Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.846
Filtrar
1.
PLoS One ; 19(7): e0299421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954713

RESUMO

Mold infestations in buildings pose significant challenges to human health, affecting both private residences and hospitals. While molds commonly trigger asthma and allergies in the immunocompetent, they can cause life-threatening diseases in the immunocompromised. Currently, there is an unmet need for new strategies to reduce or prevent mold infestations. Far-UVC technology can inactivate microorganisms while remaining safe for humans. This study investigates the inhibitory efficacy of far-UVC light at 222 nm on the growth of common mold-producing fungi, specifically Penicillium candidum, when delivered in low-dose on-off duty cycles, a configuration consistent with its use in real-world settings. The inhibitory effect of the low-dose duty cycles was assessed on growth induced by i) an adjacent spore-producing P. candidum donor and ii) P. candidum spores seeded directly onto agar plates. In both setups, the far-UVC light significantly inhibited both vertical and horizontal growth of P. candidum, even when the UV doses were below the Threshold Value Limit of 23 mJ/cm2. These results suggest that far-UVC light holds the potential to improve indoor air quality by reducing or preventing mold growth, also when people are present.


Assuntos
Penicillium , Raios Ultravioleta , Penicillium/crescimento & desenvolvimento , Penicillium/efeitos da radiação , Esporos Fúngicos/efeitos da radiação , Esporos Fúngicos/crescimento & desenvolvimento , Fungos/efeitos da radiação , Fungos/crescimento & desenvolvimento , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Níveis Máximos Permitidos
2.
Sci Rep ; 14(1): 15404, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965323

RESUMO

Nowadays, the use of qPCR for the diagnosis of intestinal microsporidiosis is increasing. There are several studies on the evaluation of qPCR performance but very few focus on the stool pretreatment step before DNA extraction, which is nevertheless a crucial step. This study focuses on the mechanical pretreatment of stools for Enterocytozoon bieneusi spores DNA extraction. Firstly, a multicenter comparative study was conducted evaluating seven extraction methods (manual or automated) including various mechanical pretreatment. Secondly, several durations and grinding speeds and types of beads were tested in order to optimize mechanical pretreatment. Extraction methods of the various centers had widely-varying performances especially for samples with low microsporidia loads. Nuclisens® easyMAG (BioMérieux) and Quick DNA Fecal/Soil Microbe Microprep kit (ZymoResearch) presented the best performances (highest frequencies of detection of low spore concentrations and lowest Ct values). Optimal performances of mechanical pretreatment were obtained by applying a speed of 30 Hz during 60 s with the TissueLyser II (Qiagen) using commercial beads of various materials and sizes (from ZymoResearch or MP Biomedicals). Overall, the optimal DNA extraction method for E. bieneusi spores contained in stool samples was obtained with a strong but short bead beating using small-sized beads from various materials.


Assuntos
DNA Fúngico , Enterocytozoon , Fezes , Microsporidiose , Fezes/microbiologia , Enterocytozoon/isolamento & purificação , Enterocytozoon/genética , Humanos , Microsporidiose/diagnóstico , Microsporidiose/microbiologia , DNA Fúngico/isolamento & purificação , DNA Fúngico/genética , DNA Fúngico/análise , Manejo de Espécimes/métodos , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
Curr Microbiol ; 81(8): 249, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951199

RESUMO

Beauveria bassiana, the causative agent of arthropod, proliferates in the host hemolymph (liquid environment) and shits to saprotrophic growth on the host cadaver (aerial surface). In this study, we used transcriptomic analysis to compare the gene expression modes between these two growth phases. Of 10,366 total predicted genes in B. bassiana, 10,026 and 9985 genes were expressed in aerial (AM) and submerged (SM) mycelia, respectively, with 9853 genes overlapped. Comparative analysis between two transcriptomes indicated that there were 1041 up-regulated genes in AM library when compared with SM library, and 1995 genes were down-regulated, in particular, there were 7085 genes without significant change in expression between two transcriptomes. Furthermore, of 25 amidase genes (AMD), BbAMD5 has high expression level in both transcriptomes, and its protein product was associated with cell wall in aerial and submerged mycelia. Disruption of BbAMD5 significantly reduced mycelial hydrophobicity, hydrophobin translocation, and conidiation on aerial plate. Functional analysis also indicated that BbAmd5 was involved in B. bassiana blastospore formation in broth, but dispensable for fungal virulence. This study revealed the high similarity in global expression mode between mycelia grown under two cultivation conditions.


