Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Zool Res ; 45(5): 1037-1047, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39147718

RESUMO

Serine protease 50 (PRSS50/TSP50) is highly expressed in spermatocytes. Our study investigated its role in testicular development and spermatogenesis. Initially, PRSS50 knockdown was observed to impair DNA synthesis in spermatocytes. To further explore this, we generated PRSS50 knockout ( Prss50 -/- ) mice ( Mus musculus), which exhibited abnormal spermatid nuclear compression and reduced male fertility. Furthermore, dysplastic seminiferous tubules and decreased sex hormones were observed in 4-week-old Prss50 -/- mice, accompanied by meiotic progression defects and increased apoptosis of spermatogenic cells. Mechanistic analysis indicated that PRSS50 deletion resulted in increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and elevated levels of MAP kinase phosphatase 3 (MKP3), a specific ERK antagonist, potentially accounting for testicular dysplasia in adolescent Prss50 -/- mice. Taken together, these findings suggest that PRSS50 plays an important role in testicular development and spermatogenesis, with the MKP3/ERK signaling pathway playing a significant role in this process.


Assuntos
Sistema de Sinalização das MAP Quinases , Meiose , Camundongos Knockout , Espermatozoides , Animais , Masculino , Camundongos , Meiose/fisiologia , Espermatozoides/fisiologia , Espermatogênese/fisiologia , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo , Testículo/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
2.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39133135

RESUMO

Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells, including those of the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation or death. Conditional loss of gata6 starting at 24 h is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole, with decreased expression levels of anterior secondary heart field (SHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout, resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm are mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.


Assuntos
Diferenciação Celular , Endoderma , Fator de Transcrição GATA6 , Coração , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Endoderma/metabolismo , Endoderma/embriologia , Endoderma/citologia , Diferenciação Celular/genética , Coração/embriologia , Organogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Transdução de Sinais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Fatores de Transcrição GATA
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 359-366, 2024 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38970509

RESUMO

OBJECTIVES: Adverse cardiovascular events are the leading cause of death in peritoneal dialysis patients. Identifying indicators that can predict adverse cardiovascular events in these patients is crucial for prognosis. This study aims to assess the value of dual-specificity phosphatase 6 (DUSP6) in peripheral blood mononuclear cells as a predictor of adverse cardiovascular events after peritoneal dialysis in diabetic nephropathy patients. METHODS: A total of 124 diabetic nephropathy patients underwent peritoneal dialysis treatment at the Department of Nephrology of the First Affiliated Hospital of Hebei North University from June to September 2022 were selected as study subjects. The levels of DUSP6 in peripheral blood mononuclear cells were determined using Western blotting. Patients were categorized into high-level and low-level DUSP6 groups based on the median DUSP6 level. Differences in body mass index, serum albumin, high-sensitivity C-reactive protein, and dialysis duration were compared between the 2 groups. Pearson, Spearman, and multiple linear regression analyses were performed to examine factors related to DUSP6. Patients were followed up to monitor the occurrence of adverse cardiovascular events, and risk factors for adverse cardiovascular events after peritoneal dialysis were analyzed using Kaplan-Meier and Cox regression. RESULTS: By the end of the follow-up, 33 (26.61%) patients had experienced at least one adverse cardiovascular event. The high-level DUSP6 group had higher body mass index, longer dialysis duration, and higher high-sensitivity C-reactive protein, but lower serum albumin levels compared to the low-level DUSP6 group (all P<0.05). DUSP6 was negatively correlated with serum albumin levels (r=-0.271, P=0.002) and positively correlated with dialysis duration (rs=0.406, P<0.001) and high-sensitivity C-reactive protein (rs=0.367, P<0.001). Multiple linear regression analysis revealed that dialysis duration and high-sensitivity C-reactive protein were independently correlated with DUSP6 levels (both P<0.05). The cumulative incidence of adverse cardiovascular events was higher in the high-level DUSP6 group than in the low-level DUSP6 group (46.67% vs 7.81%, P<0.001). Cox regression analysis indicated that low serum albumin levels (HR=0.836, 95% CI 0.778 to 0.899), high high-sensitivity C-reactive protein (HR=1.409, 95% CI 1.208 to 1.644), and high DUSP6 (HR=6.631, 95% CI 2.352 to 18.693) were independent risk factors for adverse cardiovascular events in peritoneal dialysis patients. CONCLUSIONS: Dialysis duration and high-sensitivity C-reactive protein are independently associated with DUSP6 levels in peripheral blood mononuclear cells of diabetic nephropathy patients undergoing peritoneal dialysis. High DUSP6 levels indicate a higher risk of adverse cardiovascular events.


