Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.872
Filtrar
1.
Sci Rep ; 14(1): 21305, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266663

RESUMO

During the development of multicellular organisms and cell differentiation, the chromatin structure in the cell nucleus undergoes extensive changes, and the nucleosome structure is formed by a combination of various histone variants. Histone variants with diverse posttranslational modifications are known to play crucial roles in different regulatory functions. We have previously reported that H3t, a testis-specific histone variant, is essential for spermatogenesis. To elucidate the function of this chromatin molecule in vivo, we generated knock-in mice with a FLAG tag attached to the carboxyl terminus of H3t. In the present study, we evaluated the utility of the generated knock-in mice and comprehensively analyzed posttranslational modifications of canonical H3 and H3t using mass spectrometry. Herein, we found that H3t-FLAG was incorporated into spermatogonia and meiotic cells in the testes, as evidenced by immunostaining of testicular tissue. According to the mass spectrometry analysis, the overall pattern of H3t-FLAG posttranslational modification was comparable to that of the control H3, while the relative abundances of certain specific modifications differed between H3t-FLAG and the control bulk H3. The generated knock-in mice could be valuable for analyzing the function of histone variants in vivo.


Assuntos
Técnicas de Introdução de Genes , Histonas , Processamento de Proteína Pós-Traducional , Testículo , Animais , Histonas/metabolismo , Histonas/genética , Masculino , Testículo/metabolismo , Camundongos , Espermatogênese/genética , Espermatogônias/metabolismo
2.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273164

RESUMO

Spermatogonial stem cells (SSCs) possess the characteristics of self-renewal and differentiation, as well as the ability to generate functional sperm. Their unique stemness has broad applications in male infertility treatment and species preservation. In rodents, research on SSCs has been widely reported, but progress is slow in large livestock such as cattle and pigs due to long growth cycles, difficult proliferation in vitro, and significant species differences. Previously, we showed that histone 3 (H3) lysine 9 (K9) trimethylation (H3K9me3) is associated with the proliferation of bovine SSCs. Here, we isolated and purified SSCs from calf testicular tissues and investigated the impact of different H3K9me3 levels on the in vitro proliferation of bovine SSCs. The enriched SSCs eventually formed classical stem cell clones in vitro in our feeder-free culture system. These clones expressed glial cell-derived neurotrophic factor family receptor alpha-1 (GFRα1, specific marker for SSCs), NANOG (pluripotency protein), C-KIT (germ cell marker), and strong alkaline phosphatase (AKP) positivity. qRT-PCR analysis further showed that these clones expressed the pluripotency genes NANOG and SOX2, and the SSC-specific marker gene GFRα1. To investigate the dynamic relationship between H3K9me3 levels and SSC proliferation, H3K9me3 levels in bovine SSCs were first downregulated using the methyltransferase inhibitor, chaetocin, or transfection with the siRNA of H3K9 methyltransferase suppressor of variegation 3-9 homologue 1 (SUV39H1). The EDU (5-Ethynyl-2'-deoxyuridine) assay revealed that SSC proliferation was inhibited. Conversely, when H3K9me3 levels in bovine SSCs were upregulated by transfecting lysine demethylase 4D (KDM4D) siRNA, the EDU assay showed a promotion of cell proliferation. In summary, this study established a feeder-free culture system to obtain bovine SSCs and explored its effects on the proliferation of bovine SSCs by regulating H3K9me3 levels, laying the foundation for elucidating the regulatory mechanism underlying histone methylation modification in the proliferation of bovine SSCs.


