Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.870
Filtrar
1.
F1000Res ; 13: 683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962690

RESUMO

Background: Recent innovations are making radiology more advanced for patient and patient services. Under the immense burden of radiology practice, Artificial Intelligence (AI) assists in obtaining Computed Tomography (CT) images with less scan time, proper patient placement, low radiation dose (RD), and improved image quality (IQ). Hence, the aim of this study was to evaluate and compare the positioning accuracy, RD, and IQ of AI-based automatic and manual positioning techniques for CT kidney ureters and bladder (CT KUB). Methods: This prospective study included 143 patients in each group who were referred for computed tomography (CT) KUB examination. Group 1 patients underwent manual positioning (MP), and group 2 patients underwent AI-based automatic positioning (AP) for CT KUB examination. The scanning protocol was kept constant for both the groups. The off-center distance, RD, and quantitative and qualitative IQ of each group were evaluated and compared. Results: The AP group (9.66±6.361 mm) had significantly less patient off-center distance than the MP group (15.12±9.55 mm). There was a significant reduction in RD in the AP group compared with that in the MP group. The quantitative image noise (IN) was lower, with a higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the AP group than in the MP group (p<0.05). Qualitative IQ parameters such as IN, sharpness, and overall IQ also showed significant differences (p< 0.05), with higher scores in the AP group than in the MP group. Conclusions: The AI-based AP showed higher positioning accuracy with less off-center distance (44%), which resulted in 12% reduction in RD and improved IQ for CT KUB imaging compared with MP.


Assuntos
Inteligência Artificial , Posicionamento do Paciente , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Masculino , Feminino , Posicionamento do Paciente/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Bexiga Urinária/diagnóstico por imagem , Adulto , Ureter/diagnóstico por imagem , Rim/diagnóstico por imagem , Idoso
2.
BMC Med Imaging ; 24(1): 163, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956583

RESUMO

PURPOSE: To examine whether there is a significant difference in image quality between the deep learning reconstruction (DLR [AiCE, Advanced Intelligent Clear-IQ Engine]) and hybrid iterative reconstruction (HIR [AIDR 3D, adaptive iterative dose reduction three dimensional]) algorithms on the conventional enhanced and CE-boost (contrast-enhancement-boost) images of indirect computed tomography venography (CTV) of lower extremities. MATERIALS AND METHODS: In this retrospective study, seventy patients who underwent CTV from June 2021 to October 2022 to assess deep vein thrombosis and varicose veins were included. Unenhanced and enhanced images were reconstructed for AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images were obtained using subtraction software. Objective and subjective image qualities were assessed, and radiation doses were recorded. RESULTS: The CT values of the inferior vena cava (IVC), femoral vein ( FV), and popliteal vein (PV) in the CE-boost images were approximately 1.3 (1.31-1.36) times higher than in those of the enhanced images. There were no significant differences in mean CT values of IVC, FV, and PV between AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images. Noise in AiCE, AiCE-boost images was significantly lower than in AIDR 3D and AIDR 3D-boost images ( P < 0.05). The SNR (signal-to-noise ratio), CNR (contrast-to-noise ratio), and subjective scores of AiCE-boost images were the highest among 4 groups, surpassing AiCE, AIDR 3D, and AIDR 3D-boost images (all P < 0.05). CONCLUSION: In indirect CTV of the lower extremities images, DLR with the CE-boost technique could decrease the image noise and improve the CT values, SNR, CNR, and subjective image scores. AiCE-boost images received the highest subjective image quality score and were more readily accepted by radiologists.