Assuntos
Doenças Cardiovasculares , Nefropatias Diabéticas , Fosfatase 6 de Especificidade Dupla , Leucócitos Mononucleares , Diálise Peritoneal , Humanos , Diálise Peritoneal/efeitos adversos , Doenças Cardiovasculares/etiologia , Nefropatias Diabéticas/sangue , Fosfatase 6 de Especificidade Dupla/genética , Feminino , Masculino , Leucócitos Mononucleares/metabolismo , Fatores de Risco , Proteína C-Reativa/metabolismo , Pessoa de Meia-Idade , Prognóstico , Albumina Sérica/metabolismo , Albumina Sérica/análise
4.
EMBO Mol Med ; 16(7): 1603-1629, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886591

RESUMO

Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth. DUSP6 expression also selectively associated with poor patient survival in HER2+ breast cancers. DUSP6 overexpression conferred apoptosis resistance, whereas its pharmacological blockade prevented therapy tolerance development under HER2i therapy. DUSP6 targeting also synergized with clinically used HER2i combination therapies. Mechanistically DUSP6 is a positive regulator of HER3 expression, and its impact on HER2i tolerance was mediated by neuregulin-HER3 axis. In vivo, genetic targeting of DUSP6 reduced tumor growth in brain metastasis model, whereas its pharmacological targeting induced synthetic lethal therapeutic effect in combination with HER2i. Collectively this work demonstrates that DUSP6 drives escape from HER2i-induced dormancy, and that DUSP6 is a druggable target to overcome HER3-driven TKI resistance.


Assuntos
Neoplasias da Mama , Fosfatase 6 de Especificidade Dupla , Receptor ErbB-2 , Receptor ErbB-3 , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Receptor ErbB-2/metabolismo , Animais , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/antagonistas & inibidores , Linhagem Celular Tumoral , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
5.
J Mol Neurosci ; 74(3): 59, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890235

RESUMO

Binge drinking causes a range of problems especially damage to the nervous system, and the specific neural mechanism of brain loss and behavioral abnormalities caused by which is still unclear. Extracellular regulated protein kinases (ERK) maintain neuronal survival, growth, and regulation of synaptic plasticity by phosphorylating specific transcription factors to regulate expression of brain-derived neurotrophic factor (BDNF). Dual-specific phosphatase 1 (DUSP1) and DUSP6 dephosphorylate tyrosine and serine/threonine residues in ERK1/2 to inactivate them. To investigate the molecular mechanism by which alcohol affects memory and emotion, a chronic intermittent alcohol exposure (CIAE) model was established. The results demonstrated that mice in the CIAE group developed short-term recognition memory impairment and anxiety-like behavior; meanwhile, the expression of DUSP1 and DUSP66 in the mPFC was increased, while the levels of p-ERK and BDNF were decreased. Micro-injection of DUSP1/6 inhibitor BCI into the medial prefrontal cortex (mPFC) restored the dendritic morphology by reversing the activity of ERK-BDNF and ultimately improved cognitive and emotional impairment caused by CIAE. These findings indicate that CIAE inhibits ERK-BDNF by increasing DUSP1/6 in the mPFC that may be associated with cognitive and emotional deficits. Consequently, DUSP1 and DUSP6 appear to be potential targets for the treatment of alcoholic brain disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fosfatase 1 de Especificidade Dupla , Etanol , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Masculino , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Etanol/toxicidade , Etanol/farmacologia , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Aminoacetonitrila/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Sistema de Sinalização das MAP Quinases
6.
Anticancer Drugs ; 35(8): 720-731, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718254