Assuntos
Células-Tronco Germinativas Adultas , Proliferação de Células , Histonas , Animais , Bovinos , Masculino , Histonas/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/citologia , Células Cultivadas , Espermatogônias/metabolismo , Espermatogônias/citologia , Metilação , Diferenciação Celular , Testículo/metabolismo , Testículo/citologia
3.
Development ; 151(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39222051

RESUMO

Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis. We found that Wfdc15a is a non-canonical bivalent gene carrying both H3K4me3 and facultative H3K9me3 in SSCs, but is later activated along with the loss of H3K9me3 and acquisition of H3K27ac during meiosis. We show that WFDC15A deficiency causes defective spermiogenesis at the beginning of spermatid elongation. Notably, depletion of WFDC15A causes substantial disturbance of the testicular protease-antiprotease network and leads to an orchitis-like inflammatory response associated with TNFα expression in round spermatids. Together, our results reveal a unique epigenetic program regulating innate immunity crucial for fertility.


Assuntos
Homeostase , Espermátides , Espermatogênese , Masculino , Animais , Espermatogênese/genética , Camundongos , Espermátides/metabolismo , Testículo/metabolismo , Histonas/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Epigênese Genética , Infertilidade Masculina/genética , Camundongos Endogâmicos C57BL , Meiose/genética , Células-Tronco Germinativas Adultas/metabolismo , Camundongos Knockout , Imunidade Inata/genética , Espermatogônias/metabolismo
4.
Theranostics ; 14(14): 5621-5642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310107

RESUMO

Rationale: Spermatogenesis is a highly organized cell differentiation process in mammals, involving mitosis, meiosis, and spermiogenesis. DIS3L2, which is primarily expressed in the cytoplasm, is an RNA exosome-independent ribonuclease. In female mice, Dis3l2-deficient oocytes fail to resume meiosis, resulting in arrest at the germinal vesicle stage and complete infertility. However, the role of DIS3L2 in germ cell development in males has remained largely unexplored. Methods: We established a pre-meiotic germ cell conditional knockout mouse model and investigated the biological function of DIS3L2 in spermatogenesis and male fertility through bulk RNA-seq and scRNA-seq analyses. Results: This study unveils that conditional ablation of Dis3l2 in pre-meiotic germ cells with Stra8-Cre mice impairs spermatogonial differentiation and hinders spermatocyte meiotic progression coupled with cell apoptosis. Such conditional ablation leads to defective spermatogenesis and sterility in adults. Bulk RNA-seq analysis revealed that Dis3l2 deficiency significantly disrupted the transcriptional expression pattern of genes related to the cell cycle, spermatogonial differentiation, and meiosis in Dis3l2 conditional knockout testes. Additionally, scRNA-seq analysis indicated that absence of DIS3L2 in pre-meiotic germ cells causes disrupted RNA metabolism, downregulated expression of cell cycle genes, and aberrant expression of spermatogonial differentiation genes, impeding spermatogonial differentiation. In meiotic spermatocytes, loss of DIS3L2 results in disturbed RNA metabolism, abnormal translation, and disrupted meiotic genes that perturb meiotic progression and induce cell apoptosis, leading to subsequent failure of spermatogenesis and male infertility. Conclusions: Collectively, these findings highlight the critical role of DIS3L2 ribonuclease-mediated RNA degradation in safeguarding the correct transcriptome during spermatogonial differentiation and spermatocyte meiotic progression, thus ensuring normal spermatogenesis and male fertility.


Assuntos
Infertilidade Masculina , Meiose , Camundongos Knockout , Espermatogênese , Animais , Masculino , Espermatogênese/genética , Camundongos , Meiose/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Diferenciação Celular , Testículo/metabolismo , Espermatócitos/metabolismo , Apoptose/genética , Espermatogônias/metabolismo , Ribonucleases/metabolismo , Ribonucleases/genética , Feminino , Camundongos Endogâmicos C57BL , Células Germinativas/metabolismo
5.
Stem Cell Res Ther ; 15(1): 294, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256786

RESUMO

Spermatogonial stem cells (SSCs) play a crucial role in the male reproductive system, responsible for maintaining continuous spermatogenesis. The microenvironment or niche of SSCs is a key factor in regulating their self-renewal, differentiation and spermatogenesis. This microenvironment consists of multiple cell types, extracellular matrix, growth factors, hormones and other molecular signals that interact to form a complex regulatory network. This review aims to provide an overview of the main components of the SSCs microenvironment, explore how they regulate the fate decisions of SSCs, and discuss the potential impact of microenvironmental abnormalities on male reproductive health.