Assuntos
Meios de Contraste , Aprendizado Profundo , Extremidade Inferior , Flebografia , Humanos , Masculino , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Extremidade Inferior/irrigação sanguínea , Extremidade Inferior/diagnóstico por imagem , Idoso , Flebografia/métodos , Adulto , Algoritmos , Trombose Venosa/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Veia Poplítea/diagnóstico por imagem , Varizes/diagnóstico por imagem , Veia Cava Inferior/diagnóstico por imagem , Veia Femoral/diagnóstico por imagem , Doses de Radiação , Angiografia por Tomografia Computadorizada/métodos , Idoso de 80 Anos ou mais , Intensificação de Imagem Radiográfica/métodos
3.
J Radiol Prot ; 44(2)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901408

RESUMO

During the operation of high energy accelerators activated materials are commonly created. The activity and isotopes present in these materials must be characterised for their clearance and release from the facility, or to ascertain their duration of stay in a radiological storage area. An activity estimate method using a gamma detecting GR-135 survey meter, which has the ability to collect an energy spectrum, is presented. Using several reference radioactive sources the detection efficiency and dead time of the survey meter were characterised. This information combined with the physical properties of the survey meter, the counting time and the properties of the measured photon energy emissions can be used to calculate an accurate activity estimate for localised activation on accelerator components, or loose contamination on isolated waste materials.


Assuntos
Raios gama , Monitoramento de Radiação , Radioisótopos , Radioisótopos/análise , Monitoramento de Radiação/métodos , Desenho de Equipamento , Espectrometria gama , Doses de Radiação , Aceleradores de Partículas
4.
Tomography ; 10(6): 912-921, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921946

RESUMO

Deep learning image reconstruction (DLIR) algorithms employ convolutional neural networks (CNNs) for CT image reconstruction to produce CT images with a very low noise level, even at a low radiation dose. The aim of this study was to assess whether the DLIR algorithm reduces the CT effective dose (ED) and improves CT image quality in comparison with filtered back projection (FBP) and iterative reconstruction (IR) algorithms in intensive care unit (ICU) patients. We identified all consecutive patients referred to the ICU of a single hospital who underwent at least two consecutive chest and/or abdominal contrast-enhanced CT scans within a time period of 30 days using DLIR and subsequently the FBP or IR algorithm (Advanced Modeled Iterative Reconstruction [ADMIRE] model-based algorithm or Adaptive Iterative Dose Reduction 3D [AIDR 3D] hybrid algorithm) for CT image reconstruction. The radiation ED, noise level, and signal-to-noise ratio (SNR) were compared between the different CT scanners. The non-parametric Wilcoxon test was used for statistical comparison. Statistical significance was set at p < 0.05. A total of 83 patients (mean age, 59 ± 15 years [standard deviation]; 56 men) were included. DLIR vs. FBP reduced the ED (18.45 ± 13.16 mSv vs. 22.06 ± 9.55 mSv, p < 0.05), while DLIR vs. FBP and vs. ADMIRE and AIDR 3D IR algorithms reduced image noise (8.45 ± 3.24 vs. 14.85 ± 2.73 vs. 14.77 ± 32.77 and 11.17 ± 32.77, p < 0.05) and increased the SNR (11.53 ± 9.28 vs. 3.99 ± 1.23 vs. 5.84 ± 2.74 and 3.58 ± 2.74, p < 0.05). CT scanners employing DLIR improved the SNR compared to CT scanners using FBP or IR algorithms in ICU patients despite maintaining a reduced ED.


Assuntos
Algoritmos , Aprendizado Profundo , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Idoso , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Cuidados Críticos/métodos , Razão Sinal-Ruído , Unidades de Terapia Intensiva , Estudos Retrospectivos , Processamento de Imagem Assistida por Computador/métodos , Adulto
5.
Phys Med Biol ; 69(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38862002