RESUMO

Acute myocardial infarction (AMI) is the high incidence rate and mortality of common cardiovascular disease. Herein, we explored the critical role of TRIM11 in AMI and its underlying mechanism. Serum from patients with AMI were collected from our hospital. Mice of model group received angiotensin II. Mice of model + TRIM11 group received with Ang II and TRIM11 vectors. Mice of sham group received normal saline. H9c2 cells were performed transfections using Lipofectamine 2000 (Thermo Fisher Scientific Inc, Shanghai, China), and treated with Ang II. TRIM11 mRNA expression was reduced, was negative correlation with collagen I/III mRNA expression, systolic blood pressure, diastolic blood pressure, left anteroposterior atrial diameter, right atrial diameter, or left ventricular ejection fraction in patient with AMI. TRIM11 mRNA and protein expression were also suppressed. METTL3 regulates TRIM11 methylation to reduce TRIM11 gene stability in model of AMI. TRIM11 gene ameliorated AMI in mice model. TRIM11 gene reduced reactive oxygen species production level of cardiomyocyte in-vitro model. TRIM11 gene reduced ferroptosis of cardiomyocyte in-vitro model. TRIM11 gene reduced ferroptosis by the inhibition of mitochondrial damage of cardiomyocyte in model of AMI. TRIM11 induced Dusp6 protein expression. Bioluminescence imaging showed that TRIM11 virus increased Dusp6 expression in heart tissue of mice model. The inhibition of Dusp6 reduced the effects of TRIM11 on ferroptosis of cardiomyocyte in model of AMI. In conclusion, this study demonstrates that TRIM11 improves AMI by regulating Dusp6 to inhibit ferroptosis of cardiomyocyte, and suggest a novel target for AMI.


Assuntos
Regulação para Baixo , Fosfatase 6 de Especificidade Dupla , Ferroptose , Infarto do Miocárdio , Miócitos Cardíacos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Humanos , Masculino , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Angiotensina II/farmacologia , Feminino
7.
Biochem Pharmacol ; 224: 116247, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38697311

RESUMO

Current therapeutic options for renal cell carcinoma (RCC) are very limited, which is largely due to inadequate comprehension of molecular pathological mechanisms as well as RCC's resistance to chemotherapy. Dual-specificity phosphatase 6 (DUSP6) has been associated with numerous human diseases. However, its role in RCC is not well understood. Here, we show that diminished DUSP6 expression is linked to RCC progression and unfavorable prognosis. Mechanistically, DUSP6 serves as a tumor suppressor in RCC by intervening the TAF10 and BSCL2 via the ERK-AKT pathway. Further, DUSP6 is also transcriptionally regulated by HNF-4a. Moreover, docking experiments have indicated that DUSP6 expression is enhanced when bound by Calcium saccharate, which also inhibits RCC cell proliferation, metabolic rewiring, and sunitinib resistance. In conclusion, our study identifies Calcium saccharate as a prospective pharmacological therapeutic approach for RCC.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Fosfatase 6 de Especificidade Dupla , Glicólise , Neoplasias Renais , Proteínas Proto-Oncogênicas c-akt , Sunitinibe , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Sunitinibe/farmacologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Antineoplásicos/farmacologia , Camundongos , Camundongos Nus , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino
8.
Anticancer Res ; 44(6): 2545-2554, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821599

RESUMO

BACKGROUND/AIM: Epidermal growth factor receptor (EGFR) over-expression is commonly observed in advanced head and neck squamous cell carcinoma (HNSCC) and is correlated with poor patient outcomes. However, the role of dual-specificity phosphatase 6 (DUSP6) in EGFR-associated HNSCC progression remains poorly understood. This study aimed to investigate the correlation between DUSP6 expression and EGFR signaling in malignant HNSCC tissues. MATERIALS AND METHODS: Data mining and in vitro assays were employed to assess DUSP6 expression levels in HNSCC tissues compared to normal tissues. Additionally, the correlation between DUSP6 and EGFR expression was examined. Functional assays were conducted to investigate the modulation of DUSP6 expression by EGFR signaling and its involvement in EGF-induced cell migration and anoikis resistance. RESULTS: Our analysis revealed a significant elevation in DUSP6 expression in HNSCC tissues compared to normal tissues and a strong correlation between DUSP6 and EGFR expression. EGFR signaling modulated DUSP6 expression in a dose- and time-dependent manner, primarily through the extracellular signal-regulated kinase (ERK) pathway. Knockdown experiments demonstrated the functional role of DUSP6 in EGF-induced cell migration and anoikis resistance. CONCLUSION: The findings of this study elucidate the intricate signaling networks governing DUSP6 expression and its interplay with EGFR signaling in HNSCC. Moreover, the results provide insights into the potential role of DUSP6 as a therapeutic target and highlight the importance of personalized treatment strategies in HNSCC management.