Assuntos
Células-Tronco Germinativas Adultas , Espermatogênese , Nicho de Células-Tronco , Humanos , Masculino , Células-Tronco Germinativas Adultas/metabolismo , Animais , Espermatogônias/metabolismo , Espermatogônias/citologia , Diferenciação Celular , Matriz Extracelular/metabolismo
6.
Sci Rep ; 14(1): 21581, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285184

RESUMO

Recently, it was reported that a testicular organ culture system (TOCS) using polydimethylsiloxane (PDMS) chips with excellent oxygen permeability and biocompatibility, called the PDMS-chip ceiling (PC) method, enables improved spermatogenesis efficiency. We investigated whether this PC method is useful for detecting impaired spermatogenesis caused by busulfan (Bu), a typical testicular toxicant. In this study, testicular tissue fragments from Acro3-EGFP mice, which express the green fluorescent protein (GFP) and reflect the progression of spermatogenesis, were subjected to the PC method. When treated with Bu, cultured tissues shrank in volume, and their GFP-expressing area decreased or disappeared. Histological examination confirmed the regression of spermatogenesis. In addition, immunohistochemical examination revealed that spermatogonia, including spermatogonial stem cells (SSCs), were the primary targets of Bu toxicity. Time-course analysis demonstrated that the recovery of spermatogenesis, dependent on Bu concentration, correlated closely with the severity of damage to these target cells. These results suggest that the PC method is a useful approach for detecting spermatogenesis impairment accurately through faithful recapitulation of spermatogenesis in vivo.


Assuntos
Bussulfano , Técnicas de Cultura de Órgãos , Espermatogênese , Testículo , Animais , Masculino , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/citologia , Técnicas de Cultura de Órgãos/métodos , Camundongos , Bussulfano/farmacologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/citologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética
7.
Biol Res ; 57(1): 66, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285301

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) are essential for the maintenance and initiation of male spermatogenesis. Despite the advances in understanding SSC biology in mouse models, the mechanisms underlying human SSC development remain elusive. RESULTS: Here, we analyzed the signaling pathways involved in SSC regulation by testicular somatic cells using single-cell sequencing data (GEO datasets: GSE149512 and GSE112013) and identified that Leydig cells communicate with SSCs through pleiotrophin (PTN) and its receptor syndecan-2 (SDC2). Immunofluorescence, STRING prediction, and protein immunoprecipitation assays confirmed the interaction between PTN and SDC2 in spermatogonia, but their co-localization was observed only in approximately 50% of the cells. The knockdown of SDC2 in human SSC lines impaired cell proliferation, DNA synthesis, and the expression of PLZF, a key marker for SSC self-renewal. Transcriptome analysis revealed that SDC2 knockdown downregulated the expression of GFRA1, a crucial factor for SSC proliferation and self-renewal, and inhibited the HIF-1 signaling pathway. Exogenous PTN rescued the proliferation and GFRA1 expression in SDC2 knockdown SSC lines. In addition, we found downregulation of PTN and SDC2 as well as altered localization in non-obstructive azoospermia (NOA) patients, suggesting that downregulation of PTN and SDC2 may be associated with impaired spermatogenesis. CONCLUSIONS: Our results uncover a novel mechanism of human SSC regulation by the testicular microenvironment and suggest a potential therapeutic target for male infertility.


Assuntos
Proteínas de Transporte , Proliferação de Células , Citocinas , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Células Intersticiais do Testículo , Sindecana-2 , Masculino , Humanos , Proliferação de Células/fisiologia , Células Intersticiais do Testículo/metabolismo , Citocinas/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Sindecana-2/metabolismo , Sindecana-2/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Sobrevivência Celular/fisiologia , Espermatogônias/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/fisiologia
8.
Cell Rep Med ; 5(9): 101709, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39226895

RESUMO

Cryptorchidism, commonly known as undescended testis, affects 1%-9% of male newborns, posing infertility and testis tumor risks. Despite its prevalence, the detailed pathophysiology underlying male infertility within cryptorchidism remains unclear. Here, we profile and analyze 46,644 single-cell transcriptomes from individual testicular cells obtained from adult males diagnosed with cryptorchidism and healthy controls. Spermatogenesis compromise in cryptorchidism links primarily to spermatogonium self-renewal and differentiation dysfunctions. We illuminate the involvement of testicular somatic cells, including immune cells, thereby unveiling the activation and degranulation of mast cells in cryptorchidism. Mast cells are identified as contributors to interstitial fibrosis via transforming growth factor ß1 (TGF-ß1) and cathepsin G secretion. Furthermore, significantly increased levels of secretory proteins indicate mast cell activation and testicular fibrosis in the seminal plasma of individuals with cryptorchidism compared to controls. These insights serve as valuable translational references, enriching our comprehension of testicular pathogenesis and informing more precise diagnosis and targeted therapeutic strategies for cryptorchidism.


Assuntos
Criptorquidismo , Perfilação da Expressão Gênica , Análise de Célula Única , Espermatogênese , Transcriptoma , Criptorquidismo/genética , Criptorquidismo/patologia , Criptorquidismo/metabolismo , Masculino , Humanos , Análise de Célula Única/métodos , Espermatogênese/genética , Transcriptoma/genética , Testículo/metabolismo , Testículo/patologia , Mastócitos/metabolismo , Mastócitos/patologia , Adulto , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Fibrose , Espermatogônias/metabolismo , Espermatogônias/patologia
9.
Sci Rep ; 14(1): 20889, 2024 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244620

RESUMO

Microtubules, polymers of αß-tubulin heterodimers, are essential for various cellular processes. The incorporation of different tubulin isotypes, each encoded by distinct genes, is proposed to contribute to the functional diversity observed in microtubules. However, the functional roles of each tubulin isotype are not completely understood. In this study, we investigated the role of the ß4B-tubulin isotype (Tubb4b) in spermatogenesis, utilizing a Tubb4b knockout mouse model. We showed that ß4B-tubulin is expressed in the germ cells throughout spermatogenesis. ß4B-tubulin was localized to cytoplasmic microtubules, mitotic spindles, manchette, and axonemes of sperm flagella. We found that the absence of ß4B-tubulin resulted in male infertility and failure to produce sperm cells. Our findings demonstrate that a lack of ß4B-tubulin leads to defects in the initial stages of spermatogenesis. Specifically, ß4B-tubulin is needed for the expansion of differentiating spermatogonia, which is essential for the subsequent progression of spermatogenesis.


Assuntos
Diferenciação Celular , Camundongos Knockout , Microtúbulos , Espermatogênese , Espermatogônias , Tubulina (Proteína) , Animais , Masculino , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Espermatogônias/metabolismo , Espermatogônias/citologia , Espermatogênese/genética , Camundongos , Microtúbulos/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia
10.
Cell Mol Life Sci ; 81(1): 391, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254854

RESUMO

Human spermatogonial stem cells (SSCs) have significant applications in reproductive medicine and regenerative medicine because of their great plasticity. Nevertheless, it remains unknown about the functions and mechanisms of long non-coding RNA (LncRNA) in regulating the fate determinations of human SSCs. Here we have demonstrated that LncRNA ACVR2B-as1 (activin A receptor type 2B antisense RNA 1) controls the self-renewal and apoptosis of human SSCs by interaction with ALDOA via glycolysis activity. LncRNA ACVR2B-as1 is highly expressed in human SSCs. LncRNA ACVR2B-as1 silencing suppresses the proliferation and DNA synthesis and enhances the apoptosis of human SSCs. Mechanistically, our ChIRP-MS and RIP assays revealed that ACVR2B-as1 interacted with ALDOA in human SSCs. High expression of ACVR2B-as1 enhanced the proliferation, DNA synthesis, and glycolysis of human SSCs but inhibited their apoptosis through up-regulation of ALDOA. Importantly, overexpression of ALDOA counteracted the effect of ACVR2B-as1 knockdown on the aforementioned biological processes. Collectively, these results indicate that ACVR2B-as1 interacts with ALDOA to control the self-renewal and apoptosis of human SSCs by enhancing glycolysis activity. This study is of great significance because it sheds a novel insight into molecular mechanisms underlying the fate decisions of human SSCs and it may offer innovative approaches to address the etiology of male infertility.


Assuntos
Apoptose , Proliferação de Células , Glicólise , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Apoptose/genética , Glicólise/genética , Masculino , Proliferação de Células/genética , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/genética , Espermatogônias/metabolismo , Espermatogônias/citologia , Células-Tronco Germinativas Adultas/metabolismo , Autorrenovação Celular/genética , Células Cultivadas
11.
Nat Commun ; 15(1): 6637, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122675

RESUMO

piRNAs are crucial for transposon silencing, germ cell maturation, and fertility in male mice. Here, we report on the genetic landscape of piRNA dysfunction in humans and present 39 infertile men carrying biallelic variants in 14 different piRNA pathway genes, including PIWIL1, GTSF1, GPAT2, MAEL, TDRD1, and DDX4. In some affected men, the testicular phenotypes differ from those of the respective knockout mice and range from complete germ cell loss to the production of a few morphologically abnormal sperm. A reduced number of pachytene piRNAs was detected in the testicular tissue of variant carriers, demonstrating impaired piRNA biogenesis. Furthermore, LINE1 expression in spermatogonia links impaired piRNA biogenesis to transposon de-silencing and serves to classify variants as functionally relevant. These results establish the disrupted piRNA pathway as a major cause of human spermatogenic failure and provide insights into transposon silencing in human male germ cells.


Assuntos
Elementos de DNA Transponíveis , Infertilidade Masculina , RNA Interferente Pequeno , Espermatogênese , Testículo , Masculino , Humanos , Espermatogênese/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Elementos de DNA Transponíveis/genética , Animais , Testículo/metabolismo , Camundongos , Adulto , Inativação Gênica , Camundongos Knockout , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Espermatogônias/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA de Interação com Piwi
12.
Theriogenology ; 229: 178-190, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39197255

RESUMO

Cryopreservation of spermatogonia could be a useful tool to preserve the genetic resources of fish, which could be further restored via germ cell transplantation. In this study, the protocol for the cryopreservation of the spermatogonia of Asian sea bass (Lates calcarifer), an economically important fishery resource in the Indo-West Pacific, was optimised. The impact of the cryopreservation technique on cell viability and apoptosis, expression of several genes related to immature germ cell markers, transplantability in allogeneic recipients, and global DNA methylation was evaluated. The slow-freezing method was performed for the cryopreservation of immature testis tissue, which contains a high proportion of spermatogonia. The optimal condition that yielded the highest recovery rate of post-thawed spermatogonia included a cryomedium containing Leibovitz's (L-15) medium and 10 % dimethyl sulfoxide, ice equilibration for 60 min before freezing, and subsequent thawing at 4 °C for 8 min. Moreover, a higher number of early and late apoptotic cells was detected in the cryopreserved than in the fresh testes, suggesting that apoptosis could result in reduced viability. The expression levels of dazl decreased in the cryopreserved testes; however, there were no significant differences in the expression levels of nanos2 or nanos3 between the fresh and cryopreserved testes. Although qRT-PCR showed lower vasa expression in cryopreserved testicular cells, in situ hybridisation showed expressed vasa in the cryopreserved testicular cells. Post-thawed spermatogonia could be incorporated into the genital ridge of allogeneic recipients, suggesting that cryopreserved spermatogonia exhibit transplantability characteristics. Compared with fresh testes, significant changes in the proportion of DNA methylation (decreased 5-mC and 5-caC) were observed in cryomedium-free testicular cells, whereas those of the cryopreserved cells were not significantly different. Therefore, the method we developed for the cryopreservation of the spermatogonia of Asian sea bass enabled post-thaw cells to retain several stemness characteristics and maintain their epigenetic stability.


