed for successful introduction of eicosapentaenoic acid (20:5∆5,8,11,14,17) biosynthesis pathway. However, despite the desired, targeted production of ω3-fatty acids we detected the presence of ω6-fatty acids, indicating and confirming previous results that all tested desaturases are not specifically restricted to neither ω3- nor ω6-pathway. Nevertheless, the additional co-expression of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) from Phaeodactylum tricornutum boosted the proportion of ω3-fatty acids in newly synthesized fatty acid pools. For the most promising genes combinations the EPA content reached at maximum 1.4% of total lipid content and 4.5% of all fatty acids accumulated in the TAG pool. Our results for the first time describe the role of LPCAT enzyme and its effectiveness in alleviating a bottleneck called 'substrate dichotomy' for improving the transgenic production of VLC-PUFAs in plants.


Assuntos
Diatomáceas , Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Engenharia Metabólica , Nicotiana , Plantas Geneticamente Modificadas , Diatomáceas/genética , Diatomáceas/metabolismo , Diatomáceas/enzimologia , Engenharia Metabólica/métodos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/biossíntese , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Nicotiana/metabolismo
8.
Mar Drugs ; 22(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667802

RESUMO

Carotenoids are pigments that have a range of functions in human health. The carotenoid diatoxanthin is suggested to have antioxidant, anti-inflammatory and chemo-preventive properties. Diatoxanthin is only produced by a few groups of microalgae, where it functions in photoprotection. Its large-scale production in microalgae is currently not feasible. In fact, rapid conversion into the inactive pigment diadinoxanthin is triggered when cells are removed from a high-intensity light source, which is the case during large-scale harvesting of microalgae biomass. Zeaxanthin epoxidase (ZEP) 2 and/or ZEP3 have been suggested to be responsible for the back-conversion of high-light accumulated diatoxanthin to diadinoxanthin in low-light in diatoms. Using CRISPR/Cas9 gene editing technology, we knocked out the ZEP2 and ZEP3 genes in the marine diatom Phaeodactylum tricornutum to investigate their role in the diadinoxanthin-diatoxanthin cycle and determine if one of the mutant strains could function as a diatoxanthin production line. Light-shift experiments proved that ZEP3 encodes the enzyme converting diatoxanthin to diadinoxanthin in low light. Loss of ZEP3 caused the high-light-accumulated diatoxanthin to be stable for several hours after the cultures had been returned to low light, suggesting that zep3 mutant strains could be suitable as commercial production lines of diatoxanthin.


Assuntos
Diatomáceas , Oxirredutases , Xantofilas , Diatomáceas/genética , Xantofilas/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes/métodos , Carotenoides/metabolismo , Microalgas/genética , Mutação
9.
BMC Plant Biol ; 24(1): 309, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649801

RESUMO

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. RESULT: In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). CONCLUSIONS: This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.


Assuntos
Diacilglicerol O-Aciltransferase , Diatomáceas , Nicotiana , Diatomáceas/genética , Diatomáceas/enzimologia , Diatomáceas/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Nicotiana/genética , Nicotiana/enzimologia , Nicotiana/metabolismo , Acil Coenzima A/metabolismo , Plantas Geneticamente Modificadas , Triglicerídeos/biossíntese , Triglicerídeos/metabolismo , Ácido Eicosapentaenoico/biossíntese , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/biossíntese , Ácidos Graxos Ômega-3/metabolismo , Engenharia Metabólica
10.
Sci Rep ; 14(1): 9367, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654118

RESUMO

This study is focused on analysing polyphenols and carbohydrates released by Phaeodactylum tricornutum (P. tricornutum) diatoms cultured in natural seawater enriched with sublethal and lethal Cu doses. Cu concentrations of 0.31, 0.79 and 1.57 µM reduced cell densities by 37, 82 and 91%, respectively, compared to the control. The total sum of all identified polyphenols and total carbohydrates released by cells grown under lethal Cu levels increased up to 18.8 and 107.4 times, respectively, compared to data from a control experiment. Four different in vitro assays were used to estimate the antioxidant activities of the extracellular compounds: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition, cupric ion reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power and Cu complexing ability (CCA). The highest antioxidant activities were observed in the Cu lethal treatments, where the CCA assay exhibited a greater increase (up to 32.2 times higher than that found in the control experiment) to reduce the concentration of free Cu in the medium and its toxicity. The presence of Cu stimulated the release of polyphenols and carbohydrates to the medium as a detoxification mechanism to survive under lethal levels of Cu regulating its speciation.