Assuntos
Beauveria , Proteínas Fúngicas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Micélio , Transcriptoma , Beauveria/genética , Beauveria/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micélio/crescimento & desenvolvimento , Micélio/genética , Animais , Virulência/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
4.
BMC Microbiol ; 24(1): 227, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937715

RESUMO

This study investigated the influence of bacterial cyclic lipopeptides (LP; surfactins, iturins, fengycins) on microbial interactions. The objective was to investigate whether the presence of bacteria inhibits fungal growth and whether this inhibition is due to the release of bacterial metabolites, particularly LP. Selected endophytic bacterial strains with known plant-growth promoting potential were cultured in the presence of Fusarium oxysporum f.sp. strigae (Fos), which was applied as model fungal organism. The extracellular metabolome of tested bacteria, with a focus on LP, was characterized, and the inhibitory effect of bacterial LP on fungal growth was investigated. The results showed that Bacillus velezensis GB03 and FZB42, as well as B. subtilis BSn5 exhibited the strongest antagonism against Fos. Paraburkholderia phytofirmans PsJN, on the other hand, tended to have a slight, though non-significant growth promotion effect. Crude LP from strains GB03 and FZB42 had the strongest inhibitory effect on Fos, with a significant inhibition of spore germination and damage of the hyphal structure. Liquid chromatography tandem mass spectrometry revealed the production of several variants of iturin, fengycin, and surfactin LP families from strains GB03, FZB42, and BSn5, with varying intensity. Using plate cultures, bacillomycin D fractions were detected in higher abundance in strains GB03, FZB42, and BSn5 in the presence of Fos. Additionally, the presence of Fos in dual plate culture triggered an increase in bacillomycin D production from the Bacillus strains. The study demonstrated the potent antagonistic effect of certain Bacillus strains (i.e., GB03, FZB42, BSn5) on Fos development. Our findings emphasize the crucial role of microbial interactions in shaping the co-existence of microbial assemblages.


Assuntos
Antibiose , Antifúngicos , Bacillus , Fusarium , Lipopeptídeos , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Bacillus/metabolismo , Antifúngicos/farmacologia , Peptídeos Cíclicos/farmacologia , Interações Microbianas , Burkholderiaceae/crescimento & desenvolvimento , Burkholderiaceae/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento
5.
Proc Natl Acad Sci U S A ; 121(26): e2405553121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889144

RESUMO

The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.


Assuntos
Citoplasma , Schizosaccharomyces , Esporos Fúngicos , Trealose , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Citoplasma/metabolismo , Trealose/metabolismo , Glucose/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais
6.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906101

RESUMO

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Assuntos
Gametogênese , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Coenzima A Ligases/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Tomografia com Microscopia Eletrônica , Meiose , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína
7.
Appl Microbiol Biotechnol ; 108(1): 398, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940906

RESUMO

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.


Assuntos
Biofilmes , Botrytis , Fragaria , Proteínas Fúngicas , Hifas , Proteínas de Membrana , Doenças das Plantas , Botrytis/patogenicidade , Botrytis/genética , Botrytis/crescimento & desenvolvimento , Botrytis/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Virulência , Hifas/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Fragaria/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vitis/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Deleção de Genes
8.
Food Res Int ; 190: 114550, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945594

RESUMO

Fungal contaminations of cereal grains are a profound food-safety and food-security concern worldwide, threatening consumers' and animals' health and causing enormous economic burdens. Because far-ultraviolet C (far-UVC) light at 222 nm has recently been shown to be human-safe, we investigated its efficacy as an alternative to thermal, chemical, and conventional 254 nm UVC anti-fungal treatments. Our microplasma-based far-UVC lamp system achieved a 5.21-log reduction in the conidia of Aspergillus flavus suspended in buffer with a dose of 1032.0 mJ/cm2, and a 5.11-log reduction of Fusarium graminearum conidia in suspension with a dose of 619.2 mJ/cm2. We further observed that far-UVC treatments could induce fungal-cell apoptosis, alter mitochondrial membrane potential, lead to the accumulation of intracellular reactive oxygen species, cause lipid peroxidation, and result in cell-membrane damage. The lamp system also exhibited a potent ability to inhibit the mycelial growth of both A. flavus and F. graminearum. On potato dextrose agar plates, such growth was completely inhibited after doses of 576.0 mJ/cm2 and 460.8 mJ/cm2, respectively. To test our approach's efficacy at decontaminating actual cereal grains, we designed a cubical 3D treatment chamber fitted with six lamps. At a dose of 780.0 mJ/cm2 on each side, the chamber achieved a 1.88-log reduction of A. flavus on dried yellow corn kernels and a 1.11-log reduction of F. graminearum on wheat grains, without significant moisture loss to either cereal type (p > 0.05). The treatment did not cause significant changes in the propensity of wheat grains to germinate in the week following treatment (p > 0.05). However, it increased the germination propensity of corn kernels by more than 71% in the same timeframe (p < 0.05). Collectively, our results demonstrate that 222 nm far-UVC radiation can effectively inactivate fungal growth in liquid, on solid surfaces, and on cereal grains. If scalable, its emergence as a safe, cost-effective alternative tool for reducing fungi-related post-harvest cereal losses could have important positive implications for the fight against world hunger and food insecurity.


Assuntos
Aspergillus flavus , Grão Comestível , Fusarium , Raios Ultravioleta , Fusarium/efeitos da radiação , Fusarium/crescimento & desenvolvimento , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/efeitos da radiação , Grão Comestível/microbiologia , Esporos Fúngicos/efeitos da radiação , Esporos Fúngicos/crescimento & desenvolvimento , Contaminação de Alimentos/prevenção & controle , Irradiação de Alimentos/métodos , Microbiologia de Alimentos , Espécies Reativas de Oxigênio/metabolismo
9.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928117

RESUMO

Cla4, an orthologous p21-activated kinase crucial for non-entomopathogenic fungal lifestyles, has two paralogs (Cla4A/B) functionally unknown in hypocrealean entomopathogens. Here, we report a regulatory role of Cla4A in gene expression networks of Beauveria bassiana required for asexual and entomopathogenic lifecycles while Cla4B is functionally redundant. The deletion of cla4A resulted in severe growth defects, reduced stress tolerance, delayed conidiation, altered conidiation mode, impaired conidial quality, and abolished pathogenicity through cuticular penetration, contrasting with no phenotype affected by cla4B deletion. In ∆cla4A, 5288 dysregulated genes were associated with phenotypic defects, which were restored by targeted gene complementation. Among those, 3699 genes were downregulated, including more than 1300 abolished at the transcriptomic level. Hundreds of those downregulated genes were involved in the regulation of transcription, translation, and post-translational modifications and the organization and function of the nuclear chromosome, chromatin, and protein-DNA complex. DNA-binding elements in promoter regions of 130 dysregulated genes were predicted to be targeted by Cla4A domains. Samples of purified Cla4A extract were proven to bind promoter DNAs of 12 predicted genes involved in multiple stress-responsive pathways. Therefore, Cla4A acts as a novel regulator of genomic expression and stability and mediates gene expression networks required for insect-pathogenic fungal adaptations to the host and environment.


Assuntos
Beauveria , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Beauveria/genética , Beauveria/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Animais , Insetos/microbiologia , Esporos Fúngicos/genética , Regiões Promotoras Genéticas
10.
Commun Biol ; 7(1): 768, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918572

RESUMO

Myeloblastosis (MYB)-like proteins are a family of highly conserved transcription factors in animals, plants, and fungi and are involved in the regulation of mRNA expression of genes. In this study, we identified and characterized one MYB-like protein in the model organism Aspergillus nidulans. We screened the mRNA levels of genes encoding MYB-like proteins containing two MYB repeats in conidia and found that the mRNA levels of four genes including flbD, cicD, and two uncharacterized genes, were high in conidia. To investigate the roles of two uncharacterized genes, AN4618 and AN10944, deletion mutants for each gene were generated. Our results revealed that AN4618 was required for fungal development. Therefore, we further investigated the role of AN4618, named as mylA, encoding the MYB-like protein containing two MYB repeats. Functional studies revealed that MylA was essential for normal fungal growth and development. Phenotypic and transcriptomic analyses demonstrated that deletion of mylA affected stress tolerance, cell wall integrity, and long-term viability in A. nidulans conidia. In addition, the germination rate of the mylA deletion mutant conidia was decreased compared with that of the wild-type conidia. Overall, this study suggests that MylA is critical for appropriate development, conidial maturation, dormancy, and germination in A. nidulans.


Assuntos
Aspergillus nidulans , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Microbiol Res ; 285: 127784, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824820

RESUMO

Fusarium crown rot (FCR) caused by Fusarium pseudograminearum poses a significant threat to wheat production in the Huang-Huai-Hai region of China. However, the pathogenic mechanism of F. pseudograminearum is still poorly understood. Zn2Cys6 transcription factors, which are exclusive to fungi, play pivotal roles in regulating fungal development, drug resistance, pathogenicity, and secondary metabolism. In this study, we present the functional characterization of a Zn2Cys6 transcription factor F. pseudograminearum, designated Fp487. In F. pseudograminearum, Fp487 is shown to be required for mycelial growth through gene knockout and phenotypic analyses. Compared with wild-type CF14047, the ∆Fp487 mutant displayed a slight reduction in growth rate but a significant decrease in conidiogenesis, pathogenicity and 3-acetyl-deoxynivalenol (3AcDON) production. Moreover, the mutant exhibited heightened sensitivity to oxidative and cytomembrane stress. Furthermore, we synthesized dsRNA from the Fp487 gene in vitro, resulting in a reduction in the growth rate of F. pseudograminearum and its virulence on barley leaves through spray-induced gene silencing (SIGS). Notably, this study makes the first instance of inducing the expression of abundant dsRNA from F. pseudograminearum by engineering the Escherichia coli strain HT115 (DE3) and utilizing the SIGS technique to evaluate the virulence effect of dsRNA on F. pseudograminearum. In conclusion, our findings revealed the crucial role of Fp487 in regulating pathogenicity, stress responses, DON production, and conidiogenesis in F. pseudograminearum. Furthermore, Fp487 is a potential RNAi-based target for FCR control.


Assuntos
Proteínas Fúngicas , Fusarium , Regulação Fúngica da Expressão Gênica , Hordeum , Doenças das Plantas , Fatores de Transcrição , Fusarium/genética , Fusarium/patogenicidade , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Doenças das Plantas/microbiologia , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hordeum/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Triticum/microbiologia , Folhas de Planta/microbiologia , Técnicas de Inativação de Genes , China , Micélio/crescimento & desenvolvimento , Inativação Gênica
12.
Mycologia ; 116(4): 601-620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38847769

RESUMO

Three novel species of the genus Leucocoprinus, named Lc. cinnamomeodiscus, Lc. dahranwalanus, and Lc. iqbalii, are described from unexplored regions of southern Punjab, Pakistan, based on comprehensive analyses of morphoanatomical characteristics and molecular phylogenetic data. We provide illustrations of freshly collected basidiomata and detailed line drawings highlighting key anatomical features. The molecular phylogenetic analyses, which are based on the internal transcribed spacer (ITS) region and combined ITS-28S sequences, consistently position these newly described species within the genus Leucocoprinus. Additionally, this study also introduces new taxonomic combinations for previously reported Leucoagaricus species.


Assuntos
DNA Fúngico , DNA Espaçador Ribossômico , Filogenia , Paquistão , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA , Esporos Fúngicos/citologia , Basidiomycota/genética , Basidiomycota/classificação , RNA Ribossômico 28S/genética , Biodiversidade
13.
Mycologia ; 116(4): 498-508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848260

RESUMO

Fossil epifoliar fungi are valuable indicators of paleoenvironment and paleoecology. The Meliolaceae, members of which typically inhabit the surface of living plants as biotrophs or pathogens, is one of the largest groups of epifoliar fungi. In this study, we report a novel fossil species of Meliolinites Selkirk (fossil Meliolaceae), Meliolinites tengchongensis, on the lower epidermis of compressed fossil Rhodoleia (Hamamelidaceae) leaves from the Upper Pliocene Mangbang Formation of Tengchong, Yunnan, southwestern China. Meliolinites tengchongensis is characterized by web-like, superficial, brown to dark brown, septate, and branching mycelia bearing 2-celled appressoria and unicellular phialides. The fungal colonies also include ellipsoidal, 5-celled, 4-septate ascospores and dark brown perithecia with suborbicular outline and verrucose surface. The well-preserved vegetative and reproductive organs help us to explore the potential disease process of the new fossil species. Besides, the presence of fungal remains indicates that the fungal taxon might have maintained its host preference since at least the Late Pliocene. Furthermore, the occurrence of both fossil fungi and their host plants in Tengchong indicate a subtropical-tropical, warm, and humid climate during the Late Pliocene, whereas the distribution pattern of the fungi on the host leaves suggests that Rhodoleia may have been a part of the middle-upper canopies in the Tengchong Late Pliocene multilayered forest.


Assuntos
Fósseis , Folhas de Planta , Folhas de Planta/microbiologia , China , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Esporos Fúngicos
14.
ACS Appl Mater Interfaces ; 16(26): 33182-33191, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38903013

RESUMO

Direct observation by the naked eye of fluorescence-stained microbes adsorbed on surface imprinted polymers (SIPs) is highly challenging and limited by speed, accuracy and the semiquantitative nature of the method. In this study, we tested for the presence of spores of Fusarium oxysporum f. sp. cubense race 4 (Foc4), which cause severe banana Fusarium wilt disease and reduces the area of banana plants. This kind of spore can become dormant in soil, which means that the detection of secreted molecules (molecular imprinting) in soil may be inaccurate; detection methods such as polymerase chain reaction (PCR) and Raman spectroscopy are more accurate but time-consuming and inconvenient. Therefore, a semiquantitative and rapid SIP detection method for Foc4 was proposed. Based on the ITO conductive layer, a reusable and naked-eye-detectable Foc4-PDMS SIP film was prepared with a site density of approximately 9000 mm-2. Adsorption experiments showed that when the Foc4 spore concentration was between 104 to 107 CFU/mL, the number of Foc4 spores adsorbed and the fluorescence intensity were strongly correlated with the concentration and could be fully distinguished by the naked eye after fluorescence staining. Adsorption tests on other microbes showed that the SIP film completely recognized only the Foc series. All the results were highly consistent with the naked-eye observations after fluorescence staining, and the results of the Foc4-infected soil experiment were also close to the ideal situation. Taken together, these results showed that Foc4-PDMS SIPs have the ability to rapidly and semiquantitatively detect the concentration of Foc in soil, which can provide good support for banana cultivation. This method also has potential applications in the detection of other fungal diseases.


Assuntos
Fusarium , Fusarium/isolamento & purificação , Fusarium/química , Siloxanas/química , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/química , Musa/microbiologia , Musa/química , Doenças das Plantas/microbiologia , Adsorção , Impressão Molecular , Propriedades de Superfície , Microbiologia do Solo
15.
Int J Food Microbiol ; 421: 110746, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38917488

RESUMO

Alternaria alternata is part of a genus comprised of over 600 different species that occur all over the world and cause damage to humans, plants and thereby to the economy. Yet, even though some species are causing tremendous issues, the past years have shown that assigning newly found isolates to known species was rather inconsistent. Most identifications are usually done on the basis of spore morphology, chemotype and molecular markers. In this work we used strains isolated from the wild as well as commercial strains of the DSMZ (German collection of microorganisms and cell cultures) as a reference, to show, that the variation within the Alternaria alternata species is comparable to the variation between different species of the genus Alternaria in regards to spore morphology and chemotype. We compared the different methods of identification and discerned the concatenation of multiple molecular markers as the deciding factor for better identification. Up until this point, usually a concatenation of two or three traditional molecular markers was used. Some of those markers being stronger some weaker. We show that the concatenation of five molecular markers improves the likeliness of a correct assignment, thus a better distinction between the different Alternaria species.


Assuntos
Alternaria , Alternaria/genética , Alternaria/classificação , Alternaria/isolamento & purificação , Esporos Fúngicos/genética , DNA Fúngico/genética , Marcadores Genéticos , Técnicas de Tipagem Micológica/métodos , Filogenia
16.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892450

RESUMO

Asexual development is the main propagation and transmission mode of Beauveria bassiana and the basis of its pathogenicity. The regulation mechanism of conidiation and the key gene resources for utilization are key links to improving the conidia yield and quality of Beauveria bassiana. Their clarification may promote the industrialization of fungal pesticides. Here, we compared the regulation of morphology, resistance to external stress, virulence, and nutrient utilization capacity between the upstream developmental regulatory gene fluG and the key genes brlA, abaA, and wetA in the central growth and development pathway. The results showed that the ΔbrlA and ΔabaA mutants completely lost the capacity to conidiate and that the ΔwetA mutant had seriously reduced conidiation capacity. Although the deletion of fluG did not reduce the conidiation ability as much as deletions of brlA, abaA, and wetA, it significantly reduced the fungal response to external stress, virulence, and nutrient utilization, while the deletion of the three other genes had little effect. Via transcriptome analysis and screening the yeast nuclear system library, we found that the differentially expressed genes in the ΔfluG mutants were concentrated in the signaling pathways of ABC transporters, propionate metabolism, tryptophan metabolism, DNA replication, mismatch repair, and fatty acid metabolism. FluG directly acted on 40 proteins that were involved in various signaling pathways such as metabolism, oxidative stress, and cell homeostasis. The analysis indicated that the regulatory function of fluG was mainly involved in DNA replication, cell homeostasis, fungal growth and metabolism, and the response to external stress. Our results revealed the biological function of fluG in asexual development and the responses to several environmental stresses as well as its influence on the asexual development regulatory network in B. bassiana.


Assuntos
Beauveria , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Reprodução Assexuada , Esporos Fúngicos , Beauveria/genética , Beauveria/crescimento & desenvolvimento , Beauveria/patogenicidade , Beauveria/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Reprodução Assexuada/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Virulência/genética , Perfilação da Expressão Gênica , Estresse Fisiológico , Transcriptoma
17.
Pestic Biochem Physiol ; 202: 105933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879325

RESUMO

Citrus sour rot is a common postharvest citrus disease caused by Geotrichum citri-aurantiiti, which has led to enormous economic losses, particularly during rainy seasons. In this study, we aimed to clarify the impact of berberine hydrochloride (BH), the hydrochloride form of an isoquinoline alkaloid, on the control efficiency of citrus sour rot and its antifungal mode against G. citri-aurantii. Results demonstrated that BH markedly impede the propagation of G. citri-aurantii by delaying the spores development from dormant stage into swollen and germinating stages, with the MIC and MFC value of 0.08 and 0.16 g L-1, respectively. When the artificially inoculated citrus fruit in control group were totally rotted, the disease incidence of BH-treated groups decreased by 35.00%-73.30%, which effectively delayed the disease progression and almost did not negatively affect fruit quality. SEM observation, CFW and PI staining images revealed that BH caused significant damage to both the cell membrane and cell wall of G. citri-aurantii spores, whereas only the cell membrane of the mycelium was affected. The impact of cell wall was related to the block of chitin and ß-1,3-glucan synthesis. Transcriptome results and further verification proved that 0.5 × MIC BH treatment affected the glycolysis pathway and TCA cycle mainly by inhibiting the production of acetyl-CoA and pyruvate. Subsequently, the activities of key enzymes declined, resulting in a further decrease in ATP levels, ultimately inhibiting the germination of spores. In conlusion, BH delays citrus sour rot mainly by disrupting carbohydrate and energy metabolism of G. citri-aurantii spores.


Assuntos
Berberina , Citrus , Metabolismo Energético , Geotrichum , Doenças das Plantas , Esporos Fúngicos , Citrus/microbiologia , Geotrichum/efeitos dos fármacos , Geotrichum/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Berberina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Fungicidas Industriais/farmacologia
18.
Fungal Biol ; 128(4): 1827-1835, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876535

RESUMO

Metarhizium rileyi has a broad biocontrol spectrum but is highly sensitive to abiotic factors. A Colombian isolate M. rileyi Nm017 has shown notorious potential against Helicoverpa zea. However, it has a loss of up to 22 % of its conidial germination after drying, which limits its potential as a biocontrol agent and further commercialization. Conidial desiccation resistance can be enhanced by nutritional supplements, which promotes field adaptability and facilitates technological development as a biopesticide. In this study, the effect of culture medium supplemented with linoleic acid on desiccation tolerance in Nm017 conidia was evaluated. Results showed that using a 2 % linoleic acid-supplemented medium increased the relative germination after drying by 41 % compared to the control treatment, without affecting insecticidal activity on H. zea. Also, the fungus increased the synthesis of trehalose, glucose, and erythritol during drying, independently of linoleic acid use. Ultrastructural analyses of the cell wall-membrane showed a loss of thickness by 22 % and 25 %, in samples obtained from 2 % linoleic acid supplementation and the control, respectively. Regarding its morphological characteristics, conidia inner area from both treatments did not change after drying. However, conidia from the control had a 24 % decrease in length/width ratio, whereas there was no alteration in conidia from acid linoleic. The average value of dry conidia elasticity coefficient from linoleic acid treatment was 200 % above the control. Medium supplementation with linoleic acid is a promising fermentation strategy for obtaining more tolerant conidia without affecting production and biocontrol parameters, compatible solutes synthesis, or modifying its cell configuration.


Assuntos
Meios de Cultura , Ácido Linoleico , Metarhizium , Esporos Fúngicos , Metarhizium/fisiologia , Metarhizium/efeitos dos fármacos , Metarhizium/crescimento & desenvolvimento , Ácido Linoleico/metabolismo , Ácido Linoleico/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Meios de Cultura/química , Animais , Dessecação , Controle Biológico de Vetores , Colômbia , Mariposas/microbiologia
19.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891082

RESUMO

Fusarium pseudograminearum causes destructive crown disease in wheat. The velvet protein family is a crucial regulator in development, virulence, and secondary metabolism of fungi. We conducted a functional analysis of FpVelB using a gene replacement strategy. The deletion of FpVelB decreased radial growth and enhanced conidial production compared to that of wild type. Furthermore, FpVelB modulates the fungal responses to abiotic stress through diverse mechanisms. Significantly, virulence decreased after the deletion of FpVelB in both the stem base and head of wheat. Genome-wide gene expression profiling revealed that the regulation of genes by FpVelB is associated with several processes related to the aforementioned phenotype, including "immune", "membrane", and "antioxidant activity", particularly with regard to secondary metabolites. Most importantly, we demonstrated that FpVelB regulates pathogen virulence by influencing deoxynivalenol production and modulating the expression of the PKS11 gene. In conclusion, FpVelB is crucial for plant growth, asexual development, and abiotic stress response and is essential for full virulence via secondary metabolism in F. pseudograminearum.


Assuntos
Proteínas Fúngicas , Fusarium , Regulação Fúngica da Expressão Gênica , Metabolismo Secundário , Fusarium/patogenicidade , Fusarium/genética , Fusarium/metabolismo , Metabolismo Secundário/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Virulência/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Estresse Fisiológico , Tricotecenos/metabolismo , Esporos Fúngicos/metabolismo
20.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891868

RESUMO

Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically through sporulation in natural settings. Oyster mushroom spherical virus (OMSV) is a mycovirus that infects Pleurotus ostreatus, with horizontal transmission via hyphal anastomosis. However, whether OMSV can be vertically transmitted is unclear. This study aimed to investigate the transmission characteristics of OMSV to progeny via basidiospores and horizontally to a new host. A total of 37 single-basidiospore offspring were obtained from OMSV-infected P. ostreatus and Pleurotus pulmonarius for Western blot detection of OMSV. The OMSV-carrying rate among monokaryotic isolates was 19% in P. ostreatus and 44% in P. pulmonarius. Then, OMSV-free and OMSV-infected monokaryotic isolates were selected for hybridization with harvested dikaryotic progeny strains. Western blot analyses of the offspring revealed that the OMSV transmission efficiency was 50% in P. ostreatus and 75% in P. pulmonarius, indicating vertical transmission via sexual basidiospores. Furthermore, we observed the horizontal transfer of OMSV from P. pulmonarius to Pleurotus floridanus. OMSV infection in P. floridanus resulted in significant inhibition of mycelial growth and yield loss. This study was novel in reporting the vertical transmission of OMSV through basidiospores, and its infection and pathogenicity in a new host P. floridanus.


Assuntos
Micovírus , Pleurotus , Esporos Fúngicos , Pleurotus/virologia , Esporos Fúngicos/crescimento & desenvolvimento , Micovírus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...