RESUMO
Ubiquitination and deubiquitination processes are widely involved in modulating the function, activity, localization, and stability of multiple cellular proteins regulating almost every aspect of cellular function. Several virus families have been shown to exploit the cellular ubiquitin-conjugating system to achieve a productive infection: enter the cell, promote genome replication, or assemble and release viral progeny. In this study, we analyzed the role of deubiquitinating enzymes (DUBs) during chikungunya virus (CHIKV) infection. HEK293T, Vero-E6, and Huh-7 cells were treated with two DUB inhibitors (PR619 or WP1130). Then, infected cells were evaluated by flow cytometry, and viral progeny was quantified using the plaque assay method. The changes in viral proteins and viral RNA were analyzed using Western blotting and RT-qPCR, respectively. Results indicate that treatment with DUB inhibitors impairs CHIKV replication due to significant protein and viral RNA synthesis deregulation. Therefore, DUB activity may be a pharmacological target for blocking CHIKV infection.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Enzimas Desubiquitinantes , Inibidores Enzimáticos , Replicação Viral , Humanos , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Enzimas Desubiquitinantes/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Células HEK293 , RNA Viral , Replicação Viral/efeitos dos fármacosRESUMO
The BRCA1-A complex contains matching lysine-63 ubiquitin (K63-Ub) binding and deubiquitylating activities. How these functionalities are coordinated to effectively respond to DNA damage remains unknown. We generated Brcc36 deubiquitylating enzyme (DUB) inactive mice to address this gap in knowledge in a physiologic system. DUB inactivation impaired BRCA1-A complex damage localization and repair activities while causing early lethality when combined with Brca2 mutation. Damage response dysfunction in DUB-inactive cells corresponded to increased K63-Ub on RAP80 and BRCC36. Chemical cross-linking coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and cryogenic-electron microscopy (cryo-EM) analyses of isolated BRCA1-A complexes demonstrated the RAP80 ubiquitin interaction motifs are occupied by ubiquitin exclusively in the DUB-inactive complex, linking auto-inhibition by internal K63-Ub chains to loss of damage site ubiquitin recognition. These findings identify RAP80 and BRCC36 as autologous DUB substrates in the BRCA1-A complex, thus explaining the evolution of matching ubiquitin-binding and hydrolysis activities within a single macromolecular assembly.
Assuntos
Proteína BRCA1 , Dano ao DNA , Proteínas de Ligação a DNA , Enzimas Desubiquitinantes , Chaperonas de Histonas , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Cromatografia Líquida , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Camundongos , Espectrometria de Massas em Tandem , Ubiquitina/metabolismoRESUMO
BJcuL is a snake venom C-type lectin (SVCTL) purified from the snake's venom Bothrops jararacussu. It has been previously demonstrated that BJcuL induces the accumulation of pro-apoptotic proteins of the extrinsic pathway, such as FADD and caspase-8, in the colorectal cancer cell line HT29, suggesting that the lectin may be able to enhance TRAIL-induced apoptosis. To test this hypothesis, we exposed two colorectal cancer cell lines, HT29 and HCT116, to increasing concentrations of BJcuL (1-20 µg/mL) in the presence or absence of TRAIL. Contrary to our expectations, however, BJcuL was unable to induce apoptosis in these cells, as shown by annexin-V/7AAD, clonogenic assays, and immunoblotting. Nevertheless, BJcuL was able to induce the accumulation of FADD and caspase-8, as well as anti-apoptotic proteins such as c-FLIP and survivin and poly-ubiquitinated proteins. Incubation with the deubiquitinase inhibitor WP1130 (10 µM) resulted in decreased BJcuL-induced survivin levels. Altogether, our results evince the effects of SVCTL on the ubiquitin-proteasome system in vitro for the first time. Compounds that can influence such system are important tools in the search for new therapeutic or diagnostic targets in cancer since they can elucidate the molecular mechanisms involved in determining cell fate as well as contributing to drug-development strategies in partnership with the pharmaceutical industry.
Assuntos
Bothrops , Neoplasias Colorretais , Venenos de Crotalídeos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Bothrops/metabolismo , Caspase 8 , Linhagem Celular , Venenos de Crotalídeos/farmacologia , Enzimas Desubiquitinantes , Lectinas Tipo C/metabolismo , Venenos de Serpentes , Survivina/metabolismoRESUMO
The proteasome is the key player in the cellular protein degradation machinery and is pivotal for protein homeostasis and Schistosoma mansoni (S. mansoni) survival. Our group study provides insights into proteasome inhibitors and reveals that selective schistosomiasis agents represent an interesting branch of proteasome research linked to the development of new drugs for this neglected disease. Here, we explored the phenotypic response of S. mansoni to b-AP15, a bis-benzylidine piperidone that inhibits 26S proteasome deubiquitinases (DUBs), ubiquitin-specific protease 14 (USP14), and ubiquitin carboxyl-terminal hydrolase 5 (UCHL5). b-AP15 induces a modest decrease in egg production in vitro and reduces viability, leading to the death of parasite couples. This inhibitor also induces a twofold increase in the accumulation of polyubiquitinated proteins in S. mansoni adult worms and causes tegument changes such as disintegration, wrinkling, and bubble formation, both throughout the length of the parasite and in the oral sucker. b-AP15 alters the cell organelles of adult S. mansoni worms, and we specifically observed mitochondrial alterations, which are suggestive of proteotoxic stress leading to autophagy. Taken together, these results indicate that the deubiquitinase function of the proteasome is essential for the parasite and support the hypothesis that the proteasome constitutes an interesting drug target for the treatment of schistosomiasis.