Assuntos
Apoptose , Bass , Criopreservação , Metilação de DNA , Testículo , Animais , Masculino , Criopreservação/veterinária , Criopreservação/métodos , Bass/genética , Bass/fisiologia , Espermatogônias , Células Germinativas , Regulação da Expressão Gênica
13.
Zool Res ; 45(5): 1048-1060, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39147719

RESUMO

Extracellular membrane proteins are crucial for mediating cell attachment, recognition, and signal transduction in the testicular microenvironment, particularly germline stem cells. Cadherin 18 (CDH18), a type II classical cadherin, is primarily expressed in the nervous and reproductive systems. Here, we investigated the expression of CDH18 in neonatal porcine prospermatogonia (ProSGs) and murine spermatogonial stem cells (SSCs). Disruption of CDH18 expression did not adversely affect cell morphology, proliferation, self-renewal, or differentiation in cultured porcine ProSGs, but enhanced cell adhesion and prolonged cell maintenance. Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion. To further elucidate the function of CDH18 in germ cells, Cdh18 knockout mice were generated, which exhibited normal testicular morphology, histology, and spermatogenesis. Transcriptomic analysis showed increased expression of genes associated with adhesion, consistent with the observations in porcine ProSGs. The interaction of CDH18 with ß-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency. Collectively, these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs. Understanding this regulatory mechanism provides significant insights into the testicular niche.


Assuntos
Caderinas , Adesão Celular , Animais , Masculino , Suínos , Adesão Celular/fisiologia , Camundongos , Caderinas/metabolismo , Caderinas/genética , Camundongos Knockout , Espermatogônias/metabolismo , Espermatogônias/fisiologia , Testículo/metabolismo , Testículo/fisiologia , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/fisiologia , Regulação da Expressão Gênica , Células-Tronco/fisiologia , Células-Tronco/metabolismo
14.
Genes Dev ; 38(13-14): 655-674, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39111825

RESUMO

Alternative cleavage and polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3' UTRs from the same genetic locus, potentially impacting mRNA translation, localization, and stability. Developmentally regulated APA can thus make major contributions to cell type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, ∼500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of cleavage factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knockdown of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell type-specific APA at selected genes.


Assuntos
Linhagem da Célula , Poliadenilação , Espermatócitos , Espermatogênese , Animais , Poliadenilação/genética , Masculino , Espermatogênese/genética , Espermatócitos/metabolismo , Espermatócitos/citologia , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/citologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
15.
Reprod Domest Anim ; 59(7): e14661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979950