Assuntos
Antioxidantes , Carboidratos , Cobre , Diatomáceas , Polifenóis , Diatomáceas/metabolismo , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Polifenóis/metabolismo , Cobre/metabolismo , Carboidratos/química , Antioxidantes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos
11.
Physiol Plant ; 176(3): e14308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666320

RESUMO

Mixotrophy, the concurrent use of inorganic and organic carbon in the presence of light for microalgal growth, holds ecological and industrial significance. However, it is poorly explored in diatoms, especially in ecologically relevant species like Skeletonema marinoi. This study strategically employed mixotrophic metabolism to optimize the growth of a strain of Skeletonema marinoi (Sm142), which was found potentially important for biomass production on the west coast of Sweden in winter conditions. The aim of this study was to discern the most effective organic carbon sources by closely monitoring microalgal growth through the assessment of optical density, chlorophyll a fluorescence, and biomass concentration. The impact of various carbon sources on the physiology of Sm142 was investigated using photosynthetic and respiratory parameters. The findings revealed that glycerol exhibited the highest potential for enhancing the biomass concentration of Sm142 in a multi-cultivator under the specified experimental conditions, thanks to the increase in respiration activity. Furthermore, the stimulatory effect of glycerol was confirmed at a larger scale using environmental photobioreactors simulating the winter conditions on the west coast of Sweden; it was found comparable to the stimulation by CO2-enriched air versus normal air. These results were the first evidence of the ability of Skeletonema marinoi to perform mixotrophic metabolism during the winter and could explain the ecological success of this diatom on the Swedish west coast. These findings also highlight the importance of both organic and inorganic carbon sources for enhancing biomass productivity in harsh winter conditions.


Assuntos
Biomassa , Diatomáceas , Fotossíntese , Estações do Ano , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia , Diatomáceas/metabolismo , Fotossíntese/fisiologia , Suécia , Carbono/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Microalgas/fisiologia , Clorofila A/metabolismo , Clorofila/metabolismo , Glicerol/metabolismo
12.
Environ Microbiol ; 26(4): e16625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38653479

RESUMO

Diatoms can survive long periods in dark, anoxic sediments by forming resting spores or resting cells. These have been considered dormant until recently when resting cells of Skeletonema marinoi were shown to assimilate nitrate and ammonium from the ambient environment in dark, anoxic conditions. Here, we show that resting cells of S. marinoi can also perform dissimilatory nitrate reduction to ammonium (DNRA), in dark, anoxic conditions. Transmission electron microscope analyses showed that chloroplasts were compacted, and few large mitochondria had visible cristae within resting cells. Using secondary ion mass spectrometry and isotope ratio mass spectrometry combined with stable isotopic tracers, we measured assimilatory and dissimilatory processes carried out by resting cells of S. marinoi under dark, anoxic conditions. Nitrate was both respired by DNRA and assimilated into biomass by resting cells. Cells assimilated nitrogen from urea and carbon from acetate, both of which are sources of dissolved organic matter produced in sediments. Carbon and nitrogen assimilation rates corresponded to turnover rates of cellular carbon and nitrogen content ranging between 469 and 10,000 years. Hence, diatom resting cells can sustain their cells in dark, anoxic sediments by slowly assimilating and respiring substrates from the ambient environment.


Assuntos
Compostos de Amônio , Diatomáceas , Nitratos , Oxirredução , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Diatomáceas/metabolismo , Anaerobiose , Escuridão , Compostos Orgânicos/metabolismo , Espectrometria de Massa de Íon Secundário , Sedimentos Geológicos/microbiologia , Carbono/metabolismo , Nitrogênio/metabolismo
13.
Sci Data ; 11(1): 403, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643276

RESUMO

Skeletonema tropicum is a marine diatom of the genus Skeletonema that also includes many well-known species including S. marinoi. S. tropicum is a high temperature preferring species thriving in tropical ocean regions or temperate ocean regions during summer-autumn. However, mechanisms of ecological adaptation of S. tropicum remain poorly understood due partially to the lack of a high-quality whole genome assembly. Here, we report the first high-quality chromosome-scale genome assembly for S. tropicum, using cutting-edge technologies including PacBio single molecular sequencing and high-throughput chromatin conformation capture. The assembled genome has a size of 78.78 Mb with a scaffold N50 of 3.17 Mb, anchored to 23 pseudo-chromosomes. In total, 20,613 protein-coding genes were predicted, of which 17,757 (86.14%) genes were functionally annotated. Collinearity analysis of the genomes of S. tropicum and S. marinoi revealed that these two genomes were highly homologous. This chromosome-level genome assembly of S. tropicum provides a valuable genomic platform for comparative analysis of mechanisms of ecological adaption.


Assuntos
Diatomáceas , Genoma , Cromatina , Cromossomos , Diatomáceas/genética , Genômica , Filogenia
14.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669460

RESUMO

We evaluated changes in growth, chlorophyll fluorescence and basic physiological and biochemical parameters of the microalgae Thalassiosira weissflogii cells under the influence of the herbicide glyphosate in concentrations 0, 25, 95 and 150µgL-1 . The toxic effect of glyphosate on algae is weakly dependent on the level of cell mineral nutrition. High concentrations of the herbicide do not lead to the death of microalgae but block the process of algae cell division. An increase in the glyphosate concentration in the medium leads to a slowdown or stop of algal growth, a decrease in their final biomass, an increase in the production of reactive oxygen species (ROS), depolarisation of mitochondrial membranes and metabolic activity of algae. Glyphosate inhibits the photosynthetic activity of cells and inhibits the relative rate of electron transport in the photosynthetic apparatus. Glyphosate at the studied concentrations does not affect the size characteristics of cells and the intracellular content of chlorophyll in T. weissflogii . The studied herbicide or products of its decay retain their toxic properties in the environment for at least 9days. This result shows the need for further in-depth studies to assess the physiological response and possible acclimation changes in the functional state of oxygenic phototrophs in response to the herbicide action. The species specificity of microalgae to the effects of glyphosate in natural conditions is potentially dangerous due to a possible change in the species structure of biocoenoses, in particular, a decrease in the contribution of diatoms.


Assuntos
Clorofila , Diatomáceas , Glicina , Glifosato , Herbicidas , Microalgas , Fotossíntese , Espécies Reativas de Oxigênio , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Diatomáceas/efeitos dos fármacos , Diatomáceas/metabolismo , Diatomáceas/crescimento & desenvolvimento , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Biomassa
15.
Ying Yong Sheng Tai Xue Bao ; 35(3): 817-826, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646770

RESUMO

To explore the causes of red tides in Qinhuangdao coastal water, we conducted surveys on both water quality and red tides during April to September of 2022 and analyzed the relationships between main environmental factors and red tide organisms through the factor analysis and canonical correspondence analysis. The results showed that there were eight red tides along the coast of Qinhuangdao in 2022, with a cumulative blooming area of 716.1 km2. The red tides could be divided into three kinds based on the major blooming organisms and occurrence time, Noctiluca scintillans bloom, diatom-euglena (Skeletonema costatum, Eutreptiella gymnastica, Pseudo-nitzschia spp.) bloom, and dinoflagellate (Scrippsiella trochoidea and Ceratium furca) bloom. Seasonal factor played roles mainly during July to September, while inorganic nutrients including nitrogen and phosphorus influenced the blooms mainly in April and July. The canonical correspondence analysis suggested that N. scintillans preferred low temperature, and often bloomed with high concentrations of ammonium nitrogen and dissolved inorganic phosphorus. S. costatum, E. gymnastica, and Pseudo-nitzschia spp. could tolerate broad ranges of various environmental factors, but favored high temperature and nitrogen-rich seawater. C. furca and S. trochoidea had higher survival rate and competitiveness in phosphate-poor waters. Combined the results from both analyses, we concluded that the causes for the three kinds of red tide processes in Qinhuangdao coastal areas in 2022 were different. Adequate diet algae and appropriate water temperature were important factors triggering and maintaining the N. scintillans bloom. Suitable temperature, salinity and eutrophication were the main reasons for the diatom-euglena bloom. The abundant nutrients and seawater disturbance promoted the germination of S. trochoidea cysts, while phosphorus limitation caused the blooming organism switched to C. furca and maintained the bloom hereafter.


