Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.072
Filtrar
1.
AMA J Ethics ; 26(9): E709-715, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250943

RESUMO

A transition from nonhuman animal models to engineered microphysiological systems (MPS), such as organoids and organ-on-a-chip technologies, would signal a paradigm shift in biomedical research. Despite MPS' potential to more accurately model human physiology, reduce high failure rates of drugs in clinical trials, and limit unnecessary animal use, widespread adoption is hampered by public opinion and lack of scalability, standardization, and current regulatory uptake. This article suggests how 5 key concepts (awareness, access, education, application, and rewards) could help address these barriers. These concepts are part of a framework that underscores a need to integrate MPS into mainstream biomedical research and to better promote ethical responsibility for the means of biomedical innovation.


Assuntos
Pesquisa Biomédica , Modelos Animais , Pesquisa Biomédica/ética , Humanos , Animais , Organoides , Dispositivos Lab-On-A-Chip , Conscientização , Recompensa , Experimentação Animal/ética , Opinião Pública , Sistemas Microfisiológicos
2.
Mikrochim Acta ; 191(10): 608, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292358

RESUMO

Lab-on-chips supported by hydrogel matrices are excellent solutions for cell culture; thus, this literature review presents examples of scientific research in this area. Several works are presenting the properties of biocompatible hydrogels that mimic the cellular environment published recently. Hydrogels can also be treated as cell transporters or as a structural component of microfluidic devices. The rapidly growing scientific sector of hydrogel additive manufacturing is also described herein, with attention paid to the appropriate mechanical and biological properties of the inks used to extrude the material, specifically for biomedical purposes. The paper focuses on protocols employed for additive manufacturing, e.g., 3D printing parameters, calibration, ink preparation, crosslinking processes, etc. The authors also mention potential problems concerning manufacturing processes and offer example solutions. As the novel trend for hydrogels enriched with several biocompatible additives has recently risen, the article presents examples of the use of high-quality carbon nanotubes in hydrogel research enhancing biocompatibility, mechanical stability, and cell viability. Moving forward, the article points out the high applicability of the hydrogel-assisted microfluidic platforms used for cancer research, especially for photodynamic therapy (PDT). This innovative treatment strategy can be investigated directly on the chip, which was first proposed by Jedrych E. et al. in 2011. Summarizing, this literature review highlights recent developments in the additive manufacturing of microfluidic devices supported by hydrogels, toward reliable cell culture experiments with a view to PDT research. This paper gathers the current knowledge in these intriguing and fast-growing research paths.


Assuntos
Hidrogéis , Dispositivos Lab-On-A-Chip , Fotoquimioterapia , Humanos , Hidrogéis/química , Fotoquimioterapia/métodos , Engenharia Celular/métodos , Animais , Impressão Tridimensional , Materiais Biocompatíveis/química
3.
Biomed Microdevices ; 26(4): 39, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287824

RESUMO

Microbubbles are widely used for biomedical applications, ranging from imagery to therapy. In these applications, microbubbles can be functionalized to allow targeted drug delivery or imaging of the human body. However, functionalization of the microbubbles is quite difficult, due to the unstable nature of the gas/liquid interface. In this paper, we describe a simple protocol for rapid functionalization of microbubbles and show how to use them inside a microfluidic chip to develop a novel type of biosensor. The microbubbles are functionalized with biochemical ligand directly at their generation inside the microfluidic chip using a DSPE-PEG-Biotin phospholipid. The microbubbles are then organized inside a chamber before injecting the fluid with the bioanalyte of interest through the static bubbles network. In this proof-of-concept demonstration, we use streptavidin as the bioanalyte of interest. Both functionalization and capture are assessed using fluorescent microscopy thanks to fluorescent labeled chemicals. The main advantages of the proposed technique compared to classical ligand based biosensor using solid surface is its ability to rapidly regenerate the functionalized surface, with the complete functionalization/capture/measurement cycle taking less than 10 min.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Microbolhas , Técnicas Biossensoriais/instrumentação , Estreptavidina/química
4.
Proc Natl Acad Sci U S A ; 121(39): e2403510121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39288179

RESUMO

Multispecies microbial communities drive most ecosystems on Earth. Chemical and biological interactions within these communities can affect the survival of individual members and the entire community. However, the prohibitively high number of possible interactions within a microbial community has made the characterization of factors that influence community development challenging. Here, we report a Microbial Community Interaction (µCI) device to advance the systematic study of chemical and biological interactions within a microbial community. The µCI creates a combinatorial landscape made up of an array of triangular wells interconnected with circular wells, which each contains either a different chemical or microbial strain, generating chemical gradients and revealing biological interactions. Bacillus cereus UW85 containing green fluorescent protein provided the "target" readout in the triangular wells, and antibiotics or microorganisms in adjacent circular wells are designated the "variables." The µCI device revealed that gentamicin and vancomycin are antagonistic to each other in inhibiting the target B. cereus UW85, displaying weaker inhibitory activity when used in combination than alone. We identified three-member communities constructed with isolates from the plant rhizosphere that increased or decreased the growth of B. cereus. The µCI device enables both strain-level and community-level insight. The scalable geometric design of the µCI device enables experiments with high combinatorial efficiency, thereby providing a simple, scalable platform for systematic interrogation of three-factor interactions that influence microorganisms in solitary or community life.


Assuntos
Bacillus cereus , Interações Microbianas/fisiologia , Microbiota/fisiologia , Antibacterianos/farmacologia , Vancomicina/farmacologia , Rizosfera , Gentamicinas/farmacologia , Dispositivos Lab-On-A-Chip , Proteínas de Fluorescência Verde/metabolismo
5.
Langmuir ; 40(37): 19316-19323, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39217623

RESUMO

The oxygen level in the tumor microenvironment (TME) plays a critical role in regulating cell fates such as proliferation, migration, apoptosis, and so forth. To better elucidate how hypoxia affects tumor cell behaviors, a series of microfluidic strategies have been utilized to generate an oxygen gradient covering both hypoxia and normoxia conditions. However, in most studies, some chemicals are introduced into microfluidic chips, causing the potential of their poor biocompatibility. The common oxygen gradient with linear variation does not allow the effects of specific oxygen concentrations on tumor cells to be analyzed accurately. In this paper, based on the physical method of gas diffusion, a microfluidic device integrated with an oxygen gradient generator is proposed for investigating effects of different hypoxia levels on responses of tumor cells. This device consists of three layers, i.e., upper layer, thin film layer, and bottom layer. The upper layer is used for introducing the initial gas and generating an oxygen gradient in the form of gas. The bottom layer is used for introducing cells and culture medium. The thin film layer separates the former two layers, allowing the gas to diffuse from the top to the bottom through it. The oxygen gradient in the bottom layer is finally generated in the form of dissolved oxygen. The device is fabricated using microfabrication technology. The effects of structural and working parameters of the device on the oxygen gradient are evaluated by finite element simulation. The oxygen gradient in cell culture channels is characterized by using oxygen-sensitive fluorescence materials. The proliferation and morphology of HeLa cells under specific oxygen levels are compared after culturing for 48 h. The oxygen gradient with a ladder-like distribution demonstrates that this microfluidic device can provide a prospective experimental platform for in vitro cell studies and revelation of the mechanism of tumor metastasis associated with a specific hypoxic microenvironment.


Assuntos
Oxigênio , Humanos , Oxigênio/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Células HeLa , Microambiente Tumoral , Hipóxia Celular
6.
Anal Chem ; 96(37): 14935-14943, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39221578

RESUMO

Macrophages consist of a heterogeneous population of functionally distinct cells that participate in many physiological and pathological processes. They exhibit prominent plasticity by changing their different functional phenotypes represented by proinflammatory (M1) and anti-inflammatory (M2) in response to different environmental stimuli. Emerging evidence illustrates the importance of intracellular metabolic pathways in macrophage polarizations and functions. In the tumor microenvironment (TME), macrophages tend to M2 polarization, which promotes tumor growth and leads to adverse physiological effects. Due to the lack of highly specific antigens in M1 and M2 macrophages, significant challenges present in isolating these subtypes from clinical samples or in vitro coculture models of tumor-immune cells. In reverse, the single-cell technique provides the possibility to investigate the factors influencing macrophage polarization in the TME. In this research, we employed inertial microfluidic chip-mass spectrometry (IMC-MS) to conduct single-cell metabolomics analysis of macrophages polarized into the two major phenotypes, respectively, and 213 metabolites were identified in total. Subsequently, differential metabolites between macrophage phenotypes were analyzed using volcano plots and binary logistic regression models. Glutamine was pinpointed as a key metabolite for the M1 and M2 phenotypes. Experimental results from both monoculture and coculture cell models demonstrated that M1 polarization is more reliant on the presence of glutamine in the culture environment than M2 polarization. Glutamine deficiency resulted in failed M1 polarization, while its absence had a less pronounced effect on M2 polarization. Replenishing an appropriate amount of glutamine during the intermediate stages of coculture models significantly enhanced the proportion of M1 polarization and suppressed the growth of tumor cells. This research elucidated glutamine as a key factor influencing macrophage polarization in the TME via single-cell metabolomics based on IMC-MS, offering promising insights and targets for tumor therapies.


Assuntos
Macrófagos , Metabolômica , Análise de Célula Única , Microambiente Tumoral , Macrófagos/metabolismo , Macrófagos/imunologia , Metabolômica/métodos , Humanos , Animais , Camundongos , Espectrometria de Massas , Glutamina/metabolismo , Dispositivos Lab-On-A-Chip
7.
Anal Chem ; 96(37): 14980-14988, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39235216

RESUMO

PD-L1-positive extracellular vesicles (PD-L1+ EVs) play a pivotal role as predictive biomarkers in cancer immunotherapy. These vesicles, originating from immune cells (I-PD-L1+ EVs) and tumor cells (T-PD-L1+ EVs), hold distinct clinical predictive values, emphasizing the importance of deeply differentiating the PD-L1+ EV subtypes for effective liquid biopsy analyses. However, current methods such as ELISA lack the ability to differentiate their cellular sources. In this study, a novel step-wedge microfluidic chip that combines magnetic microsphere separation with single-layer fluorescence counting is developed. This chip integrates magnetic microspheres modified with anti-PD-L1 antibodies and fluorescent nanoparticles targeting EpCAM (tumor cell marker) or CD45 (immunocyte marker), enabling simultaneous quantification and sensitive analysis of PD-L1+ EV subpopulations in oral squamous cell carcinoma (OSCC) patients' saliva without background interference. Analysis results indicate reduced levels of I-PD-L1+ EVs in OSCC patients compared to those in healthy individuals, with varying levels of heterogeneous PD-L1+ EVs observed among different patient groups. During immunotherapy, responders exhibit decreased levels of total PD-L1+ EVs and T-PD-L1+ EVs, accompanied by reduced levels of I-PD-L1+ EVs. Conversely, nonresponders show increased levels of I-PD-L1+ EVs. Utilizing the step-wedge microfluidic chip allows for simultaneous detection of PD-L1+ EV subtypes, facilitating the precise prediction of oral cancer immunotherapy outcomes.


Assuntos
Antígeno B7-H1 , Vesículas Extracelulares , Imunoterapia , Dispositivos Lab-On-A-Chip , Neoplasias Bucais , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/análise , Neoplasias Bucais/terapia , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Saliva/química , Saliva/metabolismo
8.
J Chromatogr A ; 1735: 465328, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39232420

RESUMO

Capillary flow profile of liquid samples in porous media is closely related to the important properties of liquid samples, including the viscosity and the surface energy. Therefore, capillary flow profile can be used as an index to differentiate liquid samples with different properties. Fast and automatic characterization of capillary flow profile of liquid samples is necessary. In this work, we develop a portable and economical capacitance acquisition system (CASY) to easily obtain the capillary flow profile of liquid samples on microfluidic thread-based analytical devices (µTADs) by measuring the capacitance during the capillary flow. At first, we validate the accuracy of this method by comparing with the traditional method by video analysis in obtaining the capillary flow profiles in µTADs of cotton threads or glass fiber threads. Then we use it to differentiate liquid samples with different viscosity (mixture of water and glycerol). In addition, capillary flow profile on µTADs with chemical valves (chitosan or sucrose) can also be obtained on this device. Lastly, we show the potential of this device in measurement of hematocrit (HCT) of whole blood samples. This device can be used to catalog liquid biological samples with different properties in point-of-care diagnostics in the near future.


Assuntos
Capacitância Elétrica , Viscosidade , Hematócrito , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Água/química , Glicerol/química
9.
Biosens Bioelectron ; 266: 116713, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39232436

RESUMO

Textile sweat sensors possess immense potential for non-invasive health monitoring. Rapid in-situ sweat capture and prevention of its evaporation are crucial for accurate and stable real-time monitoring. Herein, we introduce a unidirectional, pump-free microfluidic sweat management system to tackle this challenge. A nanofiber sheath layer on micrometer-scale sensing filaments enables this pumpless microfluidic design. Utilizing the capillary effect of the nanofibers allows for the swift capture of sweat, while the differential configuration of the hydrophilic and hydrophobic properties of the sheath and core yarns prevents sweat evaporation. The Laplace pressure difference between the cross-scale fibers facilitates the management system to ultimately expulse sweat. This results in microfluidic control of sweat without the need for external forces, resulting in rapid (<5 s), sensitive (19.8 nA µM-1), and stable (with signal noise and drift suppression) sweat detection. This yarn sensor can be easily integrated into various fabrics, enabling the creation of health monitoring smart garments. The garments maintain good monitoring performance even after 20 washes. This work provides a solution for designing smart yarns for high-precision, stable, and non-invasive health monitoring.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Suor , Têxteis , Suor/química , Técnicas Biossensoriais/instrumentação , Humanos , Dispositivos Eletrônicos Vestíveis , Nanofibras/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica
10.
Anal Chim Acta ; 1325: 343114, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39244302

RESUMO

BACKGROUND: Temperature sensing is commonly used in point-of-care (POC) detection technologies, yet the portability and convenience of use are frequently compromised by the complexity of thermosensitive processes and signal transduction. Especially, multi-step target recognition reactions and temperature measurement in the reaction vessel present challenges in terms of stability and integration of detection devices. To further combine photothermal reaction and signal readout in one assay, these two processes enable to be integrated into miniaturized microfluidic chips, thereby facilitating photothermal sensing and achieving a simple visual temperature sensing as POC detection. RESULTS: A copper ion (Cu2+)-catalyzed photothermal sensing system integrated onto a microfluidic distance-based analytical device (µDAD), enabling the visual, portable, and sensitive quantitative detection of multiple targets, including ascorbic acid, glutathione, and alkaline phosphatase (ALP). The polydopamine nanoparticles (PDA NPs) were synthesized by the regulation of free Cu2+ through redox or coordination reactions, facilitating the transduction of distinct photothermal response signals and providing the versatile Cu2+-responsive sensing systems. Promoted by integration with a photothermal µDAD, the system combines PDA's photothermal responsiveness and thermosensitive gas production of ammonium bicarbonate for improved sensitivity of ALP detection, reaching the detection limit of 9.1 mU/L. The system has successfully achieved on-chip detection of ALP with superior anti-interference capability and recoveries ranging from 96.8 % to 104.7 %, alongside relative standard deviations below 8.0 %. SIGNIFICANCE AND NOVELTY: The µDAD design accommodated both the photothermal reaction of PDA NPs and thermosensitive gas production reaction, achieving the rapid sensing of visual distance signals. The µDAD-based Cu2+-catalyzed photothermal sensing system holds substantial potential for applications in biochemical analysis and clinical diagnostics, underscored by the versatile Cu2+ regulation mechanism for a broad spectrum of biomarkers.


Assuntos
Ácido Ascórbico , Cobre , Indóis , Testes Imediatos , Polímeros , Cobre/química , Indóis/química , Polímeros/química , Catálise , Ácido Ascórbico/análise , Ácido Ascórbico/química , Limite de Detecção , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/análise , Fosfatase Alcalina/química , Temperatura , Humanos , Glutationa/análise , Glutationa/química , Nanopartículas/química , Processos Fotoquímicos , Dispositivos Lab-On-A-Chip , Técnicas Biossensoriais
11.
Anal Chim Acta ; 1327: 342988, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39266058

RESUMO

The great majority of published microfluidic wearable platforms for sweat sensing focus on the development of the technology to fabricate the device, the integration of sensing materials and actuators and the fluidics of sweat within the device. However, very few papers have discussed the physiological relevance of the metabolites measured using these novel approaches. In fact, some of the analytes present in sweat, which serve as biomarkers in blood, do not show a correlation with blood levels. This discrepancy can be attributed to factors such as contamination during measurements, the metabolism of sweat glands, or challenges in obtaining significant samples. The objective of this review is to present a critical and meaningful insight into the real applicability and potential use of wearable technology for improving health and sport performance. It also discusses the current limitations and future challenges of microfluidics, aiming to provide accurate information about the actual needs in this field. This work is expected to contribute to the future development of more suitable wearable microfluidic technology for health and sports science monitoring, using sweat as the biofluid for analysis.


Assuntos
Biomarcadores , Suor , Dispositivos Eletrônicos Vestíveis , Suor/química , Humanos , Biomarcadores/análise , Biomarcadores/sangue , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip
12.
Mikrochim Acta ; 191(10): 580, 2024 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243287

RESUMO

A wearable potentiometric device is reported based on an innovative butterfly-like paper-based microfluidic system, allowing for continuous monitoring of pH and Na+ levels in sweat during physical activity. Specifically, the use of the butterfly-like configuration avoids evaporation phenomena and memory effects, enabling precise and timely biomarker determination in sweat. Two ad hoc modified screen-printed electrodes were embedded in the butterfly-like paper-based microfluidics, and the sensing device was further integrated with a portable and miniaturized potentiostat, leveraging Bluetooth technology for efficient data transmission. First, the paper-based microfluidic configuration was tested for optimal fluidic management to obtain optimized performance of the device. Subsequently, the two electrodes were individually tested to detect the two biomarkers, namely pH and Na+. The results demonstrated highly promising near-Nernstian (0.056 ± 0.002 V/dec) and super-Nernstian (- 0.080 ± 0.003 V/pH) responses, for Na+ and pH detection, respectively. Additionally, several important parameters such as storage stability, interferents, and memory effect by hysteresis study were also investigated. Finally, the butterfly-like paper-based microfluidic wearable device was tested for Na+ and pH monitoring during the physical activity of three volunteers engaged in different exercises, obtaining a good correlation between Na+ increase and dehydration phenomena. Furthermore, one volunteer was tested through a cardiopulmonary test, demonstrating a correlation between sodium Na+ increase and the energetic effort by the volunteer. Our wearable device highlights the high potential to enable early evaluation of dehydration and open up new opportunities in sports activity monitoring.


Assuntos
Papel , Sódio , Suor , Dispositivos Eletrônicos Vestíveis , Suor/química , Humanos , Concentração de Íons de Hidrogênio , Sódio/análise , Eletrodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Dispositivos Lab-On-A-Chip
13.
J Exp Med ; 221(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39240335

RESUMO

Predicting the immunogenicity of candidate vaccines in humans remains a challenge. To address this issue, we developed a lymphoid organ-chip (LO chip) model based on a microfluidic chip seeded with human PBMC at high density within a 3D collagen matrix. Perfusion of the SARS-CoV-2 spike protein mimicked a vaccine boost by inducing a massive amplification of spike-specific memory B cells, plasmablast differentiation, and spike-specific antibody secretion. Features of lymphoid tissue, including the formation of activated CD4+ T cell/B cell clusters and the emigration of matured plasmablasts, were recapitulated in the LO chip. Importantly, myeloid cells were competent at capturing and expressing mRNA vectored by lipid nanoparticles, enabling the assessment of responses to mRNA vaccines. Comparison of on-chip responses to Wuhan monovalent and Wuhan/Omicron bivalent mRNA vaccine boosts showed equivalent induction of Omicron neutralizing antibodies, pointing at immune imprinting as reported in vivo. The LO chip thus represents a versatile platform suited to the preclinical evaluation of vaccine-boosting strategies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Células B de Memória , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Humanos , Vacinas contra COVID-19/imunologia , Vacinas de mRNA/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Células B de Memória/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Tecido Linfoide/imunologia , Dispositivos Lab-On-A-Chip , Vacinas Sintéticas/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Lipossomos , Nanopartículas
14.
Biol Pharm Bull ; 47(8): 1415-1421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39111843

RESUMO

The efficacy of mesenchymal stem cell (MSC) transplantation has been reported for various diseases. We previously developed a drug delivery system targeting mitochondria (MITO-Porter) by using a microfluidic device to encapsulate Coenzyme Q10 (CoQ10) on a large scale. The current study aimed to confirm if treatment with CoQ10 encapsulated by MITO-Porter enhanced mitochondrial functions in MSCs, with the potential to improve MSC transplantation therapy. We used highly purified human bone marrow-derived MSCs, described as rapidly expanding clones (RECs), and attempted to control and increase the amount of CoQ10 encapsulated in the MITO-Porter using microfluidic device system. We treated these RECs with CoQ10 encapsulated MITO-Porter, and evaluated its cellular uptake, co-localization with mitochondria, changes in mitochondrial respiratory capacity, and cellular toxicity. There was no significant change in mitochondrial respiratory capacity following treatment with the previous CoQ10 encapsulated MITO-Porter; however, mitochondrial respiratory capacity in RECs was significantly increased by treatment with CoQ10-rich MITO-Porter. Utilization of a microfluidic device enabled the amount of CoQ10 encapsulated in MITO-Porter to be controlled, and treatment with CoQ10-rich MITO-Porter successfully activated mitochondrial functions in MSCs. The MITO-Porter system thus provides a promising tool to improve MSC cell transplantation therapy.


Assuntos
Células-Tronco Mesenquimais , Mitocôndrias , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células Cultivadas , Dispositivos Lab-On-A-Chip
15.
Mol Biol Rep ; 51(1): 896, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115550

RESUMO

CRISPR-based (Clustered regularly interspaced short palindromic repeats-based) technologies have revolutionized molecular biology and diagnostics, offering unprecedented precision and versatility. However, challenges remain, such as high costs, demanding technical expertise, and limited quantification capabilities. To overcome these limitations, innovative microfluidic platforms are emerging as powerful tools for enhancing CRISPR diagnostics. This review explores the exciting intersection of CRISPR and microfluidics, highlighting their potential to revolutionize healthcare diagnostics. By integrating CRISPR's specificity with microfluidics' miniaturization and automation, researchers are developing more sensitive and portable diagnostic tools for a range of diseases. These microfluidic devices streamline sample processing, improve diagnostic performance, and enable point-of-care applications, allowing for rapid and accurate detection of pathogens, genetic disorders, and other health conditions. The review discusses various CRISPR/Cas systems, including Cas9, Cas12, and Cas13, and their integration with microfluidic platforms. It also examines the advantages and limitations of these systems, highlighting their potential for detecting DNA and RNA biomarkers. The review also explores the key challenges in developing and implementing CRISPR-driven microfluidic diagnostics, such as ensuring robustness, minimizing cross-contamination, and achieving robust quantification. Finally, it highlights potential future directions for this rapidly evolving field, emphasizing the transformative potential of these technologies for personalized medicine and global health.


Assuntos
Sistemas CRISPR-Cas , Microfluídica , Sistemas CRISPR-Cas/genética , Humanos , Microfluídica/métodos , Patologia Molecular/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas de Diagnóstico Molecular/métodos , Edição de Genes/métodos , Dispositivos Lab-On-A-Chip
16.
Cell Biochem Funct ; 42(6): e4104, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118353

RESUMO

Plasmodium falciparum malaria remains a dominant infectious disease that affects Africa than the rest of the world, considering its associated cases and death rates. It's a febrile illness that produces several reliable biomarkers, for example, P. falciparum lactate dehydrogenase (PfLDH), P. falciparum Plasmodium glutamate dehydrogenase (PfGDH), and P. falciparum histidine-rich proteins (HRP-II) in blood circulatory system that can easily be employed as targets in rapid diagnostic tests (RDTs). In recent times, several DNA aptamers have been developed via SELEX technology to detect some specific malaria biomarkers (PfLDH, PvLDH, HRP-II, PfGDH) in a biosensor mode with good binding affinity properties to overcome the trend of cross-reactivity, limited sensitivity and stability problems that have been observed with immunodiagnostics. In this review, we summarized existing diagnostic methods and relevant biomarkers to suggest promising approaches to develop sensitive and species-specific multiplexed diagnostic devices enabling effective detection of malaria in complex biological matrices and surveillance in the endemic region.


Assuntos
Aptâmeros de Nucleotídeos , Biomarcadores , Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Plasmodium falciparum , Biomarcadores/análise , Biomarcadores/metabolismo , Aptâmeros de Nucleotídeos/química , Humanos , Malária Falciparum/diagnóstico , Proteínas de Protozoários/análise , Proteínas de Protozoários/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/análise , Malária/diagnóstico , Glutamato Desidrogenase/análise , Glutamato Desidrogenase/metabolismo , Técnica de Seleção de Aptâmeros
17.
Biotechnol J ; 19(8): e2400070, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39167558

RESUMO

Organoids have emerged as valuable tools for the study of development and disease. Assembloids are formed by integrating multiple organoid types to create more complex models. However, the process by which organoids integrate to form assembloids remains unclear and may play an important role in the resulting organoid structure. Here, a microfluidic platform is developed that allows separate culture of distinct organoid types and provides the capacity to partially control the geometry of the resulting organoid surfaces. Removal of a microfabricated barrier then allows the shaped and positioned organoids to interact and form an assembloid. When midbrain and unguided brain organoids were allowed to assemble with a defined spacing between them, axonal projections from midbrain organoids and cell migration out of unguided organoids were observed and quantitatively measured as the two types of organoids fused together. Axonal projection directions were statistically biased toward other midbrain organoids, and unguided organoid surface geometry was found to affect cell invasion. This platform provides a tool to observe cellular interactions between organoid surfaces that are spaced apart in a controlled manner, and may ultimately have value in exploring neuronal migration, axon targeting, and assembloid formation mechanisms.


Assuntos
Movimento Celular , Técnicas de Cocultura , Organoides , Organoides/citologia , Organoides/metabolismo , Técnicas de Cocultura/métodos , Animais , Movimento Celular/fisiologia , Encéfalo/citologia , Mesencéfalo/citologia , Camundongos , Dispositivos Lab-On-A-Chip , Axônios , Microtecnologia/métodos , Humanos , Neurônios/citologia
18.
FASEB J ; 38(16): e70005, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39171967

RESUMO

Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability-a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with 13C6, 15N4-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, 13C6, 15N3 L-Citrulline and 13C5, 15N2 L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the 13C6, 15N3 L-Citrulline/13C5, 15N2 L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.


Assuntos
Células Endoteliais , Metabolômica , Microvasos , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Metabolômica/métodos , Microvasos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Células Endoteliais/metabolismo , Arginina/metabolismo , Dispositivos Lab-On-A-Chip , Células Cultivadas , Citrulina/metabolismo
19.
Biomed Phys Eng Express ; 10(5)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39142294

RESUMO

Purpose. This review aims to highlight current improvements in microfluidic devices designed for digestive cancer simulation. The review emphasizes the use of multicellular 3D tissue engineering models to understand the complicated biology of the tumor microenvironment (TME) and cancer progression. The purpose is to develop oncology research and improve digestive cancer patients' lives.Methods. This review analyzes recent research on microfluidic devices for mimicking digestive cancer. It uses tissue-engineered microfluidic devices, notably organs on a chip (OOC), to simulate human organ function in the lab. Cell cultivation on modern three-dimensional hydrogel platforms allows precise geometry, biological components, and physiological qualities. The review analyzes novel methodologies, key findings, and technical progress to explain this field's advances.Results. This study discusses current advances in microfluidic devices for mimicking digestive cancer. Micro physiological systems with multicellular 3D tissue engineering models are emphasized. These systems capture complex biochemical gradients, niche variables, and dynamic cell-cell interactions in the tumor microenvironment (TME). These models reveal stomach cancer biology and progression by duplicating the TME. Recent discoveries and technology advances have improved our understanding of gut cancer biology, as shown in the review.Conclusion. Microfluidic systems play a crucial role in modeling digestive cancer and furthering oncology research. These platforms could transform drug development and treatment by revealing the complex biology of the tumor microenvironment and cancer progression. The review provides a complete summary of recent advances and suggests future research for field professionals. The review's major goal is to further medical research and improve digestive cancer patients' lives.


Assuntos
Dispositivos Lab-On-A-Chip , Engenharia Tecidual , Microambiente Tumoral , Humanos , Engenharia Tecidual/métodos , Microfluídica/métodos , Neoplasias do Sistema Digestório , Modelos Biológicos , Hidrogéis/química , Animais
20.
Biosens Bioelectron ; 263: 116595, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098284

RESUMO

Well plates are widely used in biological experiments, particularly in pharmaceutical sciences and cell biology. Its popularity stems from its versatility to support a variety of fluorescent markers for high throughput monitoring of cellular activities. However, using fluorescent markers in traditional well plates has its own challenges, namely, they can be potentially toxic to cells, and thus, may perturb their biological functions; and it is difficult to monitor multiple analytes concurrently and in real-time inside each well. This paper presents a fully instrumented microphysiological system with integrated sensors (IMSIS) with a similar well format. Each well in the microphysiological system has a set of sensors for monitoring multiple metabolic analytes in real-time. The IMSIS platform is supported by integrated bioelectronic circuits and a graphical user interface for easy user configuration and monitoring. The system has integrated microfluidics to maintain its microphysiological environment within each well. The IMSIS platform currently incorporates O2, H2O2, and pH sensors inside each well, allowing up to six wells to perform concurrent measurements in real-time. Furthermore, the architecture is scalable to achieve an even higher level of throughput. The miniaturized design ensures portability, suitable for small offices and field applications. The IMSIS platform was successfully used to monitor in real-time the mitochondrial functions of live bovine embryos in O2 consumption, H2O2 release as an indication of ROS production, and extracellular acidity changes before and after the introduction of external substrates.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Sistemas Microfisiológicos , Animais , Humanos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Dispositivos Lab-On-A-Chip , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA