Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.558
Filtrar
1.
J Vis Exp ; (207)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829132

RESUMO

Microglia are highly dynamic cells and their migration and colonization of the brain parenchyma is a crucial step for proper brain development and function. Externally developing zebrafish embryos possess optical transparency, which along with well-characterized transgenic reporter lines that fluorescently label microglia, make zebrafish an ideal vertebrate model for such studies. In this paper, we take advantage of the unique features of the zebrafish model to visualize the dynamics of microglia cells in vivo and under physiological conditions. We use confocal microscopy to record a timelapse of microglia cells in the optic tectum of the zebrafish embryo and then, extract tracking data using the IMARIS 10.0 software to obtain the cells' migration path, mean speed, and distribution in the optic tectum at different developmental stages. This protocol can be a useful tool to elucidate the physiological significance of microglia behavior in various contexts, contributing to a deeper characterization of these highly motile cells.


Assuntos
Microglia , Microscopia Confocal , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Microglia/citologia , Microscopia Confocal/métodos , Movimento Celular/fisiologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Embrião não Mamífero/citologia
2.
Science ; 384(6700): 1105-1110, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843334

RESUMO

Axis formation in fish and amphibians typically begins with a prepattern of maternal gene products. Annual killifish embryogenesis, however, challenges prepatterning models as blastomeres disperse and then aggregate to form the germ layers and body axes. We show that huluwa, a prepatterning factor thought to break symmetry by stabilizing ß-catenin, is truncated and inactive in Nothobranchius furzeri. Nuclear ß-catenin is not selectively stabilized on one side of the blastula but accumulates in cells forming the aggregate. Blocking ß-catenin activity or Nodal signaling disrupts aggregate formation and germ layer specification. Nodal signaling coordinates cell migration, establishing an early role for this signaling pathway. These results reveal a surprising departure from established mechanisms of axis formation: Huluwa-mediated prepatterning is dispensable, and ß-catenin and Nodal regulate morphogenesis.


Assuntos
Padronização Corporal , Fundulidae , Morfogênese , Proteína Nodal , beta Catenina , Animais , beta Catenina/metabolismo , Proteína Nodal/metabolismo , Fundulidae/embriologia , Fundulidae/metabolismo , Transdução de Sinais , Movimento Celular , Camadas Germinativas/metabolismo , Blástula/metabolismo , Desenvolvimento Embrionário , Embrião não Mamífero/metabolismo , Núcleo Celular/metabolismo
3.
Elife ; 122024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847802

RESUMO

CRISPR prime editing (PE) requires a Cas9 nickase-reverse transcriptase fusion protein (known as PE2) and a prime editing guide RNA (pegRNA), an extended version of a standard guide RNA (gRNA) that both specifies the intended target genomic sequence and encodes the desired genetic edit. Here, we show that sequence complementarity between the 5' and the 3' regions of a pegRNA can negatively impact its ability to complex with Cas9, thereby potentially reducing PE efficiency. We demonstrate this limitation can be overcome by a simple pegRNA refolding procedure, which improved ribonucleoprotein-mediated PE efficiencies in zebrafish embryos by up to nearly 25-fold. Further gains in PE efficiencies of as much as sixfold could also be achieved by introducing point mutations designed to disrupt internal interactions within the pegRNA. Our work defines simple strategies that can be implemented to improve the efficiency of PE.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Peixe-Zebra , Peixe-Zebra/genética , Animais , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Embrião não Mamífero/metabolismo , Dobramento de RNA
4.
Cell Death Dis ; 15(5): 305, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693109

RESUMO

Zebrafish is widely adopted as a grafting model for studying human development and diseases. Current zebrafish xenotransplantations are performed using embryo recipients, as the adaptive immune system, responsible for host versus graft rejection, only reaches maturity at juvenile stage. However, transplanted primary human hematopoietic stem/progenitor cells (HSC) rapidly disappear even in zebrafish embryos, suggesting that another barrier to transplantation exists before the onset of adaptive immunity. Here, using a labelled macrophage zebrafish line, we demonstrated that engraftment of human HSC induces a massive recruitment of macrophages which rapidly phagocyte transplanted cells. Macrophages depletion, by chemical or pharmacological treatments, significantly improved the uptake and survival of transplanted cells, demonstrating the crucial implication of these innate immune cells for the successful engraftment of human cells in zebrafish. Beyond identifying the reasons for human hematopoietic cell engraftment failure, this work images the fate of human cells in real time over several days in macrophage-depleted zebrafish embryos.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Macrófagos , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Macrófagos/metabolismo , Humanos , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Embrião não Mamífero/metabolismo , Transplante Heterólogo , Fagocitose
5.
Drug Dev Res ; 85(3): e22195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704831

RESUMO

We investigated the angiogenesis-modulating ability of noscapine in vitro using osteosarcoma cell line (MG-63) and in vivo using a zebrafish model. MTT assay and the scratch wound healing assay were performed on the osteosarcoma cell line (MG-63) to analyze the cytotoxic effect and antimigrative ability of noscapine, respectively. We also observed the antiangiogenic ability of noscapine on zebrafish embryos by analyzing the blood vessels namely the dorsal aorta, and intersegmental vessels development at 24, 48, and 72 h postfertilization. Real-time polymerase chain reaction was used to analyze the hypoxia signaling molecules' gene expression in MG-63 cells and zebrafish embryos. The findings from the scratch wound healing demonstrated that noscapine stopped MG-63 cancer cells from migrating under both hypoxia and normoxia. Blood vessel development and the heart rate in zebrafish embryos were significantly reduced by noscapine under both hypoxia and normoxia which showed the hemodynamics impact of noscapine. Noscapine also downregulated the cobalt chloride (CoCl2) induced hypoxic signaling molecules' gene expression in MG-63 cells and zebrafish embryos. Therefore, noscapine may prevent MG-63 cancer cells from proliferating and migrating, as well as decrease the formation of new vessels and the production of growth factors linked to angiogenesis in vivo under both normoxic and hypoxic conditions.


Assuntos
Hemodinâmica , Neovascularização Patológica , Noscapina , Peixe-Zebra , Animais , Humanos , Noscapina/farmacologia , Linhagem Celular Tumoral , Hemodinâmica/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Hipóxia , Movimento Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Angiogênese
6.
Ecotoxicol Environ Saf ; 279: 116484, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820875

RESUMO

Myclobutanil (MYC) is a common triazole fungicide widely applied in agriculture. MYC extensively exists in the natural environment and can be detected in organisms. However, little is known about MYC-induced embryonic developmental damage. This study aimed to unravel the cardiotoxicity of MYC and the underlying mechanisms, as well as the cardioprotective effect of curcumin (CUR, an antioxidant polyphenol) using the zebrafish model. Here, zebrafish embryos were exposed to MYC at concentrations of 0, 0.5, 1 and 2 mg/L from 4 to 96 h post fertilization (hpf) and cardiac development was assessed. As results, MYC reduced the survival and hatching rate, body length and heart rate, but increased the malformation rate and spontaneous movement. MYC caused abnormal cardiac morphology and function in myl7:egfp transgenic zebrafish, and downregulated cardiac developmental genes. MYC promoted oxidative stress through excessive reactive oxygen species (ROS) accumulation and suppressed the activities of antioxidant enzymes, triggering cardiomyocytic apoptosis via upregulated expression of apoptosis-related genes. These adverse toxicities could be significantly ameliorated by the antioxidant properties of CUR, indicating that CUR rescued MYC-induced cardiotoxicity by inhibiting oxidative stress and apoptosis. Overall, our study revealed the potential mechanisms of oxidative stress and apoptosis in MYC-induced cardiotoxicity in zebrafish and identified the cardioprotection of CUR in this pathological process.


Assuntos
Apoptose , Cardiotoxicidade , Curcumina , Fungicidas Industriais , Estresse Oxidativo , Triazóis , Peixe-Zebra , Animais , Estresse Oxidativo/efeitos dos fármacos , Curcumina/farmacologia , Apoptose/efeitos dos fármacos , Triazóis/toxicidade , Fungicidas Industriais/toxicidade , Larva/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais Geneticamente Modificados , Embrião não Mamífero/efeitos dos fármacos , Antioxidantes/farmacologia , Poluentes Químicos da Água/toxicidade , Coração/efeitos dos fármacos , Nitrilas
7.
Bull Exp Biol Med ; 176(5): 645-648, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727954

RESUMO

Using the method of dominant lethal mutations, we assessed the frequency of the death of Drosophila melanogaster embryos under combined exposure to ionizing γ-radiation and non-ionizing pulsed magnetic field at various doses and modes of exposure. Mutagenic effect of combined exposure is antagonistic in nature. The antagonism is more pronounced when the following mode of exposure was used: exposure to non-ionizing pulsed magnetic field for 5 h followed by exposure to γ-radiation at doses of 3, 10, and 60 Gy. In case of reverse sequence of exposures, the antagonistic effect was statistically significant after exposure to γ-radiation at doses of 3 and 10 Gy, whereas at a dose of 20 Gy, a synergistic interaction was noted.


Assuntos
Drosophila melanogaster , Raios gama , Animais , Drosophila melanogaster/efeitos da radiação , Drosophila melanogaster/genética , Raios gama/efeitos adversos , Radiação Eletromagnética , Relação Dose-Resposta à Radiação , Campos Eletromagnéticos/efeitos adversos , Embrião não Mamífero/efeitos da radiação , Radiação Ionizante , Mutação/efeitos da radiação , Mutagênese/efeitos da radiação
8.
Aquat Toxicol ; 271: 106933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705000

RESUMO

The occurrence of microplastics (MPs) in aquatic ecosystems and their ability to absorb hydrophobic pollutants, such as persistent organic pollutants (POPs), is currently a significant concern. MPs, which are the main breakdown product of plastics, have been frequently detected in the environment, posing serious threats to organisms' health. One particular pollutant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is a dominant congener of PBDEs and is highly toxic to organisms. However, there is limited knowledge regarding the exposure of marine fishes to PBDEs through MPs and their combined toxic effects. In this study, the embryo toxicity of Hexagrammos otakii was conducted to investigate the combined effects of MPs and BDE-47. The results showed that MPs and BDE-47 co-exposure had detrimental effects on embryonic development, such as reduced hatchability, increased mortality, decreased heart rate, and body malformation. Moreover, the combined toxicity of these substances appeared more pronounced harmful effects compared to exposure to BDE-47 alone. Histopathological examination revealed that co-exposure can cause greater damage to hatching glands and yolk. The enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included phagosome, metabolism of xenobiotics by cytochrome P450, TCA cycle, and Wnt signaling pathway, which are closely related to embryonic growth. BDE-47 and MPs may activate the Wnt signaling pathway to affect the normal development of embryos. Our results suggest that MPs and BDE-47 exposure may cause growth disorders in the early life stages of H.otakii, leading to abnormal embryonic development. All these results will contribute to the further study of the ecological risk assessment and toxicity of MPs and organic pollutant mixtures in marine fish.


Assuntos
Embrião não Mamífero , Éteres Difenil Halogenados , Microplásticos , Poluentes Químicos da Água , Animais , Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Poliestirenos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos
9.
Aquat Toxicol ; 271: 106941, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723469

RESUMO

OBJECTIVE: To characterise and compare the toxicity of estetrol (E4) and 17α-ethinylestradiol (EE2), and their respective mixture with the progestin drospirenone (DRSP) in zebrafish (Danio rerio) embryos. METHODS: Zebrafish embryos were exposed to E4, EE2, DRSP, E4+DRSP, and EE2+DRSP in a fish embryo acute toxicity (FET) test. A second test examined behavioural responses and, using label-free proteomics, identified changes in protein expression in response to hormonal treatments, across a range of concentrations, including those that are considered to be environmentally relevant. RESULTS: In the FET test, no effects were found from E4 at concentrations ≤100 mg/L, while EE2 induced mortality and morphological abnormalities at concentrations of 1-2 mg/L. In the behavioural test, exposure to 30 ng/L EE2 (∼200 × predicted environmental concentration - PEC) resulted in hypoactivity in fish larvae and exposure to 0.3 ng/L EE2 (∼2 × PEC) led to quantitative changes in protein abundance, revealing potential impacts on RNA processing and protein synthesis machinery. Exposure to E4 did not alter behaviour, but several groups of proteins were modulated, mainly at 710 ng/L (∼200 × PEC), including proteins involved in oxidative phosphorylation. When combined with DRSP, EE2 induced reduced effects on behaviour and proteomic responses, suggesting an antagonistic effect of DRSP. E4+DRSP induced no significant effects on behaviour or proteomic profiles at tested concentrations. CONCLUSIONS: These findings suggest that E4-based combined oral contraceptives present a more favourable environmental profile than EE2-based contraceptives, particularly during the early developmental stages of fish.


Assuntos
Androstenos , Comportamento Animal , Etinilestradiol , Larva , Proteômica , Poluentes Químicos da Água , Peixe-Zebra , Animais , Etinilestradiol/toxicidade , Poluentes Químicos da Água/toxicidade , Androstenos/toxicidade , Comportamento Animal/efeitos dos fármacos , Larva/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos
10.
Aquat Toxicol ; 271: 106936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723470

RESUMO

In recent years, with the rapid development of society, organic compounds have been released into aquatic environments in various forms, posing a significant threat to the survival of aquatic organisms. The assessment of developmental toxicity is an important part of environmental safety risk systems, helping to identify the potential impacts of organic compounds on the embryonic development of aquatic organisms and enabling early detection and warning of potential ecological risks. Additionally, binary classification models cannot accurately classify organic compounds. Therefore, it is crucial to construct a multiclassification model for predicting the developmental toxicity of organic compounds. In this study, binary and multiclassification models were developed based on the ToxCast™ Phase I chemical library and literature data. The random forest, support vector machine, extreme gradient boosting, adaptive gradient boosting, and C5.0 decision tree algorithms, as well as 8 types of molecular fingerprint were used to establish a multiclassification base model for predicting developmental toxicity through 5-fold cross-validation and external validation. Ultimately, a multiclassification ensemble model was derived through a voting method. The performance of the binary ensemble model, as measured by the balanced accuracy, was 0.918, while that of the multiclassification model was 0.819. The developmental toxicity voting ensemble model (DT-VEM) achieved accuracies of 0.804, 0.834, and 0.855. Furthermore, by utilizing the XGBoost machine learning algorithm to construct separate models for molecular descriptors and substructure molecular fingerprints, we identified several substructures and physical properties related to developmental toxicity. Our research contributes to a more detailed classification of developmental toxicity, providing a new and valuable tool for predicting the developmental toxicity effects of unknown compounds. This supplement addresses the limitations of previous tools, as it offers an enhanced ability to predict potential developmental toxicity in novel compounds.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Testes de Toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Modelos Biológicos , Algoritmos , Máquina de Vetores de Suporte , Compostos Orgânicos/toxicidade
11.
PLoS One ; 19(5): e0300310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776274

RESUMO

Gravity is one of the most constant environmental factors across Earth's evolution and all organisms are adapted to it. Consequently, spatial exploration has captured the interest in studying the biological changes that physiological alterations are caused by gravity. In the last two decades, epigenetics has explained how environmental cues can alter gene functions in organisms. Although many studies addressed gravity, the underlying biological and molecular mechanisms that occur in altered gravity for those epigenetics-related mechanisms, are mostly inexistent. The present study addressed the effects of hypergravity on development, behavior, gene expression, and most importantly, on the epigenetic changes in a worldwide animal model, the zebrafish (Danio rerio). To perform hypergravity experiments, a custom-centrifuge simulating the large diameter centrifuge (100 rpm ~ 3 g) was designed and zebrafish embryos were exposed during 5 days post fertilization (dpf). Results showed a significant decrease in survival at 2 dpf but no significance in the hatching rate. Physiological and morphological alterations including fish position, movement frequency, and swimming behavior showed significant changes due to hypergravity. Epigenetic studies showed significant hypermethylation of the genome of the zebrafish larvae subjected to 5 days of hypergravity. Downregulation of the gene expression of three epigenetic-related genes (dnmt1, dnmt3, and tet1), although not significant, was further observed. Taken altogether, gravity alterations affected biological responses including epigenetics in fish, providing a valuable roadmap of the putative hazards of living beyond Earth.


Assuntos
Epigênese Genética , Hipergravidade , Peixe-Zebra , Animais , Peixe-Zebra/genética , Metilação de DNA , Larva/genética , Larva/crescimento & desenvolvimento , Embrião não Mamífero/metabolismo
12.
Ecotoxicol Environ Saf ; 278: 116419, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718726

RESUMO

3,3',4,4',5-Pentachlorobiphenyl (PCB126) is the most toxic congener of dioxin-like polychlorinated biphenyls (DL PCBs), while nanoplastics (NPs) have recently emerged as significant marine pollutants, both posing threats to aquatic organisms and human health. They coexist in the environment, but their comprehensive toxicological effects remain unclear. In this study, zebrafish embryos were simultaneously exposed to PCB126 and 80-nanometer nanoplastyrene (NPS). Researchers utilized fluorescence microscopy, qPCR, histopathological examination, and transcriptomic sequencing to investigate the developmental toxicity of different concentrations of PCB126 and NPS individually or in combination on zebrafish embryos and larvae. Results indicate that the chorion significantly impedes the accumulation of NPS (p < 0.05). It is noteworthy that this barrier effect diminishes upon simultaneous exposure to PCB126. In this experiment, the semi-lethal concentration of PCB126 for larvae was determined to be 6.33 µg/L. Exposure to PCB126 induces various deformities, primarily mediated through the aryl hydrocarbon receptor (AHR). Similarly, exposure to NPS also activates AHR, leading to developmental impairments. Furthermore, transcriptomic sequencing revealed similar effects of PCB126 and NPS on the gene expression trends in zebrafish larvae, but combined exposure to both exacerbates the risk of cancer and induces more severe cardiac toxicity. At this level, co-exposure to PCB126 and NPS adversely affects the development of zebrafish larvae. This study contributes to a deeper understanding of the in vivo accumulation of DL polychlorinated biphenyls and microplastics in actual aquatic environments and their impact on fish development.


Assuntos
Larva , Bifenilos Policlorados , Poliestirenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Bifenilos Policlorados/toxicidade , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poliestirenos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Microplásticos/toxicidade , Nanopartículas/toxicidade
13.
J Therm Biol ; 121: 103860, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38754202

RESUMO

Environmental variation experienced during early periods of development can lead to persistent phenotypic alteration, known as carryover effects. Such effects increase concern for threatened or endangered species such as the white sturgeon (Acipenser transmontanus), particularly considering expected thermal changes due to climate change. We evaluated how temperature during embryonic development affects physiological parameters such as larval and early juvenile growth and thermal tolerance. Nechako River white sturgeon embryos were incubated at different environmental temperatures (Te) of 12 °C (the natural spawning temperature of this population), 15 °C (the hatchery incubation temperature), and 18 °C (representing potential increases in river temperatures given global climate change). After hatch, fish were reared at a common 15 °C for 80 days post-hatch (dph). Individuals from each temperature treatment were tested for thermal tolerance using the critical thermal maximum method (CTmax), euthanized, and measured. Fish were examined at regular intervals from 13 to 80 dph, which bridged the time from the start of exogenous feeding through the transition into early juveniles. We found carryover effects of high embryonic Te in the short term for both thermal tolerance and growth. Fish that developed at 18 °C had the lowest thermal tolerance during the start of exogenous feeding. However, differences in thermal tolerance were small for early juveniles and were unlikely to be ecologically relevant in the longer term. Fish that developed at 18 °C were smallest over the observation period, indicating a possible cost for survival from increasing environmental temperatures during embryonic development. This research represents a window into a critical period of development during which fish are particularly vulnerable to climatic variation, and shows that cooler temperatures (12 °C) during incubation are optimal for this population. The results can inform environmental managers on the best strategies to help conserve current white sturgeon populations across their range.


Assuntos
Peixes , Temperatura , Termotolerância , Animais , Peixes/fisiologia , Peixes/crescimento & desenvolvimento , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Mudança Climática
14.
Open Vet J ; 14(4): 962-972, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38808293

RESUMO

Background: The developmental biology of Kinosternon scorpioides is described, based on the phenotype. This species is important for the flora because they are excellent seed disseminators. In addition, basic embryological information is not yet fully clarified, and this research provides unprecedented information on the chelonian embryology of the Amazonian fauna. Aim: The present study aims to identify the embryology of K. scorpioides in captivity during different periods. Methods: Females were monitored throughout the reproductive cycle, by video monitoring, to identify nests and the presence of newly laid eggs. At regular weekly intervals, embryo samples were collected fixed in a 4% paraformol solution and preserved in 70% alcohol. For the embryonic characterization, we used a stereomicroscope and the scanning electron microscopy method. Results: We describe 15 embryonic stages for a 15-week (105-day) incubation process. Only at 42 days (6th week) was the morphological characterization of a chelonian observed and at the 12th week (Stage XII), the phenotypic characterization of the species K. scorpioides. Conclusion: In view of the evidence, we found that these phases are similar to the other turtles, with structural variations in the appearance and disappearance of structures due to the specific characteristics of the species.


Assuntos
Desenvolvimento Embrionário , Tartarugas , Animais , Tartarugas/embriologia , Feminino , Embrião não Mamífero , Microscopia Eletrônica de Varredura/veterinária
15.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 82-88, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814231

RESUMO

Milrinone, a phosphodiesterase III inhibitor with contractile and vasodilatory effects, is widely used in acute decompensated heart failure and medically refractory end-stage heart failure (HF). The adverse reactions of milrinone have been extensively explored clinically, but its possible toxicities and underlying molecular mechanisms in embryo development need further understanding as its clinical applications increase. Herein, we assessed the milrinone toxicity using the zebrafish embryotoxicity test (ZET), with a view of providing evidence and guidance for gravidas medicine. We carried out ZET by exposing embryos to a milrinone culture with a series concentration gradients since 1.5 hours post fertilization (hpf) and observed and assessed mortality and hatching rates of drug-treated zebrafishes at 24, 48, 72, and 96 hpf. No significant lethal effect was found in milrinone-treated zebrafish, but hatching rate of eggs at 48 hpf was up-regulated with the increase of milrinone concentration. The impact of milrinone on embryogenesis was assessed through body length, eye area, yolk sac area, swim bladder inflation area, pericardial area and venous congestion area at 96hpf. 150 µg/mL or higher milrinone treatment showed significant effects in the indicators. Organ disorders including enlarged pericardium, liver atrophy and decreased blood vessels were observed in dysplasia individuals versus controls. TUNEL assay suggested the ability of milrinone to induce apoptosis in malformation embryos. Quantitative real-time PCR showed aberrant expressions of transcription factors associated with heart development and genes related to liver development and apoptosis regulation. Therefore, ZET is feasible for the milrinone toxicity test, and high-dose milrinone causes harm to the embryonic development of zebrafish, especially in embryonic carcinogenesis, vasculogenesis, and hepatogenesis.


Assuntos
Embrião não Mamífero , Desenvolvimento Embrionário , Milrinona , Peixe-Zebra , Animais , Milrinona/toxicidade , Peixe-Zebra/embriologia , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Testes de Toxicidade/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos
16.
Sci Total Environ ; 933: 173012, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38719038

RESUMO

Microplastics and nanoplastics (MNPs) have received increasing attention due to their high detection rates in human matrices and adverse health implications. However, the toxicity of MNPs on embryo/fetal development following maternal exposure remains largely unexplored. Zebrafish, sharing genetic similarities with human, boast a shorter life cycle, rapid embryonic development, and the availability of many transgenic strains, is a suitable model for environmental toxicology studies. This review comprehensively explores the existing research on the impacts of MNPs on zebrafish embryo development. MNPs exposure induces a wide array of toxic effects, encompassing neurodevelopmental toxicity, immunotoxicity, gastrointestinal effects, microbiota dysbiosis, cardiac dysfunctions, vascular toxicity, and metabolic imbalances. Moreover, MNPs disrupt the balance between reactive oxygen species (ROS) production and antioxidant capacity, culminating in oxidative damage and apoptosis. This study also offers insight into the current omics- and multi-omics based approaches in MNPs research, which greatly expedite the discovery of biochemical or metabolic pathways, and molecular mechanisms underlying MNPs exposure. Additionally, this review proposes a preliminary adverse outcome pathway framework to predict developmental toxicity caused by MNPs. It provides a comprehensive overview of pathways, facilitating a clearer understanding of the exposure and toxicity of MNPs, from molecular effects to adverse outcomes. The compiled data in this review provide a better understanding for MNPs effects on early life development, with the goal of increasing awareness about the risks posed to pregnant women by MNPs exposure and its potential impact on the health of their future generations.


Assuntos
Embrião não Mamífero , Desenvolvimento Embrionário , Microplásticos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Microplásticos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Nanopartículas/toxicidade
17.
Physiol Rep ; 12(11): e16088, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811349

RESUMO

Glucose has important roles in the development of zebrafish, the vertebrate animal model; however, in most oviparous animals, the amount of maternally provided glucose in the yolk is scarce. For these reasons, developing animals need some ways to supplement glucose. Recently, it was found that developing zebrafish, a teleost fish, undergo gluconeogenesis in the yolk syncytial layer (YSL), an extraembryonic tissue that surrounds the yolk. However, teleost YSL is evolutionarily unique, and it is not clear how other vertebrates supplement glucose. In this study, we used cloudy catshark (or Torazame catshark), an elasmobranch species which possesses a YSL-like tissue during development, and sought for possible gluconeogenic activities in this tissue. In their yolk sac, glucose increased, and our isotope tracking analysis detected gluconeogenic activities with glycerol most preferred substrate. In addition, many of gluconeogenic genes were expressed at the YSL-like tissue, suggesting that cloudy catshark engages in gluconeogenesis in this tissue. The gluconeogenesis in teleost YSL and a similar tissue in elasmobranch species implies conserved mechanisms of yolk metabolism between these two lineages. Future studies on other vertebrate taxa will be helpful to understand the evolutionary changes in the modes of yolk metabolism that vertebrates have experienced.


Assuntos
Gluconeogênese , Animais , Glucose/metabolismo , Saco Vitelino/metabolismo , Tubarões/metabolismo , Gema de Ovo , Embrião não Mamífero
18.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791566

RESUMO

During the twenty-first century, engineered nanomaterials (ENMs) have attracted rising interest, globally revolutionizing all industrial sectors. The expanding world population and the implementation of new global policies are increasingly pushing society toward a bioeconomy, focused on fostering the adoption of bio-based nanomaterials that are functional, cost-effective, and potentially secure to be implied in different areas, the medical field included. This research was focused on silica nanoparticles (SiO2-NPs) of bio-based and synthetic origin. SiO2-NPs are composed of silicon dioxide, the most abundant compound on Earth. Due to their characteristics and biocompatibility, they are widely used in many applications, including the food industry, synthetic processes, medical diagnosis, and drug delivery. Using zebrafish embryos as in vivo models, we evaluated the effects of amorphous silica bio-based NPs from rice husk (SiO2-RHSK NPs) compared to commercial hydrophilic fumed silica NPs (SiO2-Aerosil200). We evaluated the outcomes of embryo exposure to both nanoparticles (NPs) at the histochemical and molecular levels to assess their safety profile, including developmental toxicity, neurotoxicity, and pro-inflammatory potential. The results showed differences between the two silica NPs, highlighting that bio-based SiO2-RHSK NPs do not significantly affect neutrophils, macrophages, or other innate immune system cells.


Assuntos
Materiais Biocompatíveis , Embrião não Mamífero , Nanopartículas , Dióxido de Silício , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Dióxido de Silício/química , Nanopartículas/química , Embrião não Mamífero/efeitos dos fármacos , Materiais Biocompatíveis/química , Desenvolvimento Embrionário/efeitos dos fármacos , Teste de Materiais
19.
Elife ; 122024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809590

RESUMO

Hematopoietic stem cells emerge in the embryo from an aortic-derived tissue called the hemogenic endothelium (HE). The HE appears to give birth to cells of different nature and fate but the molecular principles underlying this complexity are largely unknown. Here we show, in the zebrafish embryo, that two cell types emerge from the aortic floor with radically different morphodynamics. With the support of live imaging, we bring evidence suggesting that the mechanics underlying the two emergence types rely, or not, on apicobasal polarity establishment. While the first type is characterized by reinforcement of apicobasal polarity and maintenance of the apical/luminal membrane until release, the second type emerges via a dynamic process reminiscent of trans-endothelial migration. Interfering with Runx1 function suggests that the balance between the two emergence types depends on tuning apicobasal polarity at the level of the HE. In support of this and unexpectedly, we show that Pard3ba - one of the four Pard3 proteins expressed in the zebrafish - is sensitive to interference with Runx1 activity, in aortic endothelial cells. This supports the idea of a signaling cross talk controlling cell polarity and its associated features, between aortic and hemogenic cells. In addition, using new transgenic fish lines that express Junctional Adhesion Molecules and functional interference, we bring evidence for the essential role of ArhGEF11/PDZ-RhoGEF in controlling the HE-endothelial cell dynamic interface, including cell-cell intercalation, which is ultimately required for emergence completion. Overall, we highlight critical cellular and dynamic events of the endothelial-to-hematopoietic transition that support emergence complexity, with a potential impact on cell fate.


In mammals and other animals with backbones, the cells that will make up blood and immune cells are generated during a very narrow timeframe in embryonic development. These cells, called hematopoietic stem cells and progenitors (or HSPCs for short), emerge from tissue known as hemogenic endothelium that makes up the floor of early blood vessels. For HPSCs to eventually specialise into different types of blood and immune cells, they require diverse migratory and homing properties that, ultimately, will determine the specific type of functions they exert. An important question for scientists studying the development of different blood and immune cell types is when this commitment to functional diversity is established. It could, for example, arise due to cells in the hemogenic endothelium having different origins. Alternatively, the signals that generate hemogenic endothelium cells could be responsible. It is also possible that both explanations are true, and that having different mechanisms involved ensures diversity in populations of HSPCs. To investigate differences between the HSPCs emerging from the hemogenic endothelium, Torcq et al. studied zebrafish embryos that had been modified so that one of the proteins involved in sensing cell polarity ­ where the top and bottom of the cell are located ­ was fluorescent. Live imaging of the embryos showed that two types of cells, with striking differences in morphology, emerge from the hemogenic tissue. In addition, one cell type displays the same polarity as the other vessel cells, whereas the other does not. Torcq et al. also present evidence suggesting that the signals responsible for controlling this cell polarity are provided by surrounding blood vessel cells, supporting the idea of an interplay between the different cell types. The finding that two different cell types emerge from the hemogenic endothelium, reveals a potential new source of diversity in HSPCs. Ultimately, this is expected to contribute to their functional complexity, resulting in both long-term stem cells that retain their full regenerative potential into adulthood and more specialized blood and immune cells.


Assuntos
Polaridade Celular , Subunidade alfa 2 de Fator de Ligação ao Core , Células-Tronco Hematopoéticas , Proteínas de Peixe-Zebra , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemangioblastos/metabolismo , Hemangioblastos/citologia , Hemangioblastos/fisiologia , Embrião não Mamífero/metabolismo , Animais Geneticamente Modificados
20.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731859

RESUMO

Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 µM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.


Assuntos
Ácido Fólico , Compostos Heterocíclicos com 3 Anéis , Oxazinas , Piperazinas , Piridonas , Peixe-Zebra , Animais , Compostos Heterocíclicos com 3 Anéis/farmacologia , Ácido Fólico/metabolismo , Oxazinas/farmacologia , Piridonas/farmacologia , Piperazinas/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Defeitos do Tubo Neural/induzido quimicamente , Neurogênese/efeitos dos fármacos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...