RESUMO

Objective. To assess the performance of a new antiscatter grid design in interventional cardiology for image quality improvement and dose reduction using experimental measurements and Monte Carlo (MC) simulation.Approach.Experimental measurements were performed on an angiography system, using a multi-layered tissue simulating composite phantom made from of poly(methyl methacrylate), aluminium and expanded polystyrene (2/0.2/0.7 cm). The total phantom thickness ranged from 20.3 cm to 40.6 cm. Four conditions were compared; (A) 105 cm source-image receptor distance (SID) without grid, (Bi) 105 cm SID with grid ratio (r) and strip density (N) (r15N80), (Bii) 120 cm SID without grid, and (Biii) 120 cm SID with high ratio grid (r29N80). The system efficiency (η), defined by the signal-to-noise ratio, was compared from theBconditions against caseA. These conditions were also simulated with MC techniques, allowing additional phantom compositions to be explored. Weighted image quality improvement factor (ηw(u)) was studied experimentally at a specific spatial frequency due to the SID change. Images were simulated with an anthropomorphic chest phantom for the different conditions, and the system efficiency was compared for the different anatomical regions.Main results.Good agreement was found between theηandηw(u) methods using both measured and simulated data, with average relative differences between 2%-11%. CaseBiiiprovided higherηvalues compared toA, andBifor thicknesses larger than 20.3 cm. In addition, caseBiiialso provided higherηvalues for high attenuating areas in the anthropomorphic phantom, such as behind the spine.Significance.The new antiscatter grid design provided higher system efficiency compared to the standard grid for the parameters explored in this work.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Humanos , Cardiologia/instrumentação , Doses de Radiação , Razão Sinal-Ruído , Angiografia/instrumentação
6.
Phys Med Biol ; 69(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38843812

RESUMO

Objective. In current clinical practice for quality assurance (QA), intensity modulated proton therapy (IMPT) fields are verified by measuring planar dose distributions at one or a few selected depths in a phantom. A QA device that measures full 3D dose distributions at high spatiotemporal resolution would be highly beneficial for existing as well as emerging proton therapy techniques such as FLASH radiotherapy. Our objective is to demonstrate feasibility of 3D dose measurement for IMPT fields using a dedicated multi-layer strip ionization chamber (MLSIC) device.Approach.Our developed MLSIC comprises a total of 66 layers of strip ion chamber (IC) plates arranged, alternatively, in thexandydirection. The first two layers each has 128 channels in 2 mm spacing, and the following 64 layers each has 32/33 IC strips in 8 mm spacing which are interconnected every eight channels. A total of 768-channel IC signals are integrated and sampled at a speed of 6 kfps. The MLSIC has a total of 19.2 cm water equivalent thickness and is capable of measurement over a 25 × 25 cm2field size. A reconstruction algorithm is developed to reconstruct 3D dose distribution for each spot at all depths by considering a double-Gaussian-Cauchy-Lorentz model. The 3D dose distribution of each beam is obtained by summing all spots. The performance of our MLSIC is evaluated for a clinical pencil beam scanning (PBS) plan.Main results.The dose distributions for each proton spot can be successfully reconstructed from the ionization current measurement of the strip ICs at different depths, which can be further summed up to a 3D dose distribution for the beam. 3D Gamma Index analysis indicates acceptable agreement between the measured and expected dose distributions from simulation, Zebra and MatriXX.Significance.The dedicated MLSIC is the first pseudo-3D QA device that can measure 3D dose distribution in PBS proton fields spot-by-spot.


Assuntos
Terapia com Prótons , Radiometria , Radiometria/instrumentação , Terapia com Prótons/instrumentação , Doses de Radiação , Dosagem Radioterapêutica , Prótons , Imagens de Fantasmas , Humanos , Radioterapia de Intensidade Modulada/instrumentação
7.
Radiology ; 311(3): e232677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38916504

RESUMO

Background CT-derived bronchial parameters have been linked to chronic obstructive pulmonary disease and asthma severity, but little is known about these parameters in healthy individuals. Purpose To investigate the distribution of bronchial parameters at low-dose CT in individuals with healthy lungs from a Dutch general population. Materials and Methods In this prospective study, low-dose chest CT performed between May 2017 and October 2022 were obtained from participants who had completed the second-round assessment of the prospective, longitudinal Imaging in Lifelines study. Participants were aged at least 45 years, and those with abnormal spirometry, self-reported respiratory disease, or signs of lung disease at CT were excluded. Airway lumens and walls were segmented automatically. The square root of the bronchial wall area of a hypothetical airway with an internal perimeter of 10 mm (Pi10), luminal area (LA), wall thickness (WT), and wall area percentage were calculated. Associations between sex, age, height, weight, smoking status, and bronchial parameters were assessed using univariable and multivariable analyses. Results The study sample was composed of 8869 participants with healthy lungs (mean age, 60.9 years ± 10.4 [SD]; 4841 [54.6%] female participants), including 3672 (41.4%) never-smokers and 1197 (13.5%) individuals who currently smoke. Bronchial parameters for male participants were higher than those for female participants (Pi10, slope [ß] range = 3.49-3.66 mm; LA, ß range = 25.40-29.76 mm2; WT, ß range = 0.98-1.03 mm; all P < .001). Increasing age correlated with higher Pi10, LA, and WT (r2 range = 0.06-0.09, 0.02-0.01, and 0.02-0.07, respectively; all P < .001). Never-smoking individuals had the lowest Pi10 followed by formerly smoking and currently smoking individuals (3.62 mm ± 0.13, 3.68 mm ± 0.14, and 3.70 mm ± 0.14, respectively; all P < .001). In multivariable regression models, age, sex, height, weight, and smoking history explained up to 46% of the variation in bronchial parameters. Conclusion In healthy individuals, bronchial parameters differed by sex, height, weight, and smoking history; male sex and increasing age were associated with wider lumens and thicker walls. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Emrich and Varga-Szemes in this issue.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Estudos Prospectivos , Pulmão/diagnóstico por imagem , Brônquios/diagnóstico por imagem , Doses de Radiação , Idoso , Países Baixos
9.
Phys Med Biol ; 69(14)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38830362

RESUMO

Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures. This review provides an overview of recent developments in the field of dosimetry for FLASH RT, with particular focus on primary and secondary standard instruments, and provides a brief outlook on the future work which is required to enable clinical implementation of FLASH RT.


Assuntos
Radiometria , Dosagem Radioterapêutica , Radiometria/métodos , Humanos , Radioterapia/métodos , Doses de Radiação
10.
Cancer Imaging ; 24(1): 73, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867342

RESUMO

BACKGROUND: With the increasing prevalence of nonsmoking-related lung cancer in Asia, Asian countries have increasingly adopted low-dose computed tomography (LDCT) for lung cancer screening, particularly in private screening programs. This study examined how annual LDCT volume affects lung cancer stage distribution, overdiagnosis, and gender disparities using a hospital-based lung cancer database. METHODS: This study analyzed the annual utilized LDCT volume, clinical characteristics of lung cancer, stage shift distribution, and potential overdiagnosis. At the individual level, this study also investigated the relationship between stage 0 lung cancer (potential strict definition regarding overdiagnosis) and the clinical characteristics of lung cancer. RESULTS: This study reviewed the annual trend of 4971 confirmed lung cancer cases from 2008 to 2021 and conducted a link analysis with an LDCT imaging examination database over these years. As the volume of lung cancer screenings has increased over the years, the number and proportion of stage 0 lung cancers have increased proportionally. Our study revealed that the incidence of stage 0 lung cancer increased with increasing LDCT scan volume, particularly during the peak growth period from 2017 to 2020. Conversely, stage 4 lung cancer cases remained consistent across different time intervals. Furthermore, the increase in the lung cancer screening volume had a more pronounced effect on the increase in stage 0 lung cancer cases among females than it had among males. The estimated potential for overdiagnosis brought about by the screening process, compared to non-participating individuals, ranged from an odds ratio of 7.617 to one of 17.114. Both strict and lenient definitions of overdiagnosis (evaluating cases of stage 0 lung cancer and stages 0 to 1 lung cancer) were employed. CONCLUSIONS: These results provide population-level evidence of potential lung cancer overdiagnosis in the Taiwanese population due to the growing use of LDCT screening, particularly concerning the strict definition of stage 0 lung cancer. The impact was greater in the female population than in the male population, especially among females younger than 40 years. To improve lung cancer screening in Asian populations, creating risk-based prediction models for smokers and nonsmokers, along with gender-specific strategies, is vital for ensuring survival benefits and minimizing overdiagnosis.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Sobrediagnóstico , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Feminino , Masculino , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/tendências , Detecção Precoce de Câncer/estatística & dados numéricos , Idoso , Pessoa de Meia-Idade , Fatores Sexuais , Estadiamento de Neoplasias , Doses de Radiação , Estudos Retrospectivos
11.
Biomed Phys Eng Express ; 10(4)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861949

RESUMO

Laminated barriers incorporating metal sheets provide effective protection for space-restricted radiotherapy centers. This study aimed to assess photoneutron contamination in smaller vaults protected by different compositions of multilayer barriers during simulated pelvic radiotherapy with 18 MV photon beams. Monte Carlo Simulations of 18 MV LINAC (Varian 2100 C/D) and Medical Internal Radiation Dose (MIRD) phantom were used to assess photoneutron contamination within reconstructed vaults incorporating different combinations of metal sheet and borated polyethylene (BPE) during pelvic radiotherapy. The findings highlight a 3.27 and 2.91 times increase in ambient neutron doseHn*(10) along the maze of reconstructed vaults that use lead and steel sheets, respectively, compared to concrete. TheHn*(10) outside the treatment room increased after incorporating a metal sheet, but it remained within the permissible limit of 20µSv/week for uncontrolled areas adjacent to the LINAC bunker, even with a workload of 1000Gy/week. Neutron equivalent doses in the patient's organs ranged from 0.22 to 0.96 mSv Gy-1. There is no notable distinction in the organ's neutron equivalent dose, fatal cancer risk, secondary radiation-induced cancer risk, and cancer mortality for various laminated barrier compositions. Furthermore, the use of metal sheets for vault wall reconstruction keeps the variation in cancer risk induced by photoneutrons below 6%, while risks of fatal cancer and cancer mortality vary less than 11%. While the metal portion of the laminated barrier raises the neutron dose, the addition of a BPE plate reduces concerns of increased effective dose and secondary malignancy risk.


Assuntos
Método de Monte Carlo , Nêutrons , Imagens de Fantasmas , Dosagem Radioterapêutica , Humanos , Fótons/uso terapêutico , Aceleradores de Partículas , Simulação por Computador , Polietileno/química , Proteção Radiológica/métodos , Doses de Radiação , Radioterapia/métodos
12.
Tokai J Exp Clin Med ; 49(2): 63-66, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38904236

RESUMO

The isolated absence of the azygos vein was incidentally found on computed tomography (CT) examination in a 60-year-old female. The exact anomaly can be evaluated on high-resolution images of 0.4-mm slice thickness with low keV using photon-counting detector CT. The azygos vein, including the azygos arch, was absent, and a mildly dilated hemiazygos vein flowed to the left brachiocephalic vein through the left superior intercostal vein. A hemiazygos vein connected the left renal vein at the level of the first lumbar vertebra. This patient was the second patient to undergo evaluation using volume rendering images. High-resolution maximum-intensity projection images were useful for assessing the anatomy. Radiation dose was decreased compared with that in conventional CT.


Assuntos
Veia Ázigos , Tomografia Computadorizada por Raios X , Humanos , Veia Ázigos/diagnóstico por imagem , Veia Ázigos/anormalidades , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Fótons , Achados Incidentais , Doses de Radiação , Veias Renais/diagnóstico por imagem , Veias Renais/anormalidades
13.
Turk Kardiyol Dern Ars ; 52(4): 260-268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829631

RESUMO

OBJECTIVE: Ionizing radiation has long been used in the medical field. Catheter laboratories (cath labs) are recognized as areas where radiation exposure is notably high. This study aims to examine the levels of radiation exposure during various interventional procedures to raise awareness of this issue in Türkiye. METHODS: This study evaluated the procedure radiation doses (n = 2804) in the cath labs of four public hospitals with distinct characteristics. Radiation dose evaluation was conducted using Cumulative Air Kerma (CAK). The Kolmogorov-Smirnov test, Kruskal-Wallis H test, independent T-test, and Pearson correlation coefficient were utilized to analyze the data. A p-value of < 0.05 was considered statistically significant. Data were analyzed using IBM® Statistical Package for the Social Sciences (SPSS®) STATISTICS Version 26.0.0.0 (IBM Corporation, Armonk, New York, USA). RESULTS: The procedure radiation doses in the cath labs were documented. The findings are largely consistent with the literature. Notably, several outlier cases with extremely high radiation doses were identified [CAK (min-max) = 0.12 - 9.9 Gy]. Procedures such as chronic total occlusion (CTO) [Mean CAK: 3.8 (± 1.5) Gy] and percutaneous coronary interventions (PCI) [Mean CAK: 1.5 (± 1.4) Gy] were associated with high doses. Additionally, personnel attitudes toward radiation optimization in cath labs were found to be inadequate. CONCLUSION: The incidence of high radiation exposure during interventional procedures may be higher than expected in Türkiye. Further research is necessary to identify predictors and implement preventive measures to reduce these rates. For this purpose, establishing diagnostic radiation reference levels (DRLs) could help monitor national radiation levels.


Assuntos
Exposição Ocupacional , Doses de Radiação , Humanos , Exposição Ocupacional/prevenção & controle , Exposição à Radiação/prevenção & controle , Turquia , Cardiologia , Atitude do Pessoal de Saúde , Feminino , Masculino
14.
J Nucl Med Technol ; 52(2): 152-157, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839118

RESUMO

The National Cyclotron and PET Centre at Chulabhorn Hospital offers nuclear medicine diagnostic services using state-of-the-art digital PET/CT and PET/MRI machines as well as other related devices. Additionally, the center plays a vital role by having a cyclotron to produce radiopharmaceuticals, which are used both in-house and in other hospitals throughout the country. Despite the center's strict adherence to international standards regarding the use of radioactive substances in patients, there remains a potential risk of radiation exposure for operators, workers, and the public due to radioactive contamination and emissions from unsealed sources. Hence, it is imperative to assess and continuously monitor radiation levels in the work area to ensure the utmost level of safety for personnel. Methods: This study used optically stimulated luminescence dosimeters to measure radiation levels in 17 areas, consisting of 9 controlled and 8 supervised areas. Over a 3-mo period, the average monthly radiation dose was recorded for each location. Results: The PET/CT room registered the highest radiation dose within the controlled area, with a monthly average of 1.81 ± 0.29 mSv, equivalent to an annual dose of 21.72 mSv. This higher dose can be attributed to the significant number of patients served in this room. In supervised areas, the nursing counter located between the examination room and the patient waiting area exhibited the highest radiation exposure. The average monthly dose measured at this location was 0.085 ± 0.019 mSv, resulting in an annual dose of 1.015 mSv. Conclusion: The evaluation of radiation dose in controlled and supervised areas indicated that the overall radiation level remains within the prescribed limits. However, the slight excess that was observed at the nursing counter indicates the need for improvement to ensure compliance with the as-low-as-reasonably-achievable principle. Continuous monitoring of radiation levels should be conducted annually to maintain safety standards and minimize the risk that workers and the general public will be exposed to radioactivity.


Assuntos
Ciclotrons , Hospitais , Tomografia por Emissão de Pósitrons , Doses de Radiação , Tailândia , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle
15.
Phys Med ; 122: 103384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824827

RESUMO

The dosimetry evaluation for the selective internal radiation therapy is currently performed assuming a uniform activity distribution, which is in contrast with literature findings. A 2D microscopic model of the perfused liver was developed to evaluate the effect of two different 90Y microspheres distributions: i) homogeneous partitioning with the microspheres equally distributed in the perfused liver, and ii) tumor-clustered partitioning where the microspheres distribution is inferred from the patient specific images. METHODS: Two subjects diagnosed with liver cancer were included in this study. For each subject, abdominal CT scans acquired prior to the SIRT and post-treatment 90Y positron emission tomography were considered. Two microspheres partitionings were simulated namely homogeneous and tumor-clustered partitioning. The homogeneous and tumor-clustered partitionings were derived starting from CT images. The microspheres radiation is simulated by means of Russell's law. RESULTS: In homogenous simulations, the dose delivery is uniform in the whole liver while in the tumor-clustered simulations a heterogeneous distribution of the delivered dose is visible with higher values in the tumor regions. In addition, in the tumor-clustered simulation, the delivered dose is higher in the viable tumor than in the necrotic tumor, for all patients. In the tumor-clustered case, the dose delivered in the non-tumoral tissue (NTT) was considerably lower than in the perfused liver. CONCLUSIONS: The model proposed here represents a proof-of-concept for personalized dosimetry assessment based on preoperative CT images.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microesferas , Dosagem Radioterapêutica , Radioisótopos de Ítrio , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/diagnóstico por imagem , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/diagnóstico por imagem , Humanos , Radioisótopos de Ítrio/uso terapêutico , Modelos Biológicos , Tomografia Computadorizada por Raios X , Doses de Radiação , Microscopia
16.
Phys Med ; 122: 103390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833878

RESUMO

PURPOSE: This study discusses the measurement of dose in clinical commissioning tests described in IAEA-TECDOC-1583. It explores the application of Monte Carlo (MC) modelled medium dependency correction factors (Kmed) for accurate dose measurement in bone and lung materials using the CIRS phantom. METHODS: BEAMnrc codes simulate radiation sources and model radiation transport for 6 MV and 15 MV photon beams. CT images of the CIRS phantom are converted to an MC compatible phantom. The PTW 30013 farmer chamber measures doses within modeled CIRS phantom. Kmed are determined by averaging values from four central voxels within the sensitive volume of the farmer chamber. Kmed is calculated for Dm.m and Dw.w algorithm types in bone and lung media for both photon beams. RESULTS: Average modelled correction factors for Dm.m calculations using the farmer chamber are 0.976 (±0.1 %) for 6 MV and 0.979 (±0.1 %) for 15 MV in bone media. Correspondingly, correction factors for Dw.w calculations are 0.99 (±0.3 %) and 0.992 (±0.4 %), respectively. For lung media, average correction factors for Dm.m calculations are 1.02 (±0.3 %) for 6 MV and 1.022 (±0.4 %) for 15 MV. Correspondingly, correction factors for Dw.w calculations are 1.01 (±0.3 %) and 1.012 (±0.2 %), respectively. CONCLUSIONS: This study highlights the significant impact of applying Kmed on dose differences between measurement and calculation during the dose audit process.


Assuntos
Algoritmos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Osso e Ossos/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Radiometria/métodos , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
17.
J Radiol Prot ; 44(2)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38834050

RESUMO

Interventional radiology is a clinical practice with important benefits for patients, but which involves high radiation doses. The optimisation of radiation protection (RP) for paediatric interventional cardiology is a priority for both patients and staff. The use of diagnostic reference levels (DRLs) has been proposed by the International Commission on Radiological Protection to improve RP in imaging procedures. Dose management systems (DMSs) allow the automatic collection of dosimetric, geometric and technical data to assist the optimisation process, with a continuous audit of the procedures, generating alerts to implement corrective actions when necessary. Patient dose indicators may be analysed individually and for different radiation events (fluoroscopy and cine runs). Occupational doses per procedure may be analysed (if electronic dosimeters are available) and linked with patient doses for an integrated approach to RP. Regional optimisation programmes require data collection and processing from several countries to set and periodically update the DRLs. Patient data is anonymised, and each participating hospital has access to their data in a central computer server. Using DMSs may be one of the best ways to support these programs in the collection and analysis of data, raising alerts about high patient and occupational doses and suggesting optimisation actions.


Assuntos
Exposição Ocupacional , Doses de Radiação , Proteção Radiológica , Proteção Radiológica/normas , Humanos , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Radiografia Intervencionista , Monitoramento de Radiação/métodos , Níveis de Referência de Diagnóstico , Radiologia Intervencionista
18.
J Egypt Natl Canc Inst ; 36(1): 22, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910202

RESUMO

BACKGROUND: Innovations in cancer treatment have contributed to the improved survival rate of cancer patients. The cancer survival rates have been growing and nearly two third of those survivors have been exposed to clinical radiation during their treatment. The study of long-term radiation effects, especially secondary cancer induction, has become increasingly important. An accurate assessment of out-of-field/peripheral dose (PDs) is necessary to estimate the risk of second cancer after radiotherapy and the damage to the organs at risk surrounding the planning target volume. This study was designed to measure the PDs as a function of dose, distances, and depths from Telecobalt-60 (Co-60) beam in water phantom using thermoluminescent dosimeter-100 (TLD-100). METHODS: The PDs were measured for Co-60 beam at specified depths of 0 cm (surface), 5 cm, 10 cm, and 15 cm outside the radiation beam at distances of 5, 10, and 13 cm away from the radiation field edge using TLD-100 (G1 cards) as detectors. These calibrated cards were placed on the acrylic disc in circular tracks. The radiation dose of 2000 mGy of Co-60 beam was applied inside 10 × 10 cm2 field size at constant source to surface distance (SSD) of 80 cm. RESULTS: The results showed maximum and minimum PDs at surface and 5 cm depth respectively at all distances from the radiation field edge. Dose distributions out of the field edge with respect to distance were isotropic. The decrease in PDs at 5 cm depth was due to dominant forward scattering of Co-60 gamma rays. The increase in PDs beyond 5 cm depth was due to increase in the irradiated volume, increase in penumbra, increase in source to axis distance (SAD), and increase in field size due to inverse square factor. CONCLUSION: It is concluded that the PDs depends upon depth and distance from the radiation field edge. All the measurements show PDs in the homogenous medium (water); therefore, it estimates absorbed dose to the organ at risk (OAR) adjacent to cancer tissues/planning target volume (PTV). It is suggested that PDs can be minimized by using the SAD technique, as this technique controls sources of scattered radiation like inverse square factor and effect of penumbra up-to some extent.


Assuntos
Radioisótopos de Cobalto , Imagens de Fantasmas , Dosagem Radioterapêutica , Dosimetria Termoluminescente , Humanos , Dosimetria Termoluminescente/métodos , Água , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias/radioterapia , Doses de Radiação , Órgãos em Risco/efeitos da radiação
19.
Radiat Prot Dosimetry ; 200(10): 881-889, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38834189

RESUMO

This research forms a part of the comprehensive Indian Environmental Radiation Monitoring Network program, focusing on the continuous measurement of absorbed dose rate in outdoor air due to natural gamma radiation (cosmic and terrestrial) in Bengaluru, Karnataka, India. Over the course of a decade (2013-2023), data were collected from 41 monitoring locations in the city using permanently field-installed Geiger-Mueller detector-based environmental radiation monitors. This paper presents an analysis of the extensive long-term monitoring results. The mean absorbed gamma dose rate in outdoor air across the monitoring locations ranged from 84 ± 9 to 156 ± 4 nGy.h-1, with a calculated mean value of 124 ± 15 nGy.h-1. The estimated mean annual effective dose due to outdoor natural gamma radiation varied from 0.10 ± 0.01 to 0.19 ± 0.01 mSv.y-1, with an overall mean of 0.15 ± 0.02 mSv.y-1.


Assuntos
Poluentes Radioativos do Ar , Radiação de Fundo , Raios gama , Doses de Radiação , Monitoramento de Radiação , Índia , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise , Humanos
20.
Radiat Prot Dosimetry ; 200(10): 945-955, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38847407

RESUMO

The article reviews the historical developments in radiation dose metrices in medical imaging. It identifies the good, the bad, and the ugly aspects of current-day metrices. The actions on shifting focus from International Commission on Radiological Protection (ICRP) Reference-Man-based population-average phantoms to patient-specific computational phantoms have been proposed and discussed. Technological developments in recent years involving AI-based automatic organ segmentation and 'near real-time' Monte Carlo dose calculations suggest the feasibility and advantage of obtaining patient-specific organ doses. It appears that the time for ICRP and other international organizations to embrace 'patient-specific' dose quantity representing risk may have finally come. While the existing dose metrices meet specific demands, emphasis needs to be also placed on making radiation units understandable to the medical community.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Proteção Radiológica , Humanos , Proteção Radiológica/métodos , Radiometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...