RESUMO

Spermatogonial stem cells (SSCs) comprise the foundation of spermatogenesis and hence have great potential for fertility preservation of rare or endangered species and the development of transgenic animals and birds. Yet, developing optimal conditions for the isolation, culture, and maintenance of SSCs in vitro remains challenging, especially for chicken. The objectives of this study were to (1) find the optimal age for SSC isolation in Huaixiang chicken, (2) develop efficient protocols for the isolation, (3) enrichment, and (4) culture of isolated SSCs. In the present study, we first compared the efficiency of SSC isolation using 11 different age groups (8-79 days of age) of Huaixiang chicken. We found that the testes of 21-day-old chicken yielded the highest cell viability. Next, we compared two different enzymatic combinations for isolating SSCs and found that 0.125% trypsin and 0.02 g/L EDTA supported the highest number and viability of SSCs. This was followed by investigating optimal conditions for the enrichment of SSCs, where we observed that differential plating had the highest enrichment efficiency compared to the Percoll gradient and magnetic-activated cell sorting methods. Lastly, to find the optimal culture conditions of SSCs, we compared adding different concentrations of foetal bovine serum (FBS; 2%, 5%, 7%, and 10%) and different concentrations of GDNF, bFGF, or LIF (5, 10, 20, or 30 ng/mL). We found that a combination of 2% FBS and individual growth factors, including GDNF (20 ng/mL), bFGF (30 ng/mL), or LIF (5 ng/mL), best supported the proliferation and colony formation of SSCs. In conclusion, SSCs can be optimally isolated through enzymatic digestion from testes of 21-day-old chicken, followed by enrichment using differential plating. Furthermore, adding 2% FBS and optimized concentrations of GFNF, bFGF, or LIF in the culture promotes the proliferation of chicken SSCs.


Assuntos
Células-Tronco Germinativas Adultas , Técnicas de Cultura de Células , Separação Celular , Galinhas , Animais , Masculino , Técnicas de Cultura de Células/veterinária , Separação Celular/métodos , Separação Celular/veterinária , Testículo/citologia , Espermatogônias/citologia , Sobrevivência Celular , Células Cultivadas
16.
Sci Rep ; 14(1): 15732, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977826

RESUMO

YAP plays a vital role in controlling growth and differentiation in various cell lineages. Although the expression of YAP in mice testicular and spermatogenic cells suggests its role in mammalian spermatogenesis, the role of YAP in the development of human male germ cells has not yet been determined. Using an in vitro model and a gene editing approach, we generated human spermatogonia stem cell-like cells (hSSLCs) from human embryonic stem cells (hESCs) and investigated the role of YAP in human spermatogenesis. The results showed that reducing YAP expression during the early stage of spermatogenic differentiation increased the number of PLZF+ hSSLCs and haploid spermatid-like cells. We also demonstrated that the up-regulation of YAP is essential for maintaining spermatogenic cell survival during the later stages of spermatogenic differentiation. The expression of YAP that deviates from this pattern results in a lower number of hSSLCs and an increased level of spermatogenic cell death. Taken together, our result demonstrates that the dynamic expression pattern of YAP is essential for human spermatogenesis. Modulating the level of YAP during human spermatogenesis could improve the production yield of male germ cells derived from hESCs, which could provide the optimization method for in vitro gametogenesis and gain insight into the application in the treatment of male infertility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Células-Tronco Embrionárias Humanas , Espermatogênese , Fatores de Transcrição , Proteínas de Sinalização YAP , Masculino , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Espermatogônias/metabolismo , Espermatogônias/citologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética
17.
Reprod Fertil Dev ; 362024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991104

RESUMO

Context A population of sperm progenitor cells, known as Asingle spermatogonia, has been described in mammalian testes. During division cycles in spermatogenesis, some cells will form part of the Asingle spermatogonia group, while others form primary spermatocytes. Thus, during spermatogenesis, spermatogonia are the progenitor cells of spermatozoa. Aims In this study, we characterise the spermatogonial stem cells (SSCs) in the testicles of Artibeus jamaicensis and Sturnira lilium bats. The knowledge generated from this will contribute to the understanding of the biology of germ cells and the mechanisms of spermatogenesis in mammals, generating information on wildlife species that are important for biodiversity. Methods Testes were analysed by light and electron microscopy. Likewise, the expression of specific factors of stem cells (Oct4 and C-kit), germ cells (Vasa), cell proliferation (pH3 and SCP1) and testicular somatic cells (MIS, 3ßHSD and Sox9) was characterised by immunofluorescence and western blot. Key results The histological analysis enabled the location of type Asingle, Apaired and Aaligned spermatogonia in the periphery of the seminiferous tubules adjacent to Sertoli cells. The expression of genes of stem and germ cells made it possible to corroborate the distribution of the SSCs. Conclusions Results indicate that type Asingle spermatogonia were not randomly distributed, since proliferative activity was detected in groups of cells adjacent to the seminiferous tubules membrane, suggesting the localisation of spermatogonial niches in a specific region of testes. Implications This study provides evidence for the existence of SSCs in the testis of chiropterans that contribute to the renewal of germline progenitor cells to maintain the reproduction of the organisms.


Assuntos
Quirópteros , Espermatogênese , Espermatogônias , Testículo , Animais , Masculino , Testículo/citologia , Testículo/metabolismo , Espermatogônias/citologia , Espermatogênese/fisiologia , Células-Tronco/citologia , Proliferação de Células , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/citologia
18.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000031

RESUMO

In vitro maturation (IVM) is a promising fertility restoration strategy for patients with nonobstructive azoospermia or for prepubertal boys to obtain fertilizing-competent spermatozoa. However, in vitro spermatogenesis is still not achieved with human immature testicular tissue. Knowledge of various human testicular transcriptional profiles from different developmental periods helps us to better understand the testis development. This scoping review aims to describe the testis development and maturation from the fetal period towards adulthood and to find information to optimize IVM. Research papers related to native and in vitro cultured human testicular cells and single-cell RNA-sequencing (scRNA-seq) were identified and critically reviewed. Special focus was given to gene ontology terms to facilitate the interpretation of the biological function of related genes. The different consecutive maturation states of both the germ and somatic cell lineages were described. ScRNA-seq regularly showed major modifications around 11 years of age to eventually reach the adult state. Different spermatogonial stem cell (SSC) substates were described and scRNA-seq analyses are in favor of a paradigm shift, as the Adark and Apale spermatogonia populations could not distinctly be identified among the different SSC states. Data on the somatic cell lineage are limited, especially for Sertoli cells due technical issues related to cell size. During cell culture, scRNA-seq data showed that undifferentiated SSCs were favored in the presence of an AKT-signaling pathway inhibitor. The involvement of the oxidative phosphorylation pathway depended on the maturational state of the cells. Commonly identified cell signaling pathways during the testis development and maturation highlight factors that can be essential during specific maturation stages in IVM.


Assuntos
Espermatogênese , Testículo , Transcriptoma , Humanos , Espermatogênese/genética , Masculino , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Espermatogônias/metabolismo , Espermatogônias/citologia , Análise de Célula Única/métodos
19.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000597

RESUMO

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Infertilidade Masculina , Espermatogênese , Animais , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/deficiência , Espermatogênese/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Testículo/metabolismo , Meiose/genética , Espermatogônias/metabolismo , Perfilação da Expressão Gênica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Espermatócitos/metabolismo , Transcriptoma
20.
Nat Commun ; 15(1): 5582, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961093

RESUMO

Male infertility is a major public health concern globally with unknown etiology in approximately half of cases. The decline in total sperm count over the past four decades and the parallel increase in childhood obesity may suggest an association between these two conditions. Here, we review the molecular mechanisms through which obesity during childhood and adolescence may impair future testicular function. Several mechanisms occurring in obesity can interfere with the delicate metabolic processes taking place at the testicular level during childhood and adolescence, providing the molecular substrate to hypothesize a causal relationship between childhood obesity and the risk of low sperm counts in adulthood.


Assuntos
Células de Sertoli , Espermatogônias , Masculino , Humanos , Células de Sertoli/metabolismo , Criança , Adolescente , Espermatogônias/metabolismo , Infertilidade Masculina/metabolismo , Doenças Metabólicas/metabolismo , Espermatogênese , Obesidade Infantil/metabolismo , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Animais , Contagem de Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA