Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.432
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(24): e2401929121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843183

RESUMO

Punishment such as electric shock or physical discipline employs a mixture of physical pain and emotional distress to induce behavior modification. However, a neural circuit that produces behavior modification by selectively focusing the emotional component, while bypassing the pain typically induced by peripheral nociceptor activation, is not well studied. Here, we show that genetically silencing the activity of neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus blocks the suppression of addictive-like behavior induced by footshock. Furthermore, activating CGRP neurons suppresses not only addictive behavior induced by self-stimulating dopamine neurons but also behavior resulting from self-administering cocaine, without eliciting nocifensive reactions. Moreover, among multiple downstream targets of CGRP neurons, terminal activation of CGRP in the central amygdala is effective, mimicking the results of cell body stimulation. Our results indicate that unlike conventional electric footshock, stimulation of CGRP neurons does not activate peripheral nociceptors but effectively curb addictive behavior.


Assuntos
Comportamento Aditivo , Peptídeo Relacionado com Gene de Calcitonina , Neurônios , Núcleos Parabraquiais , Animais , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Comportamento Aditivo/metabolismo , Masculino , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Cocaína/farmacologia , Comportamento Animal/fisiologia
2.
Nat Commun ; 15(1): 4601, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834558

RESUMO

Precise neurostimulation can revolutionize therapies for neurological disorders. Electrode-based stimulation devices face challenges in achieving precise and consistent targeting due to the immune response and the limited penetration of electrical fields. Ultrasound can aid in energy propagation, but transcranial ultrasound stimulation in the deep brain has limited spatial resolution caused by bone and tissue scattering. Here, we report an implantable piezoelectric ultrasound stimulator (ImPULS) that generates an ultrasonic focal pressure of 100 kPa to modulate the activity of neurons. ImPULS is a fully-encapsulated, flexible piezoelectric micromachined ultrasound transducer that incorporates a biocompatible piezoceramic, potassium sodium niobate [(K,Na)NbO3]. The absence of electrochemically active elements poses a new strategy for achieving long-term stability. We demonstrated that ImPULS can i) excite neurons in a mouse hippocampal slice ex vivo, ii) activate cells in the hippocampus of an anesthetized mouse to induce expression of activity-dependent gene c-Fos, and iii) stimulate dopaminergic neurons in the substantia nigra pars compacta to elicit time-locked modulation of nigrostriatal dopamine release. This work introduces a non-genetic ultrasound platform for spatially-localized neural stimulation and exploration of basic functions in the deep brain.


Assuntos
Estimulação Encefálica Profunda , Hipocampo , Ondas Ultrassônicas , Animais , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos , Masculino , Dopamina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Substância Negra , Neurônios/fisiologia , Transdutores
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731862

RESUMO

There are currently no disease-modifying therapies for Parkinson's disease (PD), a progressive neurodegenerative disorder associated with dopaminergic neuronal loss. There is increasing evidence that endogenous dopamine (DA) can be a pathological factor in neurodegeneration in PD. Tyrosine hydroxylase (TH) is the key rate-limiting enzyme for DA generation. Drugs that inhibit TH, such as alpha-methyltyrosine (α-MT), have recently been shown to protect against neurodegeneration in various PD models. DA receptor agonists can activate post-synaptic DA receptors to alleviate DA-deficiency-induced PD symptoms. However, DA receptor agonists have no therapeutic effects against neurodegeneration. Thus, a combination therapy with DA receptor agonists plus TH inhibitors may be an attractive therapeutic approach. TH inhibitors can protect and promote the survival of remaining dopaminergic neurons in PD patients' brains, whereas DA receptor agonists activate post-synaptic DA receptors to alleviate PD symptoms. Additionally, other PD drugs, such as N-acetylcysteine (NAC) and anticholinergic drugs, may be used as adjunctive medications to improve therapeutic effects. This multi-drug cocktail may represent a novel strategy to protect against progressive dopaminergic neurodegeneration and alleviate PD disease progression.