Assuntos
Movimento Celular , Fosfatase 6 de Especificidade Dupla , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Anoikis/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
9.
Biochem Biophys Res Commun ; 715: 150004, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678784

RESUMO

Megakaryopoiesis and platelet production is a complex process that is underpotential regulation at multiple stages. Many long non-coding RNAs (lncRNAs) are distributed in hematopoietic stem cells and platelets. lncRNAs may play important roles as key epigenetic regulators in megakaryocyte differentiation and proplatelet formation. lncRNA NORAD can affect cell ploidy by sequestering PUMILIO proteins, although its direct effect on megakaryocyte differentiation and thrombopoiesis is still unknown. In this study, we demonstrate NORAD RNA is highly expressed in the cytoplasm during megakaryocyte differentiation. Interestingly, we identified for the first time that NORAD has a strong inhibitory effect on megakaryocyte differentiation and proplatelet formation from cultured megakaryocytes. DUSP6/ERK1/2 pathway is activated in response to NORAD knockdown during megakaryocytopoiesis, which is achieved by sequestering PUM2 proteins. Finally, compared with the wild-type control mice, NORAD knockout mice show a faster platelet recovery after severe thrombocytopenia induced by 6 Gy total body irradiation. These findings demonstrate lncRNA NORAD has a key role in regulating megakaryocyte differentiation and thrombopoiesis, which provides a promising molecular target for the treatment of platelet-related diseases such as severe thrombocytopenia.


Assuntos
Plaquetas , Diferenciação Celular , Fosfatase 6 de Especificidade Dupla , Megacariócitos , RNA Longo não Codificante , Trombopoese , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Sistema de Sinalização das MAP Quinases , Megacariócitos/metabolismo , Megacariócitos/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Trombopoese/genética
10.
J Neurosci ; 44(5)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296649

RESUMO

The mesolimbic dopamine system is a crucial component of reward and reinforcement processing, including the psychotropic effects of drugs of abuse such as cocaine. Drugs of abuse can activate intracellular signaling cascades that engender long-term molecular changes to brain reward circuitry, which can promote further drug use. However, gaps remain about how the activity of these signaling pathways, such as ERK1/2 signaling, can affect cocaine-induced neurochemical plasticity and cocaine-associated behaviors specifically within dopaminergic cells. To enable specific modulation of ERK1/2 signaling in dopaminergic neurons of the ventral tegmental area, we utilize a viral construct that Cre dependently expresses Map kinase phosphatase 3 (MKP3) to reduce the activity of ERK1/2, in combination with transgenic rats that express Cre in tyrosine hydroxylase (TH)-positive cells. Following viral transfection, we found an increase in the surface expression of the dopamine transporter (DAT), a protein associated with the regulation of dopamine signaling, dopamine transmission, and cocaine-associated behavior. We found that inactivation of ERK1/2 reduced post-translational phosphorylation of the DAT, attenuated the ability of cocaine to inhibit the DAT, and decreased motivation for cocaine without affecting associative learning as tested by conditioned place preference. Together, these results indicate that ERK1/2 signaling plays a critical role in shaping the dopamine response to cocaine and may provide additional insights into the function of dopaminergic neurons. Further, these findings lay important groundwork toward the assessment of how signaling pathways and their downstream effectors influence dopamine transmission and could ultimately provide therapeutic targets for treating cocaine use disorders.


