Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.871
Filtrar
1.
BMJ Case Rep ; 17(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890114

RESUMO

Sarcomas constitute approximately 1% of adult cancers and 8%-10% of paediatric cancers. Undifferentiated pleomorphic sarcoma (UPS) is a type of soft-tissue sarcoma (STS) characterised by dedifferentiated cancer cells. The most common sites of metastasis for UPS include the lungs, liver, bones and regional lymph nodes. Brain metastasis is rare, affecting only 1%-8% of STS patients. This report presents a unique case of a woman in her 80s with a TET2-mutant UPS metastatic to the lung and brain.


Assuntos
Neoplasias Encefálicas , Proteínas de Ligação a DNA , Dioxigenases , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas , Sarcoma , Humanos , Feminino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Sarcoma/genética , Sarcoma/secundário , Sarcoma/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a DNA/genética , Idoso de 80 Anos ou mais , Mutação , Evolução Fatal
2.
Ecotoxicol Environ Saf ; 280: 116579, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38865940

RESUMO

Environmental exposure to the cadmium (Cd) has been shown to be a risk factor for colorectal cancer (CRC) progression, but the exact mechanism has not been fully elucidated. In this study, we found that chronic Cd (3 µM) exposure promoted the proliferation, adhesion, migration, and invasion of CRC cells in vitro, as well as lung metastasis in vivo. RNA-seq and TCGA-COAD datasets revealed that decreased hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) expression may be a crucial factor in Cd-induced CRC progression. Further analysis using qRT-PCR and tissue microarrays from CRC patients showed that HADHB expression was significantly reduced in CRC tissues compared to adjacent normal tissues, and low HADHB expression was associated with adverse clinical features and poor overall survival, either directly or through TNM stage. Furthermore, HADHB was found to play an important role in the Cd-induced malignant metastatic phenotype of CRC cells and lung metastasis in mice. Mechanistically, we discovered that chronic Cd exposure resulted in hypermethylation of the HADHB promoter region via inhibition of DNA demethylase tet methylcytosine dioxygenase 2 (TET2), which then led to decreased HADHB expression and activation of the FAK signaling pathway, and ultimately contributed to CRC progression. In conclusion, this study provided a new potential insight and evaluable biomarker for Cd exposure-induced CRC progression and treatment.


Assuntos
Cádmio , Neoplasias Colorretais , Proteínas de Ligação a DNA , Dioxigenases , Progressão da Doença , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/induzido quimicamente , Humanos , Dioxigenases/genética , Animais , Camundongos , Cádmio/toxicidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Masculino , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos Nus , Metilação de DNA/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
3.
Exp Biol Med (Maywood) ; 249: 10051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881848

RESUMO

Podocyte injury or dysfunction can lead to proteinuria and glomerulosclerosis. Zonula occludens 1 (ZO-1) is a tight junction protein which connects slit diaphragm (SD) proteins to the actin cytoskeleton. Previous studies have shown that the expression of ZO-1 is decreased in chronic kidney disease (CKD). Thus, elucidation of the regulation mechanism of ZO-1 has considerable clinical importance. Triptolide (TP) has been reported to exert a strong antiproteinuric effect by inhibiting podocyte epithelial mesenchymal transition (EMT) and inflammatory response. However, the underlying mechanisms are still unclear. We found that TP upregulates ZO-1 expression and increases the fluorescence intensity of ZO-1 in a puromycin aminonucleoside (PAN)-induced podocyte injury model. Permeablity assay showed TP decreases podocyte permeability in PAN-treated podocyte. TP also upregulates the DNA demethylase TET2. Our results showed that treatment with the DNA methyltransferase inhibitors 5-azacytidine (5-AzaC) and RG108 significantly increased ZO-1 expression in PAN-treated podocytes. Methylated DNA immunoprecipitation (MeDIP) and hydroxymethylated DNA immunoprecipitation (hMeDIP) results showed that TP regulates the methylation status of the ZO-1 promoter. Knockdown of TET2 decreased ZO-1 expression and increased methylation of its promoter, resulting in the increase of podocyte permeability. Altogether, these results indicate that TP upregulates the expression of ZO-1 and decreases podocyte permeability through TET2-mediated 5 mC demethylation. These findings suggest that TP may alleviate podocyte permeability through TET2-mediated hydroxymethylation of ZO-1.


Assuntos
Dioxigenases , Diterpenos , Compostos de Epóxi , Fenantrenos , Podócitos , Proteína da Zônula de Oclusão-1 , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteína da Zônula de Oclusão-1/metabolismo , Fenantrenos/farmacologia , Diterpenos/farmacologia , Compostos de Epóxi/farmacologia , Dioxigenases/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Permeabilidade/efeitos dos fármacos , Humanos , Metilação de DNA/efeitos dos fármacos
4.
J Clin Invest ; 134(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828722

RESUMO

The occurrence of clonal hematopoiesis of indeterminate potential (CHIP), in which advantageous somatic mutations result in the clonal expansion of blood cells, increases with age, as do an increased risk of mortality and detrimental outcomes associated with CHIP. However, the role of CHIP in susceptibility to pulmonary infections, which also increase with age, is unclear. In this issue of the JCI, Quin and colleagues explored the role of CHIP in bacterial pneumonia. Using characterization of immune cells from human donors and mice lacking tet methylcytosine dioxygenase 2 (Tet2), the authors mechanistically link myeloid immune cell dysfunction to CHIP-mediated risk of bacterial pneumonia. The findings suggest that CHIP drives inflammaging and immune senescence, and provide Tet2 status in older adults as a potential prognostic tool for informing treatment options related to immune modulation.


Assuntos
Hematopoiese Clonal , Proteínas de Ligação a DNA , Dioxigenases , Pneumonia Bacteriana , Humanos , Animais , Hematopoiese Clonal/imunologia , Hematopoiese Clonal/genética , Camundongos , Dioxigenases/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas/metabolismo
5.
J Hazard Mater ; 475: 134889, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878436

RESUMO

Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.


Assuntos
Biodegradação Ambiental , Cromatos , Dioxigenases , Oxirredutases , Hidrocarbonetos Policíclicos Aromáticos , Sphingomonadaceae , Sphingomonadaceae/enzimologia , Sphingomonadaceae/metabolismo , Dioxigenases/metabolismo , Dioxigenases/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Cromatos/metabolismo , Oxirredutases/metabolismo , Cromo/metabolismo , Fenantrenos/metabolismo
6.
Cell Mol Life Sci ; 81(1): 270, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886218

RESUMO

Early trophoblast differentiation is crucial for embryo implantation, placentation and fetal development. Dynamic changes in DNA methylation occur during preimplantation development and are critical for cell fate determination. However, the underlying regulatory mechanism remains unclear. Recently, we derived morula-like expanded potential stem cells from human preimplantation embryos (hEPSC-em), providing a valuable tool for studying early trophoblast differentiation. Data analysis on published datasets showed differential expressions of DNA methylation enzymes during early trophoblast differentiation in human embryos and hEPSC-em derived trophoblastic spheroids. We demonstrated downregulation of DNA methyltransferase 3 members (DNMT3s) and upregulation of ten-eleven translocation methylcytosine dioxygenases (TETs) during trophoblast differentiation. While DNMT inhibitor promoted trophoblast differentiation, TET inhibitor hindered the process and reduced implantation potential of trophoblastic spheroids. Further integrative analysis identified that glutamyl aminopeptidase (ENPEP), a trophectoderm progenitor marker, was hypomethylated and highly expressed in trophoblast lineages. Concordantly, progressive loss of DNA methylation in ENPEP promoter and increased ENPEP expression were detected in trophoblast differentiation. Knockout of ENPEP in hEPSC-em compromised trophoblast differentiation potency, reduced adhesion and invasion of trophoblastic spheroids, and impeded trophoblastic stem cell (TSC) derivation. Importantly, TET2 was involved in the loss of DNA methylation and activation of ENPEP expression during trophoblast differentiation. TET2-null hEPSC-em failed to produce TSC properly. Collectively, our results illustrated the crucial roles of ENPEP and TET2 in trophoblast fate commitments and the unprecedented TET2-mediated loss of DNA methylation in ENPEP promoter.


Assuntos
Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA , Dioxigenases , Proteínas Proto-Oncogênicas , Trofoblastos , Trofoblastos/metabolismo , Trofoblastos/citologia , Humanos , Dioxigenases/metabolismo , Dioxigenases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Blastocisto/metabolismo , Blastocisto/citologia , Gravidez , Regulação da Expressão Gênica no Desenvolvimento , Linhagem da Célula/genética , Regiões Promotoras Genéticas/genética
7.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791222

RESUMO

BRAF mutations are rare in myeloid neoplasms and are reported to be associated with poor treatment outcomes. The purpose of our study is to characterize BRAF mutations in myeloid neoplasms using a next-generation sequencing (NGS) panel based on the experiences of a single cancer center. We conducted a retrospective review of patients with myeloid neoplasms who underwent the HopeSeq studies between January 2018 and September 2023. A total of 14 patients with myeloid neoplasms carrying BRAF mutations were included in our cohort. The clinical, pathological, and molecular features of these patients were investigated. Our study indicates that BRAF mutations are rare in myeloid neoplasms, constituting only 0.53% (14/2632) of all myeloid neoplasm cases, with the most common BRAF mutation being BRAF V600E (4/14; 28.6%). Interestingly, we observed that six out of seven patients with acute myeloid leukemia (AML) exhibited AML with monocytic differentiation, and all the patients with AML exhibited an extremely poor prognosis compared to those without BRAF mutations. TET2 (5/14; 35.7%), ASXL1 (4/14; 28.6%), and JAK2 (4/14; 28.6%) were the three most frequently co-mutated genes in these patients. Moreover, we noted concurrent KMT2A gene rearrangement with BRAF mutations in three patients with AML (3/7; 42.9%). Our study suggests that although BRAF mutations are rare in myeloid neoplasms, they play a crucial role in the pathogenesis of specific AML subtypes. Furthermore, RAS pathway alterations, including BRAF mutations, are associated with KMT2A gene rearrangement in AML. However, these findings warrant further validation in larger studies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Leucemia Mieloide Aguda/genética , Estudos Retrospectivos , Janus Quinase 2/genética , Idoso de 80 Anos ou mais , Proteínas de Ligação a DNA/genética , Dioxigenases , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Prognóstico
8.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791604

RESUMO

Peanut (Arachis hypogaea L.) is an important crop that provides essential proteins and oils for human and animal consumption. 9-cis-epoxycarotenoid dioxygenase (NCED) have been found can play a vital role in abscisic acid (ABA) biosynthesis and may be a response to drought stress. Until now, in Arachis hypogaea, no information about the NCED gene family has been reported and the importance of NCED-related drought tolerance is unclear. In this study, eight NCED genes in Arachis hypogaea, referred to as AhNCEDs, are distributed across eight chromosomes, with duplication events in AhNCED1 and AhNCED2, AhNCED3 and AhNCED4, and AhNCED6 and AhNCED7. Comparative analysis revealed that NCED genes are highly conserved among plant species, including Pisum sativum, Phaseolus vulgaris, Glycine max, Arabidopsis thaliana, Gossypium hirsutum, and Oryza sativa. Further promoter analysis showed AhNCEDs have ABA-related and drought-inducible elements. The phenotyping of Arachis hypogaea cultivars NH5 and FH18 demonstrated that NH5 is drought-tolerant and FH18 is drought-sensitive. Transcriptome expression analysis revealed the differential regulation of AhNCEDs expression in both NH5 and FH18 cultivars under drought stress. Furthermore, compared to the Arachis hypogaea cultivar FH18, the NH5 exhibited a significant upregulation of AhNCED1/2 expression under drought. To sum up, this study provides an insight into the drought-related AhNCED genes, screened out the potential candidates to regulate drought tolerance and ABA biosynthesis in Arachis hypogaea.


Assuntos
Arachis , Dioxigenases , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Arachis/genética , Arachis/metabolismo , Estresse Fisiológico/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Filogenia , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas/genética
9.
Nat Commun ; 15(1): 4325, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773071

RESUMO

Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Epigênese Genética , Células-Tronco Hematopoéticas , Mutação , Proteínas Proto-Oncogênicas , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Humanos , Hematopoese/genética , Camundongos , Diferenciação Celular/genética
10.
J Am Coll Cardiol ; 83(18): 1717-1727, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38692825

RESUMO

BACKGROUND: The expansion of hematopoietic stem cells caused by acquired somatic mutations (clonal hematopoiesis [CH]) is a novel cardiovascular risk factor. The prognostic value of CH in patients with carotid atherosclerosis remains to be evaluated. OBJECTIVES: This study assessed the prognostic significance of CH in patients with atherosclerosis as detected by ultrasound of the carotid artery. METHODS: We applied deep sequencing of selected genomic regions within the genes DNMT3A, TET2, ASXL1, and JAK2 to screen for CH in 968 prospectively collected patients with asymptomatic carotid atherosclerosis evaluated by duplex sonography. RESULTS: We detected clonal markers at variant allele frequency ≥2% in 133 (13.7%) of 968 patients (median age 69.2 years), with increasing prevalence at advanced age. Multivariate analyses including age and established cardiovascular risk factors revealed overall presence of CH to be significantly associated with increased risk of cardiovascular death (HR: 1.50; 95% CI: 1.12-2.00; P = 0.007), reflected also at the single gene level. The effect of CH was more pronounced in older patients and independent of the patients' inflammatory status as measured by high-sensitivity C-reactive protein. Simultaneous assessment of CH and degree of carotid stenosis revealed combined effects on cardiovascular mortality, depicted by a superior risk for patients with >50% stenosis and concomitant CH (adjusted HR: 1.60; 95% CI: 1.08-2.38; P = 0.020). CONCLUSIONS: CH status in combination with the extent of carotid atherosclerosis jointly predict long-term mortality. Determination of CH can provide additional prognostic information in patients with asymptomatic carotid atherosclerosis.


Assuntos
Estenose das Carótidas , Hematopoiese Clonal , Janus Quinase 2 , Humanos , Masculino , Feminino , Idoso , Hematopoiese Clonal/genética , Estenose das Carótidas/genética , Estenose das Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Pessoa de Meia-Idade , DNA Metiltransferase 3A , Dioxigenases , Estudos Prospectivos , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/genética , Proteínas Proto-Oncogênicas/genética , Prognóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/mortalidade , DNA (Citosina-5-)-Metiltransferases/genética
11.
Sci Rep ; 14(1): 11608, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773163

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, carcinogenic substances. On soils contaminated with PAHs, crop cultivation, animal husbandry and even the survival of microflora in the soil are greatly perturbed, depending on the degree of contamination. Most microorganisms cannot tolerate PAH-contaminated soils, however, some microbial strains can adapt to these harsh conditions and survive on contaminated soils. Analysis of the metagenomes of contaminated environmental samples may lead to discovery of PAH-degrading enzymes suitable for green biotechnology methodologies ranging from biocatalysis to pollution control. In the present study, our goal was to apply a metagenomic data search to identify efficient novel enzymes in remediation of PAH-contaminated soils. The metagenomic hits were further analyzed using a set of bioinformatics tools to select protein sequences predicted to encode well-folded soluble enzymes. Three novel enzymes (two dioxygenases and one peroxidase) were cloned and used in soil remediation microcosms experiments. The experimental design of the present study aimed at evaluating the effectiveness of the novel enzymes on short-term PAH degradation in the soil microcosmos model. The novel enzymes were found to be efficient for degradation of naphthalene and phenanthrene. Adding the inorganic oxidant CaO2 further increased the degrading potential of the novel enzymes for anthracene and pyrene. We conclude that metagenome mining paired with bioinformatic predictions, structural modelling and functional assays constitutes a powerful approach towards novel enzymes for soil remediation.


Assuntos
Biodegradação Ambiental , Metagenômica , Hidrocarbonetos Policíclicos Aromáticos , Microbiologia do Solo , Poluentes do Solo , Metagenômica/métodos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Fenantrenos/metabolismo , Naftalenos/metabolismo , Metagenoma
12.
Biomolecules ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786006

RESUMO

Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.


Assuntos
Ácido 3-Hidroxiantranílico , Peptídeos beta-Amiloides , Caenorhabditis elegans , Paralisia , Peptídeos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos/farmacologia , Ácido 3-Hidroxiantranílico/metabolismo , Paralisia/induzido quimicamente , Paralisia/metabolismo , Paralisia/genética , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Doença de Huntington/metabolismo , Doença de Huntington/genética , Dioxigenases/metabolismo , Dioxigenases/genética
13.
Protein Sci ; 33(6): e4997, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723110

RESUMO

Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPADO PDB ID 7Q05) is a structurally characterized heterohexameric α3ß3 RO that, with its cognate reductase (TPARED), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPADO/TPARED system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPADO through a combination of biochemical and biophysical approaches. The system's activity is thermally limited by a melting temperature (Tm) of 39.9°C for the monomeric TPARED, while the independent Tm of TPADO is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPADO with Tm values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol-1, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPADO subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by ß-ß interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPADO stability, we propose prioritizing the re-engineering of the ß subunit interfaces, with subsequent targeted improvements of the subunits.


Assuntos
Estabilidade Enzimática , Oxirredutases/química , Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Modelos Moleculares , Dioxigenases/química , Dioxigenases/metabolismo , Dioxigenases/genética , Temperatura , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Concentração de Íons de Hidrogênio , Complexo III da Cadeia de Transporte de Elétrons
14.
Appl Environ Microbiol ; 90(6): e0143623, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38709097

RESUMO

Rieske non-heme dioxygenase family enzymes play an important role in the aerobic biodegradation of nitroaromatic pollutants, but no active dioxygenases are available in nature for initial reactions in the degradation of many refractory pollutants like 2,4-dichloronitrobenzene (24DCNB). Here, we report the engineering of hotspots in 2,3-dichloronitrobenzene dioxygenase from Diaphorobacter sp. strain JS3051, achieved through molecular dynamic simulation analysis and site-directed mutagenesis, with the aim of enhancing its catalytic activity toward 24DCNB. The computationally predicted activity scores were largely consistent with the detected activities in wet experiments. Among them, the two most beneficial mutations (E204M and M248I) were obtained, and the combined mutant reached up to a 62-fold increase in activity toward 24DCNB, generating a single product, 3,5-dichlorocatechol, which is a naturally occurring compound. In silico analysis confirmed that residue 204 affected the substrate preference for meta-substituted nitroarenes, while residue 248 may influence substrate preference by interaction with residue 295. Overall, this study provides a framework for manipulating nitroarene dioxygenases using computational methods to address various nitroarene contamination problems.IMPORTANCEAs a result of human activities, various nitroaromatic pollutants continue to enter the biosphere with poor degradability, and dioxygenation is an important kickoff step to remove toxic nitro-groups and convert them into degradable products. The biodegradation of many nitroarenes has been reported over the decades; however, many others still lack corresponding enzymes to initiate their degradation. Although rieske non-heme dioxygenase family enzymes play extraordinarily important roles in the aerobic biodegradation of various nitroaromatic pollutants, prediction of their substrate specificity is difficult. This work greatly improved the catalytic activity of dioxygenase against 2,4-dichloronitrobenzene by computer-aided semi-rational design, paving a new way for the evolution strategy of nitroarene dioxygenase. This study highlights the potential for using enzyme structure-function information with computational pre-screening methods to rapidly tailor the catalytic functions of enzymes toward poorly biodegradable contaminants.


Assuntos
Dioxigenases , Nitrobenzenos , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Nitrobenzenos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Biodegradação Ambiental , Mutagênese Sítio-Dirigida , Simulação de Dinâmica Molecular
15.
Appl Environ Microbiol ; 90(6): e0023324, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38727223

RESUMO

Vanillin is one of the world's most important flavor and fragrance compounds used in foods and cosmetics. In plants, vanillin is reportedly biosynthesized from ferulic acid via the hydratase/lyase-type enzyme VpVAN. However, in biotechnological and biocatalytic applications, the use of VpVAN limits the production of vanillin. Although microbial enzymes are helpful as substitutes for plant enzymes, synthesizing vanillin from ferulic acid in one step using microbial enzymes remains a challenge. Here, we developed a single enzyme that catalyzes vanillin production from ferulic acid in a coenzyme-independent manner via the rational design of a microbial dioxygenase in the carotenoid cleavage oxygenase family using computational simulations. This enzyme acquired catalytic activity toward ferulic acid by introducing mutations into the active center to increase its affinity for ferulic acid. We found that the single enzyme can catalyze not only the production of vanillin from ferulic acid but also the synthesis of other aldehydes from p-coumaric acid, sinapinic acid, and coniferyl alcohol. These results indicate that the approach used in this study can greatly expand the range of substrates available for the dioxygenase family of enzymes. The engineered enzyme enables efficient production of vanillin and other value-added aldehydes from renewable lignin-derived compounds. IMPORTANCE: The final step of vanillin biosynthesis in plants is reportedly catalyzed by the enzyme VpVAN. Prior to our study, VpVAN was the only reported enzyme that directly converts ferulic acid to vanillin. However, as many characteristics of VpVAN remain unknown, this enzyme is not yet suitable for biocatalytic applications. We show that an enzyme that converts ferulic acid to vanillin in one step could be constructed by modifying a microbial dioxygenase-type enzyme. The engineered enzyme is of biotechnological importance as a tool for the production of vanillin and related compounds via biocatalytic processes and metabolic engineering. The results of this study may also provide useful insights for understanding vanillin biosynthesis in plants.


Assuntos
Benzaldeídos , Ácidos Cumáricos , Dioxigenases , Benzaldeídos/metabolismo , Ácidos Cumáricos/metabolismo , Dioxigenases/metabolismo , Dioxigenases/genética , Engenharia Metabólica , Coenzimas/metabolismo , Engenharia de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
16.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805014

RESUMO

Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.


Assuntos
Quimiocina CXCL5 , Proteínas de Ligação a DNA , Dioxigenases , Neoplasias Pulmonares , Neutrófilos , Proteínas Proto-Oncogênicas , Fator de Transcrição STAT3 , Animais , Neutrófilos/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Humanos , Dioxigenases/metabolismo , Pinocitose , Linhagem Celular Tumoral , Infiltração de Neutrófilos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
17.
J Biol Inorg Chem ; 29(3): 291-301, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38722396

RESUMO

In addition to its primary oxygen-atom-transfer function, cysteamine dioxygenase (ADO) exhibits a relatively understudied anaerobic disproportionation reaction (ADO-Fe(III)-SR → ADO-Fe(II) + ½ RSSR) with its native substrates. Inspired by ADO disproportionation reactivity, we employ [Fe(tacn)Cl3] (tacn = 1,4,7-triazacyclononane) as a precursor for generating Fe(III)-thiolate model complexes in buffered aqueous media. A series of Fe(III)-thiolate model complexes are generated in situ using aqueous [Fe(tacn)Cl3] and thiol-containing ligands cysteamine, penicillamine, mercaptopropionate, cysteine, cysteine methyl ester, N-acetylcysteine, and N-acetylcysteine methyl ester. We observe trends in UV-Vis and electron paramagnetic resonance (EPR) spectra, disproportionation rate constants, and cathodic peak potentials as a function of thiol ligand. These trends will be useful in rationalizing substrate-dependent Fe(III)-thiolate disproportionation reactions in metalloenzymes.


Assuntos
Compostos Férricos , Compostos de Sulfidrila , Cinética , Compostos de Sulfidrila/química , Concentração de Íons de Hidrogênio , Compostos Férricos/química , Compostos Férricos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Dioxigenases/metabolismo , Dioxigenases/química , Técnicas Eletroquímicas
18.
Mol Biol Rep ; 51(1): 632, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724827

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS: Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS: MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.


Assuntos
Dioxigenases , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Animais , Feminino , Humanos , Ratos , Regeneração Óssea/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Células HEK293 , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Ratos Sprague-Dawley , Crânio/patologia , Crânio/metabolismo
19.
Environ Sci Pollut Res Int ; 31(25): 37532-37551, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38777975

RESUMO

Polycyclic aromatic compounds (PAHs) are persistent organic pollutants of environmental concern due to their potential impacts on food chain, with plants being particularly vulnerable. While plants can uptake, transport, and transform PAHs, the precise mechanisms underlying their localization and degradation are not fully understood. Here, a cultivation experiment conducted with Panicum miliaceum exposed different concentrations of phenanthrene (PHE). Intermediate PHE degradation compounds were identified via GC-MS analysis, leading to the proposal of a phytodegradation pathway featuring three significant benzene ring cleavage steps. Our results showed that P. miliaceum exhibited the ability to effectively degrade high levels of PHE, resulting in the production of various intermediate products through several chemical changes. Examination of the localization and anatomical characteristics revealed structural alterations linked to PHE stress, with an observed enhancement in PHE accumulation density in both roots and shoots as treatment levels increased. Following a 2-week aging period, a decrease in the amount of PHE accumulation was observed, along with a change in its localization. Bioinformatics analysis of the P. miliaceum 2-oxoglutarate-dependent dioxygenase (2-ODD) DAO-like protein revealed a 299 amino acid structure with two highly conserved domains, namely 2OG-FeII_Oxy and DIOX_N. Molecular docking analysis aligned with experimental results, strongly affirming the potential link and direct action of 2-ODD DAO-like protein with PHE. Our study highlights P. miliaceum capacity for PAHs degradation and elucidates the mechanisms behind enhanced degradation efficiency. By integrating experimental evidence with bioinformatics analysis, we offer valuable insights into the potential applications of plant-based remediation strategies for PAHs-contaminated environments.


Assuntos
Biodegradação Ambiental , Dioxigenases , Fenantrenos , Fenantrenos/metabolismo , Dioxigenases/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
20.
Int J Biol Macromol ; 270(Pt 1): 132294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735602

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are molecules with two or more fused aromatic rings that occur naturally in the environment due to incomplete combustion of organic substances. However, the increased demand for fossil fuels in recent years has increased anthropogenic activity, contributing to the environmental concentration of PAHs. The enzyme chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp 1,2-CCD) is responsible for the breakdown of the aromatic ring of catechol, making it a potential player in bioremediation strategies. Pp 1,2-CCD can tolerate a broader range of substrates, including halogenated compounds, than other dioxygenases. Here, we report the construction of a chimera protein able to form biomolecular condensates with potential application in bioremediation. The chimera protein was built by conjugating Pp 1,2-CCD to low complex domains (LCDs) derived from the DEAD-box protein Dhh1. We showed that the chimera could undergo liquid-liquid phase separation (LLPS), forming a protein-rich liquid droplet under different conditions (variable protein and PEG8000 concentrations and pH values), in which the protein maintained its structure and main biophysical properties. The condensates were active against 4-chlorocatechol, showing that the chimera droplets preserved the enzymatic activity of the native protein. Therefore, it constitutes a prototype of a microreactor with potential use in bioremediation.


Assuntos
Biodegradação Ambiental , Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Dioxigenases/metabolismo , Dioxigenases/química , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas putida/enzimologia , Catecóis/metabolismo , Catecóis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...