Assuntos
Agonistas de Dopamina , Doença de Parkinson , Tirosina 3-Mono-Oxigenase , Animais , Humanos , Dopamina/metabolismo , Agonistas de Dopamina/uso terapêutico , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Quimioterapia Combinada , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
4.
J Cell Mol Med ; 28(10): e18368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752280

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Receptor trkB , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Receptor trkB/metabolismo , Animais , Glicoproteínas de Membrana/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
5.
Addict Biol ; 29(5): e13403, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735880

RESUMO

Synthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse; however, it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes. Here, we performed single nuclei RNA sequencing to study transcriptional programs in fentanyl-experienced mice. Male and female C57/BL6 mice self-administered intravenous fentanyl (1.5 µg/kg/infusion) or saline for 10 days. After 24 h abstinence, VTA nuclei were isolated and prepared for sequencing on the 10× platform. We identified different patterns of gene expression across cell types. In dopamine neurons, we found enrichment of genes involved in growth hormone signalling. In dopamine-glutamate-GABA combinatorial neurons, and some GABA neurons, we found enrichment of genes involved in Pi3k-Akt signalling. In glutamate neurons, we found enrichment of genes involved in cholinergic signalling. We identified transcriptional regulators for the differentially expressed genes in each neuron cluster, including downregulated transcriptional repressor Bcl6, and upregulated transcription factor Tcf4. We also compared the fentanyl-induced gene expression changes identified in mouse VTA with a published rat dataset in bulk VTA, and found overlap in genes related to GABAergic signalling and extracellular matrix interaction. Together, we provide a comprehensive picture of how fentanyl self-administration alters the transcriptional landscape of the mouse VTA that serves as the foundation for future mechanistic studies.


Assuntos
Analgésicos Opioides , Fentanila , Camundongos Endogâmicos C57BL , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Camundongos , Fentanila/farmacologia , Masculino , Feminino , Analgésicos Opioides/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Autoadministração , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética
6.
Proc Natl Acad Sci U S A ; 121(20): e2316658121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717856

RESUMO

Individual survival and evolutionary selection require biological organisms to maximize reward. Economic choice theories define the necessary and sufficient conditions, and neuronal signals of decision variables provide mechanistic explanations. Reinforcement learning (RL) formalisms use predictions, actions, and policies to maximize reward. Midbrain dopamine neurons code reward prediction errors (RPE) of subjective reward value suitable for RL. Electrical and optogenetic self-stimulation experiments demonstrate that monkeys and rodents repeat behaviors that result in dopamine excitation. Dopamine excitations reflect positive RPEs that increase reward predictions via RL; against increasing predictions, obtaining similar dopamine RPE signals again requires better rewards than before. The positive RPEs drive predictions higher again and thus advance a recursive reward-RPE-prediction iteration toward better and better rewards. Agents also avoid dopamine inhibitions that lower reward prediction via RL, which allows smaller rewards than before to elicit positive dopamine RPE signals and resume the iteration toward better rewards. In this way, dopamine RPE signals serve a causal mechanism that attracts agents via RL to the best rewards. The mechanism improves daily life and benefits evolutionary selection but may also induce restlessness and greed.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Recompensa , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Reforço Psicológico
7.
Sci Rep ; 14(1): 10983, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744869

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disorder without a cure. The onset of PD symptoms corresponds to 50% loss of midbrain dopaminergic (mDA) neurons, limiting early-stage understanding of PD. To shed light on early PD development, we study time series scRNA-seq datasets of mDA neurons obtained from patient-derived induced pluripotent stem cell differentiation. We develop a new data integration method based on Non-negative Matrix Tri-Factorization that integrates these datasets with molecular interaction networks, producing condition-specific "gene embeddings". By mining these embeddings, we predict 193 PD-related genes that are largely supported (49.7%) in the literature and are specific to the investigated PINK1 mutation. Enrichment analysis in Kyoto Encyclopedia of Genes and Genomes pathways highlights 10 PD-related molecular mechanisms perturbed during early PD development. Finally, investigating the top 20 prioritized genes reveals 12 previously unrecognized genes associated with PD that represent interesting drug targets.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Doença de Parkinson/genética , Doença de Parkinson/patologia , Humanos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , RNA-Seq/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Redes Reguladoras de Genes , Mutação , Diferenciação Celular/genética , Multiômica , Análise da Expressão Gênica de Célula Única
8.
Nat Commun ; 15(1): 4150, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755164

RESUMO

Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.


Assuntos
Amiloide , Biofilmes , Caenorhabditis elegans , Neurônios Dopaminérgicos , Microbioma Gastrointestinal , Doença de Parkinson , alfa-Sinucleína , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Humanos , Biofilmes/crescimento & desenvolvimento , Amiloide/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , Doença de Parkinson/patologia , Camundongos , Neurônios Dopaminérgicos/metabolismo , Autofagia , Doenças Neurodegenerativas/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Encéfalo/metabolismo , Encéfalo/patologia , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
9.
Behav Brain Res ; 468: 115040, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38723675

RESUMO

Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos , Hidrogênio , Fármacos Neuroprotetores , Oxidopamina , Silício , Animais , Fármacos Neuroprotetores/farmacologia , Oxidopamina/farmacologia , Camundongos , Silício/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Hidrogênio/farmacologia , Hidrogênio/administração & dosagem , Masculino , Síndromes Neurotóxicas/tratamento farmacológico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Camundongos Endogâmicos C57BL
10.
Mar Drugs ; 22(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786584

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Oligossacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Oligossacarídeos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Disbiose/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Manose/farmacologia , Manose/química , Manose/análogos & derivados , Glucuronatos/farmacologia
11.
Mol Biol Rep ; 51(1): 669, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787465

RESUMO

BACKGROUND: The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is a major pathological hallmark of Parkinson's disease (PD). Orexin B (OXB) has been reported to promote the growth of DA neurons. However, the roles of OXB in the degeneration of DA neurons still remained not fully clear. METHODS: An in vivo PD model was constructed by administrating 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Pole test was performed to investigate the motor function of mice and the number of DA neurons was detected by immunofluorescence (IF). A PD cell model was established by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+). OXB was added to the culture medium 2 h after MPP + treatment. Microscopic analysis was carried out to investigate the function of OXB in the cell model of PD 24 h after MPP + challenge. RNA-Seq analysis of the PD cell model was performed to explore the possible mechanisms. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK). RESULTS: OXB significantly decreased the DA neurons death caused by MPTP, alleviated MPP+-induced neurotoxicity in SH-SY5Y cells, and robustly enhanced the weight and motor ability of PD mice. Besides, RNA-Seq analysis demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the pathology of PD. Furthermore, MPP + led to increased levels of phosphorylation of ERK (p-ERK), OXB treatment significantly decreased the levels of p-ERK in MPP+-treated SH-SY5Y cells. CONCLUSIONS: This study demonstrated that OXB exerts a neuroprotective role associated with reduced ERK phosphorylation in the PD model. This suggests that OXB may have therapeutic potential for treatment of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Neurônios Dopaminérgicos , MAP Quinases Reguladas por Sinal Extracelular , Orexinas , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Animais , Camundongos , Fosforilação/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Orexinas/metabolismo , Orexinas/farmacologia , Humanos , Masculino , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , 1-Metil-4-fenilpiridínio/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
12.
Neurobiol Dis ; 196: 106522, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705492

RESUMO

Idiopathic Parkinson's disease (PD) is epidemiologically linked with exposure to toxicants such as pesticides and solvents, which comprise a wide array of chemicals that pollute our environment. While most are structurally distinct, a common cellular target for their toxicity is mitochondrial dysfunction, a key pathological trigger involved in the selective vulnerability of dopaminergic neurons. We and others have shown that environmental mitochondrial toxicants such as the pesticides rotenone and paraquat, and the organic solvent trichloroethylene (TCE) appear to be influenced by the protein LRRK2, a genetic risk factor for PD. As LRRK2 mediates vesicular trafficking and influences endolysosomal function, we postulated that LRRK2 kinase activity may inhibit the autophagic removal of toxicant damaged mitochondria, resulting in elevated oxidative stress. Conversely, we suspected that inhibition of LRRK2, which has been shown to be protective against dopaminergic neurodegeneration caused by mitochondrial toxicants, would reduce the intracellular production of reactive oxygen species (ROS) and prevent mitochondrial toxicity from inducing cell death. To do this, we tested in vitro if genetic or pharmacologic inhibition of LRRK2 (MLi2) protected against ROS caused by four toxicants associated with PD risk - rotenone, paraquat, TCE, and tetrachloroethylene (PERC). In parallel, we assessed if LRRK2 inhibition with MLi2 could protect against TCE-induced toxicity in vivo, in a follow up study from our observation that TCE elevated LRRK2 kinase activity in the nigrostriatal tract of rats prior to dopaminergic neurodegeneration. We found that LRRK2 inhibition blocked toxicant-induced ROS and promoted mitophagy in vitro, and protected against dopaminergic neurodegeneration, neuroinflammation, and mitochondrial damage caused by TCE in vivo. We also found that cells with the LRRK2 G2019S mutation displayed exacerbated levels of toxicant induced ROS, but this was ameliorated by LRRK2 inhibition with MLi2. Collectively, these data support a role for LRRK2 in toxicant-induced mitochondrial dysfunction linked to PD risk through oxidative stress and the autophagic removal of damaged mitochondria.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Espécies Reativas de Oxigênio , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Animais , Espécies Reativas de Oxigênio/metabolismo , Ratos , Tricloroetileno/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Rotenona/toxicidade , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle , Paraquat/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Poluentes Ambientais/toxicidade , Ratos Sprague-Dawley
13.
Sci Adv ; 10(22): eadn4203, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809978