Assuntos
Cocaína , Dopamina , Ratos , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Motivação , Sistema de Sinalização das MAP Quinases , Fosfatase 6 de Especificidade Dupla/metabolismo , Cocaína/farmacologia , Área Tegmentar Ventral/fisiologia , Recompensa , Ratos Transgênicos
11.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958545

RESUMO

Drug-induced liver injury (DILI) is a widespread and harmful disease, and is closely linked to acute endoplasmic reticulum (ER) stress. Previous reports have shown that acute ER stress can suppress hepatic gluconeogenesis and even leads to hypoglycemia. However, the mechanism is still unclear. MAPK phosphatase 3 (MKP-3) is a positive regulator for gluconeogenesis. Thus, this study was conducted to investigate the role of MKP-3 in the suppression of gluconeogenesis by acute ER stress, as well as the regulatory role of acute ER stress on the expression of MKP-3. Results showed that acute ER stress induced by tunicamycin significantly suppressed gluconeogenesis in both hepatocytes and mouse liver, reduced glucose production level in hepatocytes, and decreased fasting blood glucose level in mice. Additionally, the protein level of MKP-3 was reduced by acute ER stress in both hepatocytes and mouse liver. Mkp-3 deficiency eliminated the inhibitory effect of acute ER stress on gluconeogenesis in hepatocytes. Moreover, the reduction effect of acute ER stress on blood glucose level and hepatic glucose 6-phosphatase (G6pc) expression was not observed in the liver-specific Mkp-3 knockout mice. Furthermore, activation of protein kinase R-like ER kinase (PERK) decreased the MKP-3 protein level, while inactivation of PERK abolished the reduction effect of acute ER stress on the MKP-3 protein level in hepatocytes. Taken together, our study suggested that acute ER stress could suppress hepatic gluconeogenesis by stimulating MKP-3 degradation via PERK, at least partially. Thus, MKP-3 might be a therapeutic target for DILI-related hypoglycemia.


Assuntos
Fosfatase 6 de Especificidade Dupla , Gluconeogênese , Hipoglicemia , Animais , Camundongos , Glicemia/metabolismo , Estresse do Retículo Endoplasmático , Hepatócitos/metabolismo , Hipoglicemia/metabolismo , Fígado/metabolismo , Camundongos Knockout , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatase 6 de Especificidade Dupla/metabolismo
12.
Chemosphere ; 344: 140358, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797900

RESUMO

Particulate matter (PM), one of the most serious air contaminants, could easily pass through the airway and deposit at the deep alveoli. Thus, it might trigger respiratory diseases like inflammation, asthma and lung cancer on human. Long non-coding RNAs (lncRNAs) are considered as important regulator in promotion and progression of diverse cancers. However, the molecular mechanism of lncRNAs mediating PM-induced lung carcinogenesis remains unclear. In this study, we established a 16HBE malignant transformed cell induced by PM (Cells were treated with 20 µg/ml PM, which named PM-T cells) and explored the roles and mechanisms of lncRNAs in the malignant transformation induced by PM. Compared with 16HBE cells, various biological functions were changed in PM-T cells, such as cell proliferation, migration, cell cycle and apoptosis. LncRNA SPRY4-IT1 was significant down-regulated expression and associated with these biological effects. Our results showed that lncRNA SPRY4-IT1 overexpression reversed these functional changes mentioned above. The further studies indicated that lncRNA SPRY4-IT1 involved in PM-induced cell transformation by modulating Chk1 expression via negative regulation of DUSP6-ERK1/2. In conclusion, our studies suggested that lncRNA SPRY4-IT1 played the role as a tumor suppressor gene and might mediate 16HBE cells malignant transformation induced by PM through regulating DUSP6-ERK1/2-Chk1 signaling pathway.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Proliferação de Células/genética , Movimento Celular , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo
13.
Arch Esp Urol ; 76(6): 445-453, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681336

RESUMO

BACKGROUND: Nucleolar prominence is a biomarker of prostate cancer (CaP), and the nucleolar protein block of proliferation 1 (BOP1) participates in the development of CaP, which has great significance for CaP therapy. Thus, this study explored the mechanism of BOP1 in CaP development. METHODS: BOP1 expression levels in the tumor tissues of CaP patients and in PC3 tumor cells were determined. The viability, apoptosis rate of PC3 cells, and apoptosis-related proteins levels were determined to explore the effect of BOP1 on tumor-cell growth in vitro. BOP1 function in the metastasis of PC3 cells was further assessed by Transwell experiment. We also studied the influence of BOP1 on the expression of mitogen-activated protein kinase (MAPK) pathway-related proteins and investigated the regulatory effect of BOP1 on dual-specificity phosphatase 6 (DUSP6). RESULTS: BOP1 expression was upregulated in the tumor tissues and PC3 cells of CaP patients. BOP1 knockout reduced the activity of PC3 cells and induced apoptosis, significantly inhibiting the metastasis of PC3 cells. DUSP6 was overexpressed in tumor tissues and PC3 cells. BOP1 knockout inhibited DUSP6 expression and the MAPK pathway. DUSP6 overexpression reversed the inhibition of BOP1 siRNA (si-BOP1) on PC3 cells and the activated MAPK signaling pathway. CONCLUSIONS: This finding demonstrated that BOP1 promoted CaP progression by regulating the DUSP6/MAPK pathway.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Transdução de Sinais , Proliferação de Células , Fosfatase 6 de Especificidade Dupla/genética , Proteínas de Ligação a RNA
14.
Arch. esp. urol. (Ed. impr.) ; 76(6): 445-453, 28 aug. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-224897