Assuntos
Diatomáceas , Dinoflagellida , Monitoramento Ambiental , Proliferação Nociva de Algas , Água do Mar , China , Dinoflagellida/crescimento & desenvolvimento , Água do Mar/análise , Água do Mar/química , Diatomáceas/crescimento & desenvolvimento , Oceanos e Mares , Fósforo/análise , Nitrogênio/análise , Estações do Ano
16.
Sci Rep ; 14(1): 8340, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594439

RESUMO

The community structure and co-occurrence pattern of eukaryotic algae in Yuncheng Salt Lake were analyzed based on marker gene analysis of the 18S rRNA V4 region to understand the species composition and their synergistic adaptations to the environmental factors in different salinity waters. The results showed indicated that the overall algal composition of Yuncheng Salt Lake showed a Chlorophyta-Pyrrophyta-Bacillariophyta type structure. Chlorophyta showed an absolute advantage in all salinity waters. In addition, Cryptophyta dominated in the least saline waters; Pyrrophyta and Bacillariophyta were the dominant phyla in the waters with salinity ranging from 13.2 to 18%. Picochlorum, Nannochloris, Ulva, and Tetraselmis of Chlorophyta, Biecheleria and Oxyrrhis of Pyrrophyta, Halamphora, Psammothidium, and Navicula of Bacillariophyta, Guillardia and Rhodomonas of Cryptophyta were not observed in previous surveys of the Yuncheng Salt Lake, suggesting that the algae are undergoing a constant turnover as the water environment of the Salt Lake continues to change. The network diagram demonstrated that the algae were strongly influenced by salinity, NO3-, and pH, changes in these environmental factors would lead to changes in the algal community structure, thus affecting the stability of the network structure.


Assuntos
Clorófitas , Diatomáceas , Dinoflagellida , Lagos/química , Fitoplâncton , Salinidade , Clorófitas/genética , China
17.
PLoS One ; 19(4): e0297962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603710

RESUMO

Benthic diatom vertical movement has been investigated mainly through indirect measurements based on chlorophyll a fluorescence and spectral reflectance signals. The presence of sediment hinders direct imaging and grazers activity renders the work under controlled conditions very difficult. This study provides a tool to study diatoms movement in a 3D hydrogel matrix. Synthetic and natural hydrogels were tested to find the best 3D transparent scaffold where diatoms could grow and freely move in all directions. Polyamidoamines (PAAm) hydrogels were no-cytocompatible and hyaluronic acid (HA) only allowed diatoms to survive for 2-days. Natural hydrogels made of gelatin/Na-alginate, Na-alginate and kappa-carrageenan (KC) were cytocompatible, with KC showing the best properties for diatom growth and movement on a long term (up to 2 months). Comparing Nitzschia spathulata, Gyrosigma limosum and Navicula phyllepta growth in liquid media vs in KC gels, we found that diatoms reached a significantly higher final biomass in the hydrogel condition. Hydrogels were also useful to isolate large size diatom species e.g., Nitzschia elongata, that did not survive in suspension. Finally, we showed three ways to study diatom species-specific movement in KC hydrogels: 1) controlled species mix; 2) natural diatom assemblages with grazers; and 3) natural diatom assemblages without grazers. With our system, single diatoms could be imaged, identified, and counted. In addition, different stimuli, e.g., light intensity and light composition can be applied and their effects on movement and physiology studied without being masked by sediment or impaired by meiofauna.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Clorofila A , Carragenina , Hidrogéis , Alginatos
18.
Sci Total Environ ; 926: 172146, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569963

RESUMO

Anthropogenic activities have led to the emergence of pharmaceutical pollution in marine ecosystems, posing a significant threat to biodiversity in conjunction with global climate change. While the ecotoxicity of human drugs on aquatic organisms is increasingly recognized, their interactions with environmental factors, such as temperature, remain understudied. This research investigates the physiological effects of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, on two diatom species, Phaeodactylum tricornutum and Thalassiosira weissflogii. Results demonstrate that fluoxetine significantly reduces growth rate and biomass production, concurrently affecting pigment contents and the thermal performance curve (TPC) of the diatoms. Fluoxetine reduces the synthesis of chlorophyll a (Chl a) and carotenoid (Car), indicating inhibition of photosynthesis and photoprotection. Furthermore, fluoxetine decreases the maximum growth rate (µmax) while increasing the optimum temperature (Topt) in both species, suggesting an altered thermal plasticity. This shift is attributed to the observed decrease in the inhibition rate of fluoxetine with rising temperatures. These findings emphasize the physiological impacts and ecological implications of fluoxetine on phytoplankton and underscore the significance of considering interactions between multiple environmental drivers when accessing the ecotoxicity of potential pollutants. The present study provides insights into crucial considerations for evaluating the impacts of pharmaceutical pollution on marine primary producers.


Assuntos
Diatomáceas , Humanos , Diatomáceas/fisiologia , Clorofila A , Fluoxetina/toxicidade , Temperatura , Ecossistema , Preparações Farmacêuticas
19.
Environ Monit Assess ; 196(5): 445, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607460

RESUMO

Periphyton is a complex community composed of diverse prokaryotes and eukaryotes; understanding the characteristics of microbial communities within periphyton becomes crucial for biogeochemical cycles and energy dynamics of aquatic ecosystems. To further elucidate the community characteristics of periphyton across varied aquatic habitats, including unpolluted ecologically restored lakes, aquaculture ponds, and areas adjacent to domestic and industrial wastewater treatment plant outfalls, we explored the composition and diversity of prokaryotic and eukaryotic communities in periphyton by employing Illumina MiSeq sequencing. Our findings indicated that the prokaryotic communities were predominantly composed of Proteobacteria (40.92%), Bacteroidota (21.01%), and Cyanobacteria (10.12%), whereas the eukaryotic communities were primarily characterized by the dominance of Bacillariophyta (24.09%), Chlorophyta (20.83%), and Annelida (15.31%). Notably, Flavobacterium emerged as a widely distributed genus among the prokaryotic community. Unclassified_Tobrilidae exhibited higher abundance in unpolluted ecologically restored lakes. Chaetogaster and Nais were enriched in aquaculture ponds and domestic wastewater treatment plant outfall area, respectively, while Surirella and Gomphonema dominated industrial sewage treatment plant outfall area. The alpha diversity of eukaryotes was higher in unpolluted ecologically restored lakes. pH and nitrogen content ( NO 2 - - N , NO 3 - - N , and TN) significantly explained the variations for prokaryotic and eukaryotic community structures, respectively. Eukaryotic communities exhibited a more pronounced response to habitat variations compared to prokaryotic communities. Moreover, the association networks revealed an intensive positive correlation between dominant Bacillariophyta and Bacteroidota. This study provided useful data for identifying keystone species and understanding their ecological functions.


Assuntos
Diatomáceas , Microbiota , Oligoquetos , Perifíton , Animais , Monitoramento Ambiental , Aquicultura , Bacteroidetes
20.
An Acad Bras Cienc ; 96(1): e20220413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597497

RESUMO

This study aimed to analyze the application of the Phytoplankton Community Index-PCI and Functional Groups-FG in determining the water quality of the Guamá River (Pará, Amazônia, Brazil). Samplings occurred monthly for analyses of phytoplankton and physical and chemical parameters, for two years, at the station where water was collected for human supply consumption. Seasonality influenced electrical conductivity, total suspended solids, dissolved oxygen, transparency, winds, true color, and N-ammoniacal. The ebb tide showed high turbidity and suspended solids. The density varied seasonally with the highest values occurring in September and December (61.1 ind mL-1 and 60.2 ind mL-1, respectively). Chlorophyll-a was more elevated in December (21.0 ± 4.7 µg L-1) and chlorophyll-c higher in relation to clorophyll- b indicated the dominance of diatoms. Functional Group P prevailed in the study months. Through the PCI índex the waters of Guamá River varied from reasonable to excellent and the TSI ranged from oligo to mesotrophic. The use of Functional Groups proved to be a promising tool in the determination of water quality since it covered the most abundant species in the Environment, but the PCI is not adequate to characterize Amazonian white-waters rivers, which have diatoms as the leading dominant group.


Assuntos
Diatomáceas , Intervenção Coronária Percutânea , Humanos , Fitoplâncton , Rios/química , Brasil , Clorofila/análise , Estações do Ano , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...