RESUMO

Learning causal relationships relies on understanding how often one event precedes another. To investigate how dopamine neuron activity and neurotransmitter release change when a retrospective relationship is degraded for a specific pair of events, we used outcome-selective Pavlovian contingency degradation in rats. Conditioned responding was attenuated for the cue-reward contingency that was degraded, as was dopamine neuron activity in the midbrain and dopamine release in the ventral striatum in response to the cue and subsequent reward. Contingency degradation also abolished the trial-by-trial history dependence of the dopamine responses at the time of trial outcome. This profile of changes in cue- and reward-evoked responding is not easily explained by a standard reinforcement learning model. An alternative model based on learning causal relationships was better able to capture dopamine responses during contingency degradation, as well as conditioned behavior following optogenetic manipulations of dopamine during noncontingent rewards. Our results suggest that mesostriatal dopamine encodes the contingencies between meaningful events during learning.


Assuntos
Sinais (Psicologia) , Dopamina , Neurônios Dopaminérgicos , Recompensa , Animais , Dopamina/metabolismo , Ratos , Masculino , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Condicionamento Clássico , Estriado Ventral/metabolismo , Estriado Ventral/fisiologia , Aprendizagem/fisiologia , Mesencéfalo/metabolismo , Mesencéfalo/fisiologia , Reforço Psicológico
14.
Cell Rep ; 43(5): 114187, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722743

RESUMO

The locomotor role of dopaminergic neurons is traditionally attributed to their ascending projections to the basal ganglia, which project to the mesencephalic locomotor region (MLR). In addition, descending dopaminergic projections to the MLR are present from basal vertebrates to mammals. However, the neurons targeted in the MLR and their behavioral role are unknown in mammals. Here, we identify genetically defined MLR cells that express D1 or D2 receptors and control different motor behaviors in mice. In the cuneiform nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons stop locomotion. In the pedunculopontine nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons evoke ipsilateral turns. Using RNAscope, we show that MLR dopamine-sensitive neurons comprise a combination of glutamatergic, GABAergic, and cholinergic neurons, suggesting that different neurotransmitter-based cell types work together to control distinct behavioral modules. Altogether, our study uncovers behaviorally relevant cell types in the mammalian MLR based on the expression of dopaminergic receptors.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Locomoção , Mesencéfalo , Receptores de Dopamina D1 , Animais , Mesencéfalo/metabolismo , Camundongos , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Masculino
15.
Stem Cell Res Ther ; 15(1): 138, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735991

RESUMO

BACKGROUND: Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS: In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS: At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS: The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.


Assuntos
Autoanticorpos , Neurônios Dopaminérgicos , Doença de Parkinson , Receptor Tipo 1 de Angiotensina , Animais , Autoanticorpos/imunologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/imunologia , Ratos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Modelos Animais de Doenças , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Masculino , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Oxidopamina/farmacologia , Humanos , Ratos Sprague-Dawley
16.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732120

RESUMO

Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Corpo Estriado , Modelos Animais de Doenças , Doença de Parkinson , Receptor A2A de Adenosina , Animais , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Ratos , Masculino , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Receptor A2A de Adenosina/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Triazóis/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley
17.
Eur J Neurosci ; 59(10): 2535-2548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720367

RESUMO

The maturation of forebrain dopamine circuitry occurs over multiple developmental periods, extending from early postnatal life until adulthood, with the precise timing of maturation defined by the target region. We recently demonstrated in the adult mouse brain that axon terminals arising from midbrain dopamine neurons innervate the anterior corpus callosum and that oligodendrocyte lineage cells in this white matter tract express dopamine receptor transcripts. Whether corpus callosal dopamine circuitry undergoes maturational changes between early adolescence and adulthood is unknown but may be relevant to understanding the dramatic micro- and macro-anatomical changes that occur in the corpus callosum of multiple species during early adolescence, including in the degree of myelination. Using quantitative neuroanatomy, we show that dopamine innervation in the forceps minor, but not the rostral genu, of the corpus callosum, is greater during early adolescence (P21) compared to adulthood (>P90) in wild-type mice. We further demonstrate with RNAscope that, as in the adult, Drd1 and Drd2 transcripts are expressed at higher levels in oligodendrocyte precursor cells (OPCs) and decline as these cells differentiate into oligodendrocytes. In addition, the number of OPCs that express Drd1 transcripts during early adolescence is double the number of those expressing the transcript during early adulthood. These data further implicate dopamine in axon myelination and myelin regulation. Moreover, because developmental (activity-independent) myelination peaks during early adolescence, with experience-dependent (activity-dependent) myelination greatest during early adulthood, our data suggest that potential roles of dopamine on callosal myelination shift between early adolescence and adulthood, from a developmental role to an experience-dependent role.


Assuntos
Corpo Caloso , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animais , Camundongos , Corpo Caloso/metabolismo , Corpo Caloso/crescimento & desenvolvimento , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Masculino , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Feminino
18.
Nat Commun ; 15(1): 4663, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821932

RESUMO

Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid ß precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Animais , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ligação Proteica , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Camundongos Knockout , Masculino , Camundongos Endogâmicos C57BL , Feminino
19.
Sci Total Environ ; 934: 173119, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750743

RESUMO

Paraquat (PQ) is a broad-spectrum herbicide used worldwide and is a hazardous chemical to human health. Cumulative evidence strengthens the association between PQ exposure and the development of Parkinson's disease (PD). However, the underlying mechanism and effective interventions against PQ-induced neurotoxicity remain unclear. In this study, C57BL/6 J mice were treated with PQ (i.p., 10 mg/kg, twice a week) and melatonin (i.g., 20 mg/kg, twice a week) for 8 weeks. Results showed that PQ-induced motor deficits and midbrain dopaminergic neuronal damage in C57BL/6 J mice were protected by melatonin pretreatment. In isolated primary midbrain neurons and SK-N-SH cells, reduction of cell viability, elevation of total ROS levels, axonal mitochondrial transport defects and mitochondrial dysfunction caused by PQ were attenuated by melatonin. After screening of expression of main motors driving axonal mitochondrial transport, data showed that PQ-decreased KIF5A expression in mice midbrain and in SK-N-SH cell was antagonized by melatonin. Using the in vitro KIF5A-overexpression model, it was found that KIF5A overexpression inhibited PQ-caused neurotoxicity and mitochondrial dysfunction in SK-N-SH cells. In addition, application of MTNR1B (MT2) receptor antagonist, 4-P-PDOT, significantly counteracted the protection of melatonin against PQ-induced neurotoxicity. Further, Kif5a-knockdown diminished melatonin-induced alleviation of motor deficits and neuronal damage against PQ in C57BL/6 J mice. The present study establishes a causal link between environmental neurotoxicants exposure and PD etiology and provides effective interventive targets in the pathogenesis of PD.


Assuntos
Cinesinas , Melatonina , Mesencéfalo , Camundongos Endogâmicos C57BL , Mitocôndrias , Paraquat , Paraquat/toxicidade , Animais , Melatonina/farmacologia , Camundongos , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Cinesinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Herbicidas/toxicidade , Neurônios/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Transporte Axonal/efeitos dos fármacos
20.
Nat Commun ; 15(1): 4233, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762463

RESUMO

The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.


Assuntos
Aprendizagem da Esquiva , Prosencéfalo Basal , Neurônios GABAérgicos , Ácido Glutâmico , Recompensa , Área Tegmentar Ventral , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/citologia , Animais , Ácido Glutâmico/metabolismo , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Masculino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Aprendizagem da Esquiva/fisiologia , Camundongos , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...