RESUMO

Background: Nucleolar prominence is a biomarker of prostate cancer (CaP), and the nucleolar protein block of proliferation 1 (BOP1) participates in the development of CaP, which has great significance for CaP therapy. Thus, this study explored the mechanism of BOP1 in CaP development. Methods: BOP1 expression levels in the tumor tissues of CaP patients and in PC3 tumor cells were determined. The viability, apoptosis rate of PC3 cells, and apoptosis-related proteins levels were determined to explore the effect of BOP1 on tumor-cell growth in vitro. BOP1 function in the metastasis of PC3 cells was further assessed by Transwell experiment. We also studied the influence of BOP1 on the expression of mitogen-activated protein kinase (MAPK) pathway-related proteins and investigated the regulatory effect of BOP1 on dual-specificity phosphatase 6 (DUSP6). Results: BOP1 expression was upregulated in the tumor tissues and PC3 cells of CaP patients. BOP1 knockout reduced the activity of PC3 cells and induced apoptosis, significantly inhibiting the metastasis of PC3 cells. DUSP6 was overexpressed in tumor tissues and PC3 cells. BOP1 knockout inhibited DUSP6 expression and the MAPK pathway. DUSP6 overexpression reversed the inhibition of BOP1 siRNA (si-BOP1) on PC3 cells and the activated MAPK signaling pathway. Conclusions: This finding demonstrated that BOP1 promoted CaP progression by regulating the DUSP6/MAPK pathway (AU)


Assuntos
Humanos , Masculino , Neoplasias da Próstata/sangue , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatase 6 de Especificidade Dupla/metabolismo , Transdução de Sinais , Proliferação de Células , Biomarcadores Tumorais , Apoptose
15.
BMB Rep ; 56(9): 508-513, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37291053

RESUMO

The phytochemical quercetin has gained attention for its antiinflammatory and anti-tumorigenic properties in various types of cancer. Tumorigenesis involves the aberrant regulation of kinase/phosphatase, highlighting the importance of maintaining homeostasis. Dual Specificity Phosphatase (DUSP) plays a crucial role in controlling the phosphorylation of ERK. The current study aimed to clone the DUSP5 promoter, and investigate its transcriptional activity in the presence of quercetin. The results revealed that quercetin-induced DUSP5 expression is associated with the serum response factor (SRF) binding site located in the DUSP5 promoter. The deletion of this site abolished the luciferase activity induced by quercetin, indicating its vital role in quercetin-induced DUSP5 expression. SRF protein is a transcription factor that potentially contributes to quercetin-induced DUSP5 expression at the transcriptional level. Additionally, quercetin enhanced SRF binding activity without changing its expression. These findings provide evidence of how quercetin affects anti-cancer activity in colorectal tumorigenesis by inducing SRF transcription factor activity, thereby increasing DUSP5 expression at the transcriptional level. This study highlights the importance of investigating the molecular mechanisms underlying the anti-cancer properties of quercetin, and suggests its potential use in cancer therapy. [BMB Reports 2023; 56(9): 508-513].


Assuntos
Quercetina , Fator de Resposta Sérica , Humanos , Quercetina/farmacologia , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Fosforilação , Carcinogênese , Fosfatase 6 de Especificidade Dupla/metabolismo
16.
J Assist Reprod Genet ; 40(7): 1597-1610, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37300650

RESUMO

PURPOSE: Dysregulated behaviors of trophoblast cells leading to defective placentation are considered the main cause of preeclampsia (PE). Abnormal miRNA expression profiles have been observed in PE placental tissue, indicating the significant role of miRNAs in PE development. This study aimed to investigate the expression of miR-101-5p in PE placental tissue and its biological functions. METHODS: The expression of miR-101-5p in placental tissue was detected by quantitative real-time PCR (qRT-PCR). The localization of miR-101-5p in term placental tissue and decidual tissue was determined by the fluorescence in situ hybridization (FISH)-immunofluorescence (IF) double labeling assay. The effect of miR-101-5p on the migration, invasion, proliferation, and apoptosis of the HTR8/SVneo trophoblast cells was investigated. Online databases combined with transcriptomics were used to identify potential target genes and related pathways of miR-101-5p. Finally, the interaction between miR-101-5p and the target gene was verified by qRT-PCT, WB, dual-luciferase reporter assay, and rescue experiments. RESULTS: The study found that miR-101-5p was upregulated in PE placental tissue compared to normal controls and was mainly located in various trophoblast cell subtypes in placental and decidual tissues. Overexpression of miR-101-5p impaired the migration and invasion of HTR8/SVneo cells. DUSP6 was identified as a potential downstream target of miR-101-5p. The expression of miR-101-5p was negatively correlated with DUSP6 expression in HTR8/SVneo cells, and miR-101-5p directly bound to the 3' UTR region of DUSP6. DUSP6 upregulation rescued the migratory and invasive abilities of HTR8/SVneo cells in the presence of miR-101-5p overexpression. Additionally, miR-101-5p downregulated DUSP6, resulting in enhanced ERK1/2 phosphorylation. CONCLUSION: This study revealed that miR-101-5p inhibits the migration and invasion of HTR8/SVneo cells by regulating the DUSP6-ERK1/2 axis, providing a new molecular mechanism for the pathogenesis of PE.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Placenta/metabolismo , Trofoblastos/metabolismo , Pré-Eclâmpsia/patologia , Hibridização in Situ Fluorescente , Sistema de Sinalização das MAP Quinases/genética , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo
17.
Sci Rep ; 13(1): 5683, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029196

RESUMO

Cultured human pluripotent stem cells (hPSCs) grow as colonies that require breakdown into small clumps for further propagation. Although cell death mechanism by single-cell dissociation of hPSCs has been well defined, how hPSCs respond to the deadly stimulus and recover the original status remains unclear. Here we show that dissociation of hPSCs immediately activates ERK, which subsequently activates RSK and induces DUSP6, an ERK-specific phosphatase. Although the activation is transient, DUSP6 expression persists days after passaging. DUSP6 depletion using the CRISPR/Cas9 system reveals that DUSP6 suppresses the ERK activity over the long term. Elevated ERK activity by DUSP6 depletion increases both viability of hPSCs after single-cell dissociation and differentiation propensity towards mesoderm and endoderm lineages. These findings provide new insights into how hPSCs respond to dissociation in order to maintain pluripotency.


Assuntos
Células-Tronco Pluripotentes , Transdução de Sinais , Humanos , Retroalimentação , Diferenciação Celular , Morte Celular , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo
18.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982663

RESUMO

We investigated the expression and biological function of retinoic acid inducible gene I (RIG-I) in esophageal squamous cell carcinoma (ESCC). Materials and methods: An immunohistochemical analysis was performed on 86 pairs of tumor tissue and adjacent normal tissue samples of patients with ESCC. We generated RIG-I-overexpressing ESCC cell lines KYSE70 and KYSE450, and RIG-I- knockdown cell lines KYSE150 and KYSE510. Cell viability, migration and invasion, radioresistance, DNA damage, and cell cycle were evaluated using CCK-8, wound-healing and transwell assay, colony formation, immunofluorescence, and flow cytometry and Western blotting, respectively. RNA sequencing was performed to determine the differential gene expression between controls and RIG-I knockdown. Tumor growth and radioresistance were assessed in nude mice using xenograft models. RIG-I expression was higher in ESCC tissues compared with that in matched non-tumor tissues. RIG-I overexpressing cells had a higher proliferation rate than RIG-I knockdown cells. Moreover, the knockdown of RIG-I slowed migration and invasion rates, whereas the overexpression of RIG-I accelerated migration and invasion rates. RIG-I overexpression induced radioresistance and G2/M phase arrest and reduced DNA damage after exposure to ionizing radiations compared with controls; however, it silenced the RIG-I enhanced radiosensitivity and DNA damage, and reduced the G2/M phase arrest. RNA sequencing revealed that the downstream genes DUSP6 and RIG-I had the same biological function; silencing DUSP6 can reduce the radioresistance caused by the overexpression of RIG-I. RIG-I knockdown depleted tumor growth in vivo, and radiation exposure effectively delayed the growth of xenograft tumors compared with the control group. RIG-I enhances the progression and radioresistance of ESCC; therefore, it may be a new potential target for ESCC-targeted therapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Fosfatase 6 de Especificidade Dupla/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Receptores do Ácido Retinoico/metabolismo
19.
Ren Fail ; 45(1): 2173950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36794657

RESUMO

The renal interstitial fibrosis contributes to the progression and deterioration of diabetic nephropathy (DN). Long noncoding RNA taurine-up-regulated gene 1 (TUG1) in kidneys may be down-regulated by hyperglycemia. We aim to explore its role in tubular fibrosis caused by high glucose and the possible target genes of TUG1. In this study, a streptozocin-induced accelerated DN mouse model and a high glucose-stimulated HK-2 cells model was established to evaluate TUG1 expression. Potential targets of TUG1 were analyzed by online tools and confirmed by luciferase assay. A rescue experiment and gene silencing assay were used to investigate whether TUG1 plays its regulation role via miR-145-5p/dual-specificity phosphatase 6 (DUSP6) in HK2 cells. The effects of TUG1 on inflammation and fibrosis in high glucose treated tubular cells were evaluated by in vitro study, as well as in vivo DN mice model through AAV-TUG1 delivery. Results showed TUG1was downregulated in HK2 cells incubated with high glucose while miR-145-5p was upregulated. Overexpression of TUG1 alleviated renal injury by suppressing inflammation and fibrosis in vivo. Overexpression of TUG1 inhibited HK-2 cell fibrosis and relieved the inflammation. A mechanism study demonstrated that TUG1 directly sponged to miR-145-5p, and DUSP6 was identified as a target downstream of miR-145-5p. In addition, miR-145-5 overexpression and DUSP6 inhibition countervailed the impacts of TUG1. Our findings revealed that TUG1 overexpression alleviates kidney injury in DN mice and decreases the inflammatory response and fibrosis of high glucose-stimulated HK-2 cells via miR-145-5p/DUSP6 axis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Fosfatase 6 de Especificidade Dupla , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fosfatase 6 de Especificidade Dupla/metabolismo , Fibrose , Glucose , Inflamação , MicroRNAs/genética , MicroRNAs/metabolismo
20.
Cancer Lett ; 558: 216092, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36806557

RESUMO

Despite many advances in treatment over the past few years, the poor 5-year survival rate and high recurrence rate of gastric cancer (GC) remain unsatisfactory. As the most abundant epigenetic modification in the eukaryotic mRNA, N6-methyladenosine (m6A) methylation participates in tumor progression and tissue development. During tumor progression, DNA damage repair mechanisms can be reprogrammed to give new growth advantages on tumor clones whose genomic integrity is disturbed. Here we detected the elevated SUV39H2 expression in GC tissues and cell lines. Functionally, SUV39H2 promoted GC proliferation and inhibited apoptosis in vitro and in vivo. Mechanistically, METTL3-mediated m6A modification promotes mRNA stability of SUV39H2 in an IGF2BP2 dependent manner, resulting in upregulated mRNA expression of SUV39H2. As a histone methyltransferase, SUV39H2 was verified to increase the phosphorylation level of ATM through transcriptional repression of DUSP6, thereby promoting HRR and ultimately inhibiting GC chemosensitivity to cisplatin. Collectively, these results indicate the specific mechanism of m6A-modified SUV39H2 as a histone methyltransferase promoting HRR to inhibit the chemosensitivity of GC. SUV39H2 is expected to become a key target in the precision targeted therapy of GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Repressão Epigenética , Linhagem Celular Tumoral , Recombinação Homóloga , Histona Metiltransferases/genética , RNA Mensageiro , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo , Histona-Lisina N-Metiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA