Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Mol Nutr Food Res ; 68(20): e2400361, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39363792

RESUMO

The progression of obesity involves several molecular mechanisms that are closely associated with the pathophysiological response of the disease. Endoplasmic reticulum (ER) stress is one such factor. Lipotoxicity disrupts endoplasmic reticulum homeostasis in the context of obesity. Furthermore, it induces ER stress by activating several signaling pathways via inflammatory responses and oxidative stress. ER performs crucial functions in protein synthesis and lipid metabolism; thus, triggers such as lipotoxicity can promote the accumulation of misfolded proteins in the organelle. The accumulation of these proteins can lead to metabolic disorders and chronic inflammation, resulting in cell death. Thus, alternatives, such as flavonoids, amino acids, and polyphenols that are associated with antioxidant and anti-inflammatory responses have been proposed to attenuate this response by modulating ER stress via the administration of nutrients and bioactive compounds. Decreasing inflammation and oxidative stress can reduce the expression of several ER stress markers and improve clinical outcomes through the management of obesity, including the control of body weight, visceral fat, and lipid accumulation. This review explores the metabolic changes resulting from ER stress and discusses the role of nutritional interventions in modulating the ER stress pathway in obesity.


Assuntos
Estresse do Retículo Endoplasmático , Obesidade , Estresse Oxidativo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Obesidade/metabolismo , Obesidade/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Animais , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Inflamação/metabolismo , Polifenóis/farmacologia , Antioxidantes/farmacologia , Transdução de Sinais , Flavonoides/farmacologia
2.
Mol Cell Endocrinol ; 594: 112380, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39332468

RESUMO

AIM: This study sought to evaluate the effects of LDT409, a pan-PPAR partial agonist obtained from the main industrial waste from cashew nut processing, on hepatic remodeling, highlighting energy metabolism and endoplasmic reticulum (ER) stress in high-fructose-fed mice. METHODS: Male C57BL/6 mice received a control diet (C) or a high-fructose diet (HFRU) for ten weeks. Then, a five-week treatment started: C, C-LDT409, HFRU, and HFRU-LDT409. The LDT409 (40 mg/kg of body weight) was mixed with the diets. RESULTS: The HFRU diet caused insulin resistance and endoplasmic reticulum (ER) stress. High Pparg and decreased Ppara expression increased steatosis and pro-fibrogenic gene expression in livers of HFRU-fed mice. Suppressed lipogenic factors, orchestrated by PPAR-gamma, and mitigated ER stress concomitant with the increase in beta-oxidation driven by PPAR-alpha mediated the LDT409 beneficial effects. CONCLUSIONS: LDT409 may represent a potential low-cost approach to treat metabolic dysfunction-associated steatotic liver disease, which does not currently have a specific treatment.


Assuntos
Estresse do Retículo Endoplasmático , Frutose , Camundongos Endogâmicos C57BL , Animais , Masculino , Frutose/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Resistência à Insulina , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR alfa/genética , PPAR gama/agonistas , PPAR gama/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
3.
Food Chem Toxicol ; 192: 114965, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197524

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined as morphofunctional changes in the liver. Studies have shown that Westernized eating patterns and environmental pollutants can directly induce the development of MASLD. This study evaluates the effect of co-exposure to interesterified palm oil (IPO) and 3,3',4,4',5-pentachlorobiphenyl (PCB-126) on the progression of MASLD in an animal model. C57BL/6 mice were fed IPO and co-exposed to PCB-126 for ten weeks. The co-exposure led to an imbalance in carbohydrate metabolism, increased systemic inflammation markers, and morphofunctional changes in the liver. These liver changes included the presence of inflammatory cells, fibrosis, alterations in aspartate transaminase (AST) and alanine transaminase (ALT) enzymes, and imbalance in gene expression related to fatty acid ß-oxidation, de novo lipogenesis, mitochondrial dynamics, and endoplasmic reticulum stress. Separate exposures to IPO and PCB-126 affected metabolism and MASLD progression. Nutritional and lifestyle factors may potentiate the onset and severity of MASLD.


Assuntos
Fígado , Camundongos Endogâmicos C57BL , Óleo de Palmeira , Bifenilos Policlorados , Animais , Bifenilos Policlorados/toxicidade , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Poluentes Ambientais/toxicidade
4.
Am J Physiol Endocrinol Metab ; 327(3): E384-E395, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39082901

RESUMO

Although unfolded protein response (UPR) is essential for cellular protection, its prolonged activation may induce apoptosis, compromising cellular longevity. The aging process increases the endoplasmic reticulum (ER) stress in skeletal muscle. However, whether combined exercise can prevent age-induced ER stress in skeletal muscle remains unknown. Evidence suggests that ER stress may increase inflammation by counteracting the positive effects of interleukin-10 (IL-10), whereas its administration in cells inhibits ER stress and apoptosis. This study verified the effects of aging and combined exercise on physical performance, ER stress markers, and inflammation in the quadriceps of mice. Moreover, we verified the effects of IL-10 on ER stress markers. C57BL/6 mice were distributed into young (Y, 6 mo old), old sedentary (OS, sedentary, 24 mo old), and old trained group (OT, submitted to short-term combined exercise, 24 mo old). To clarify the role of IL-10 in UPR pathways, knockout mice lacking IL-10 were used. The OS mice presented worse physical performance and higher ER stress-related proteins, such as C/EBP homologous protein (CHOP) and phospho-eukaryotic translation initiation factor 2 alpha (p-eIF2α/eIF2α). The exercise protocol increased muscle strength and IL-10 protein levels in OT while inducing the downregulation of CHOP protein levels compared with OS. Furthermore, mice lacking IL-10 increased BiP, CHOP, and p-eIF2α/eIF2α protein levels, indicating this cytokine can regulate the ER stress response in skeletal muscle. Bioinformatics analysis showed that endurance and resistance training downregulated DNA damage inducible transcript 3 (DDIT3) and XBP1 gene expression in the vastus lateralis of older people, reinforcing our findings. Thus, combined exercise is a potential therapeutic intervention for promoting adjustments in ER stress markers in aged skeletal muscle.NEW & NOTEWORTHY Aging elevates endoplasmic reticulum (ER) stress in skeletal muscle, potentially heightening inflammation by opposing interleukin-10 (IL-10) effects. This study found that short-term combined exercise boosted strength and IL-10 protein levels while reducing CHOP protein levels in older mice. In addition, IL-10-deficient mice exhibited increased ER stress markers, highlighting IL-10's role in regulating ER stress in skeletal muscle. Consequently, combined exercise emerges as a therapeutic intervention to elevate IL-10 and adjust ER stress markers in aging.


Assuntos
Envelhecimento , Estresse do Retículo Endoplasmático , Interleucina-10 , Músculo Esquelético , Condicionamento Físico Animal , Animais , Masculino , Camundongos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Músculo Quadríceps/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
5.
Biol Pharm Bull ; 47(7): 1265-1274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987175

RESUMO

There is evidence that propolis exhibits anti-inflammatory, anticancer, and antioxidant properties. We assessed the potential beneficial effects of Brazilian propolis on liver injury in nonalcoholic fatty liver disease (NAFLD). Our findings demonstrate that Brazilian propolis suppresses inflammation and fibrosis in the liver of mice with NAFLD by inhibiting the expression of genes involved in endoplasmic reticulum (ER) stress. Additionally, Brazilian propolis also suppressed the expression of ER stress-related genes in HepG2 cells treated with an excess of free fatty acids, leading to cell apoptosis. A deeper analysis revealed that kaempferol, one of the components present in Brazilian propolis, induces cell proliferation through the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and protects against oxidative stress. In conclusion, Brazilian propolis exhibits hepatoprotective properties against oxidative stress by inhibiting ER stress in NAFLD-induced model mice.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Fígado , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Própole , Própole/farmacologia , Própole/uso terapêutico , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Hep G2 , Estresse Oxidativo/efeitos dos fármacos , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Apoptose/efeitos dos fármacos , Camundongos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Brasil , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL
6.
Biol Res ; 57(1): 45, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982468

RESUMO

BACKGROUND: Diabetic neuropathy (DN) is recognized as a significant complication arising from diabetes mellitus (DM). Pathogenesis of DN is accelerated by endoplasmic reticulum (ER) stress, which inhibits autophagy and contributes to disease progression. Autophagy is a highly conserved mechanism crucial in mitigating cell death induced by ER stress. Chrysin, a naturally occurring flavonoid, can be found abundantly in honey, propolis, and various plant extracts. Despite possessing advantageous attributes such as being an antioxidant, anti-allergic, anti-inflammatory, anti-fibrotic, and anticancer agent, chrysin exhibits limited bioavailability. The current study aimed to produce a more bioavailable form of chrysin and discover how administering chrysin could alter the neuropathy induced by Alloxan in male rats. METHODS: Chrysin was formulated using PEGylated liposomes to boost its bioavailability and formulation. Chrysin PEGylated liposomes (Chr-PLs) were characterized for particle size diameter, zeta potential, polydispersity index, transmission electron microscopy, and in vitro drug release. Rats were divided into four groups: control, Alloxan, metformin, and Chr-PLs. In order to determine Chr- PLs' antidiabetic activity and, by extension, its capacity to ameliorate DN, several experiments were carried out. These included measuring acetylcholinesterase, fasting blood glucose, insulin, genes dependent on autophagy or stress in the endoplasmic reticulum, and histopathological analysis. RESULTS: According to the results, the prepared Chr-PLs exhibited an average particle size of approximately 134 nm. They displayed even distribution of particle sizes. The maximum entrapment efficiency of 90.48 ± 7.75% was achieved. Chr-PLs effectively decreased blood glucose levels by 67.7% and elevated serum acetylcholinesterase levels by 40% compared to diabetic rats. Additionally, Chr-PLs suppressed the expression of ER stress-related genes (ATF-6, CHOP, XBP-1, BiP, JNK, PI3K, Akt, and mTOR by 33%, 39.5%, 32.2%, 44.4%, 40.4%, 39.2%, 39%, and 35.9%, respectively). They also upregulated the miR-301a-5p expression levels by 513% and downregulated miR-301a-5p expression levels by 65%. They also boosted the expression of autophagic markers (AMPK, ULK1, Beclin 1, and LC3-II by 90.3%, 181%, 109%, and 78%, respectively) in the sciatic nerve. The histopathological analysis also showed that Chr-PLs inhibited sciatic nerve degeneration. CONCLUSION: The findings suggest that Chr-PLs may be helpful in the protection against DN via regulation of ER stress and autophagy.


Assuntos
Autofagia , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Estresse do Retículo Endoplasmático , Flavonoides , Lipossomos , Animais , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Ratos , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Polietilenoglicóis/farmacologia , Aloxano , Ratos Wistar , Ratos Sprague-Dawley
7.
Sci Rep ; 14(1): 16883, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043767

RESUMO

The state of Maternal Protein Malnutrition (MPM) is associated with several deleterious effects, including inflammatory processes and dysregulation in oxidative balance, which can promote neurodegeneration. On the other hand, it is known that aerobic exercise can promote systemic health benefits, combating numerous chronic diseases. Therefore, we evaluate the effect of aerobic exercise training (AET) on indicators of mitochondrial bioenergetics, oxidative balance, endoplasmic reticulum stress, and neurotrophic factor in the prefrontal cortex of malnourished juvenile Wistar rats. Pregnant Wistar rats were fed with a diet containing 17% or 8% casein during pregnancy and lactation. At 30 days of life, male offspring were divided into 4 groups: Low-Protein Control (LS), Low-Protein Trained (LT), Normoprotein Control (NS), and Normoprotein Trained (NT). The trained groups performed an AET for 4 weeks, 5 days a week, 1 h a day per session. At 60 days of life, the animals were sacrificed and the skeletal muscle, and prefrontal cortex (PFC) were removed to evaluate the oxidative metabolism markers and gene expression of ATF-6, GRP78, PERK and BDNF. Our results showed that MPM impairs oxidative metabolism associated with higher oxidative and reticulum stress. However, AET restored the levels of indicators of mitochondrial bioenergetics, in addition to promoting resilience to cellular stress. AET at moderate intensity for 4 weeks in young Wistar rats can act as a non-pharmacological intervention in fighting against the deleterious effects of a protein-restricted maternal diet.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Mitocôndrias , Estresse Oxidativo , Condicionamento Físico Animal , Ratos Wistar , Animais , Feminino , Ratos , Mitocôndrias/metabolismo , Gravidez , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estresse do Retículo Endoplasmático , Biomarcadores/metabolismo , Córtex Pré-Frontal/metabolismo , Músculo Esquelético/metabolismo , Desnutrição/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fator 6 Ativador da Transcrição/metabolismo
8.
Genes (Basel) ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38927594

RESUMO

The increase in hypoxia events, a result of climate change in coastal and fjord ecosystems, impacts the health and survival of mussels. These organisms deploy physiological and molecular responses as an adaptive mechanism to maintain cellular homeostasis under environmental stress. However, the specific effects of hypoxia on mussels of socioeconomic interest, such as Mytilus chilensis, are unknown. Using RNA-seq, we investigated the transcriptomic profiles of the gills, digestive gland, and adductor muscle of M. chilensis under hypoxia (10 days at 2 mg L-1) and reoxygenation (10 days at 6 mg L-1). There were 15,056 differentially expressed transcripts identified in gills, 11,864 in the digestive gland, and 9862 in the adductor muscle. The response varied among tissues, showing chromosomal changes in Chr1, Chr9, and Chr10 during hypoxia. Hypoxia regulated signaling genes in the Toll-like, mTOR, citrate cycle, and apoptosis pathways in gills, indicating metabolic and immunological alterations. These changes suggest that hypoxia induced a metabolic shift in mussels, reducing reliance on aerobic respiration and increasing reliance on anaerobic metabolism. Furthermore, hypoxia appeared to suppress the immune response, potentially increasing disease susceptibility, with negative implications for the mussel culture industry and natural bed populations. This study provides pivotal insights into metabolic and immunological adaptations to hypoxia in M. chilensis, offering candidate genes for adaptive traits.


Assuntos
Estresse do Retículo Endoplasmático , Brânquias , Mytilus , Transcriptoma , Animais , Mytilus/genética , Brânquias/metabolismo , Estresse do Retículo Endoplasmático/genética , Hipóxia/genética , Hipóxia/metabolismo
9.
Redox Biol ; 74: 103238, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870780

RESUMO

Oxidative stress (OS) and endoplasmic reticulum stress (ERS) are at the genesis of placental disorders observed in preeclampsia, intrauterine growth restriction, and maternal hypothyroidism. In this regard, cationic manganese porphyrins (MnPs) comprise potent redox-active therapeutics of high antioxidant and anti-inflammatory potential, which have not been evaluated in metabolic gestational diseases yet. This study evaluated the therapeutic potential of two MnPs, [MnTE-2-PyP]5+ (MnP I) and [MnT(5-Br-3-E-Py)P]5+ (MnP II), in the fetal-placental dysfunction of hypothyroid rats. Hypothyroidism was induced by administration of 6-Propyl-2-thiouracil (PTU) and treatment with MnPs I and II 0.1 mg/kg/day started on the 8th day of gestation (DG). The fetal and placental development, and protein and/or mRNA expression of antioxidant mediators (SOD1, CAT, GPx1), hypoxia (HIF1α), oxidative damage (8-OHdG, MDA), ERS (GRP78 and CHOP), immunological (TNFα, IL-6, IL-10, IL-1ß, IL-18, NLRP3, Caspase1, Gasdermin D) and angiogenic (VEGF) were evaluated in the placenta and decidua on the 18th DG using immunohistochemistry and qPCR. ROS and peroxynitrite (PRX) were quantified by fluorometric assay, while enzyme activities of SOD, GST, and catalase were evaluated by colorimetric assay. MnPs I and II increased fetal body mass in hypothyroid rats, and MnP I increased fetal organ mass. MnPs restored the junctional zone morphology in hypothyroid rats and increased placental vascularization. MnPs blocked the increase of OS and ERS mediators caused by hypothyroidism, showing similar levels of expression of HIFα, 8-OHdG, MDA, Gpx1, GRP78, and Chop to the control. Moreover, MnPs I and/or II increased the protein expression of SOD1, Cat, and GPx1 and restored the expression of IL10, Nlrp3, and Caspase1 in the decidua and/or placenta. However, MnPs did not restore the low placental enzyme activity of SOD, CAT, and GST caused by hypothyroidism, while increased the decidual and placental protein expression of TNFα. The results show that treatment with MnPs improves the fetal-placental development and the placental inflammatory state of hypothyroid rats and protects against oxidative stress and reticular stress caused by hypothyroidism at the maternal-fetal interface.


Assuntos
Hipotireoidismo , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Animais , Gravidez , Feminino , Ratos , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inflamassomos/metabolismo , Modelos Animais de Doenças , Placenta/metabolismo , Placenta/efeitos dos fármacos , Placentação/efeitos dos fármacos , Antioxidantes/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Desenvolvimento Fetal/efeitos dos fármacos , Manganês , Metaloporfirinas/farmacologia , Chaperona BiP do Retículo Endoplasmático
10.
Biol Res ; 57(1): 34, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812057

RESUMO

Studies have suggested that endoplasmic reticulum stress (ERS) is involved in neurological dysfunction and that electroacupuncture (EA) attenuates neuropathic pain (NP) via undefined pathways. However, the role of ERS in the anterior cingulate cortex (ACC) in NP and the effect of EA on ERS in the ACC have not yet been investigated. In this study, an NP model was established by chronic constriction injury (CCI) of the left sciatic nerve in rats, and mechanical and cold tests were used to evaluate behavioral hyperalgesia. The protein expression and distribution were evaluated using western blotting and immunofluorescence. The results showed that glucose-regulated protein 78 (BIP) and inositol-requiring enzyme 1α (IRE-1α) were co-localized in neurons in the ACC. After CCI, BIP, IRE-1α, and phosphorylation of IRE-1α were upregulated in the ACC. Intra-ACC administration of 4-PBA and Kira-6 attenuated pain hypersensitivity and downregulated phosphorylation of IRE-1α, while intraperitoneal injection of 4-PBA attenuated hyperalgesia and inhibited the activation of P38 and JNK in ACC. In contrast, ERS activation by intraperitoneal injection of tunicamycin induced behavioral hyperalgesia in naive rats. Furthermore, EA attenuated pain hypersensitivity and inhibited the CCI-induced overexpression of BIP and pIRE-1α. Taken together, these results demonstrate that EA attenuates NP by suppressing BIP- and IRE-1α-mediated ERS in the ACC. Our study presents novel evidence that ERS in the ACC is implicated in the development of NP and provides insights into the molecular mechanisms involved in the analgesic effect of EA.


Assuntos
Modelos Animais de Doenças , Eletroacupuntura , Estresse do Retículo Endoplasmático , Giro do Cíngulo , Neuralgia , Ratos Sprague-Dawley , Animais , Eletroacupuntura/métodos , Giro do Cíngulo/metabolismo , Neuralgia/terapia , Masculino , Estresse do Retículo Endoplasmático/fisiologia , Ratos , Western Blotting , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Hiperalgesia/terapia , Chaperona BiP do Retículo Endoplasmático
11.
Nutr Res ; 126: 180-192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759501

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.


Assuntos
Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Treinamento Intervalado de Alta Intensidade , Resistência à Insulina , Fígado , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas , Condicionamento Físico Animal , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Fígado Gorduroso/prevenção & controle , Oxirredução
12.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612890

RESUMO

The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), which aims to restore proteostasis and avoid cell death. However, endoplasmic response-associated degradation (ERAD) is sometimes triggered to degrade the misfolded and unassembled proteins instead. If stress persists, cells activate three sensors: PERK, IRE-1, and ATF6. Glioma cells can use these sensors to remain unresponsive to chemotherapeutic treatments. In such cases, the activation of ATF4 via PERK and some proteins via IRE-1 can promote several types of cell death. The search for new antitumor compounds that can successfully and directly induce an endoplasmic reticulum stress response ranges from ligands to oxygen-dependent metabolic pathways in the cell capable of activating cell death pathways. Herein, we discuss the importance of the ER stress mechanism in glioma and likely therapeutic targets within the UPR pathway, as well as chemicals, pharmaceutical compounds, and natural derivatives of potential use against gliomas.


Assuntos
Estresse do Retículo Endoplasmático , Glioma , Humanos , Resposta a Proteínas não Dobradas , Retículo Endoplasmático , Glioma/tratamento farmacológico , Preparações Farmacêuticas
13.
Arch Toxicol ; 98(7): 2085-2100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619592

RESUMO

Thallium (Tl) and its two cationic species, Tl(I) and Tl(III), are toxic for most living beings. In this work, we investigated the effects of Tl (10-100 µM) on the viability and proliferation capacity of the adherent variant of PC12 cells (PC12 Adh cells). While both Tl(I) and Tl(III) halted cell proliferation from 24 h of incubation, their viability was ~ 90% even after 72 h of treatment. At 24 h, increased levels of γH2AX indicated the presence of DNA double-strand breaks. Simultaneously, increased expression of p53 and its phosphorylation at Ser15 were observed, which were associated with decreased levels of p-AKTSer473 and p-mTORSer2448. At 72 h, the presence of large cytoplasmic vacuoles together with increased autophagy predictor values suggested that Tl may induce autophagy in these cells. This hypothesis was corroborated by images obtained by transmission electron microscopy (TEM) and from the decreased expression at 72 h of incubation of SQSTM-1 and increased LC3ß-II to LC3ß-I ratio. TEM images also showed enlarged ER that, together with the increased expression of IRE1-α from 48 h of incubation, indicated that Tl-induced ER stress preceded autophagy. The inhibition of autophagy flux with chloroquine increased cell mortality, suggesting that autophagy played a cytoprotective role in Tl toxicity in these cells. Together, results indicate that Tl(I) or Tl(III) are genotoxic to PC12 Adh cells which respond to the cations inducing ER stress and cytoprotective autophagy.


Assuntos
Autofagia , Proliferação de Células , Sobrevivência Celular , Estresse do Retículo Endoplasmático , Tálio , Autofagia/efeitos dos fármacos , Células PC12 , Animais , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Tálio/toxicidade , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fosforilação , Microscopia Eletrônica de Transmissão
14.
PLoS One ; 19(3): e0287390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507417

RESUMO

OBJECTIVE: To determine the effective dose and therapeutic potential of maropitant using through expression of mediators of oxidative stress, inflammatory and of the unfolded protein response (UPR) (bio) markers on spinal cord using a model of neuropathic pain induced through chronic constriction injury (CCI) in rats. STUDY DESIGN: Randomized, blinded, prospective experimental study. ANIMALS: 98 male Wistar rats. METHODS: Rats were anesthetized with sevoflurane and after CCI, they were randomly assigned to the following groups that received: vehicle, 3, 6, 15, 30 e 50 mg/kg/24q of maropitant. The effect on inflammatory mediators (IL10, TNFα), oxidative stress (GPx, CAT, SOD), microglial (IBA-1) and neuronal (NeuN, TACR1) markers was evaluated though immunohistochemistry and expression levels of markers of hypoxia (HIF1α, Nrf2), antioxidant enzymes (Catalse, Sod1 and GPx1), and endoplasmic reticulum stress mediators (GRP78, CHOP and PERK) through qRT-PCR. RESULTS: Intraperitoneal injection (IP) of maropitant inhibited nociception with ID50 values of 4,1 mg/kg (5,85-19,36) in a neuropathic pain model through CCI. A dose of 30 mg/kg/24q was significantly effective in reducing mechanical allodynia 1 to 4h after treatment with nociception inhibition (145,83%). A reduction in the expression of hypoxia factors (HIF1α, Nrf2) was observed, along with an increase in antioxidant activity (CAT, SOD and GPX). Additionally, there was a reduction in inflammatory markes (IL10, TNFα), microglial (IBA-1), and neuronal markers (NeuN, TACR1). CONCLUSION AND CLINICAL RELEVANCE: These findings demonstrate that the determined dose, administered daily for seven days, had an antinociceptive effect, as well as anti-inflammatory and antioxidant activity.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Quinuclidinas , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , Doenças Neuroinflamatórias , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-10/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estudos Prospectivos , Estresse Oxidativo , Hiperalgesia/tratamento farmacológico , Estresse do Retículo Endoplasmático , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Superóxido Dismutase/metabolismo , Hipóxia/tratamento farmacológico
15.
Mol Cell Biochem ; 479(11): 3167-3179, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38308790

RESUMO

Overactivation of the classic arm of the renin-angiotensin system (RAS) is one of the main mechanisms involved in obesity-related cardiac remodeling, and a possible relationship between RAS and ER stress in the cardiovascular system have been described. Thus, the aim of this study is to evaluate if activating the protective arm of the RAS by ACE inhibition or aerobic exercise training could overturn diet-induced pathological cardiac hypertrophy by attenuating ER stress. Male C57BL/6 mice were fed a control (SC) or a high-fat diet (HF) for 16 weeks. In the 8th week, HF-fed animals were randomly divided into HF, enalapril treatment (HF-En), and aerobic exercise training (HF-Ex) groups. Body mass (BM), food and energy intake, plasma analyzes, systolic blood pressure (SBP), physical conditioning, and plasma ACE and ACE2 activity were evaluated. Cardiac morphology, and protein expression of hypertrophy, cardiac metabolism, RAS, and ER stress markers were assessed. Data presented as mean ± standard deviation and analyzed by one-way ANOVA with Holm-Sidak post-hoc. HF group had increased BM and SBP, and developed pathological concentric cardiac hypertrophy, with overactivation of the classic arm of the RAS, and higher ER stress. Both interventions reverted the increase in BM, and SBP, and favored the protective arm of the RAS. Enalapril treatment improved pathological cardiac hypertrophy with partial reversal of the concentric pattern, and slightly attenuated cardiac ER stress. In contrast, aerobic exercise training induced physiological eccentric cardiac hypertrophy, and fully diminished ER stress.


Assuntos
Cardiomegalia , Enalapril , Estresse do Retículo Endoplasmático , Obesidade , Condicionamento Físico Animal , Animais , Masculino , Enzima de Conversão de Angiotensina 2/sangue , Cardiomegalia/etiologia , Cardiomegalia/terapia , Enalapril/farmacologia , Enalapril/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Camundongos Endogâmicos C57BL , Obesidade/complicações , Peptidil Dipeptidase A/sangue , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais/fisiologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico
16.
Environ Toxicol ; 39(3): 1072-1085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37800474

RESUMO

The implementation of nanotechnology in different sectors has generated expectations as a new source of use due to the novel characteristics that it will bring. Particularly, nano pesticides promise to be more sustainable and less harmful to the ecosystem and human health; however, most studies continue to focus on their efficacy in the field, leaving aside the effect on humans. This project aimed to evaluate the genotoxic effect of a nano-encapsulated pesticide on bronchial epithelial cells (NL-20) in vitro and elucidate the mechanism through which they induce damage. The nano fraction (NF) of the pesticide Karate Zeon® 5 CS was characterized and isolated, and the uptake into the cell and the changes induced in the cellular ultrastructure were evaluated. In addition, the primary markers of oxidative stress, reticulum stress, and genotoxicity were assessed using the micronucleus test. A 700 nm fraction with a Z potential of -40 mV was obtained, whose main component is polyurea formaldehyde; this allows the capsules to enter the cell through macropinocytosis and clathrin-mediated endocytosis. Inside, they induce oxidative stress activating a reticulum stress response via the BIP protein and the IRE-1 sensor, triggering an inflammatory response. Likewise, stress reduces cell proliferation, increasing genotoxic damage through micronuclei; however, this damage is mainly induced by direct contact of the capsules with the nucleus. This pioneering study uses a nanometric encapsulated commercial pesticide to evaluate the molecular mechanism of induced damage. It makes it the first step in analyzing whether these substances represent a contaminant or an emerging solution.


Assuntos
Praguicidas , Humanos , Praguicidas/toxicidade , Ecossistema , Estresse Oxidativo , Dano ao DNA , Estresse do Retículo Endoplasmático
17.
J Dev Orig Health Dis ; 14(5): 639-647, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38037831

RESUMO

Nonalcoholic fatty liver disease (NAFLD) involves changes in hepatic pathways, as lipogenesis, oxidative stress, endoplasmic reticulum (ER) stress, and macroautophagy. Maternal nicotine exposure exclusively during lactation leads to fatty liver (steatosis) only in the adult male offspring, not in females. Therefore, our hypothesis is that neonatal exposure to nicotine sex-dependently affects the signaling pathways involved in hepatic homeostasis of the offspring, explaining the hepatic lipid accumulation phenotype only in males. For this, between postnatal days 2 and 16, Wistar rat dams were implanted with osmotic minipumps, which released nicotine (NIC; 6 mg/Kg/day) or vehicle. The livers of offspring were evaluated at postnatal day 180. Only the male offspring that had been exposed to nicotine neonatally showed increased protein expression of markers of unfolded protein response (UPR), highlighting the presence of ER stress, as well as disruption of the activation of the macroautophagy repair pathway. These animals also had increased expression of diacylglycerol O-acyltransferase 1 and 4-hydroxynonenal, suggesting increased triglyceride esterification and oxidative stress. These parameters were not altered in the female offspring that had been neonatally exposed to nicotine, however they exhibited increased phospho adenosine monophosphate-activated protein kinase pAMPK expression, possibly as a protective mechanism. Thus, the disturbance in the hepatic homeostasis by UPR, macroautophagy, and oxidative stress modifications seem to be the molecular mechanisms underlying the liver steatosis in the adult male offspring of the nicotine-programming model. This highlights the importance of maternal smoking cessation during breastfeeding to decrease the risk of NAFLD development, especially in males.


Assuntos
Nicotina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Masculino , Feminino , Nicotina/toxicidade , Nicotina/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos Wistar , Macroautofagia , Fígado/metabolismo , Estresse do Retículo Endoplasmático
18.
An Acad Bras Cienc ; 95(suppl 2): e20220784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126519

RESUMO

The rising fructose intake in sugar-sweetened beverages and ultra-processed foods relates to the high incidence of nonalcoholic fatty liver disease. This study aimed to examine the effects of long-term high-fructose diet intake (for 16 or 20 weeks) on progressive hepatic damage, focusing on the endoplasmic reticulum stress markers and fibrogenesis as possible triggers of liver fibrosis. Forty 3-month-old male C57BL/6J mice were randomly divided into four nutritional groups: C16 (control diet for 16 weeks), C20 (control diet for 20 weeks), HFRU16 (high-fructose diet for 16 weeks), and HFRU20 (high-fructose diet for 20 weeks). Both HFRU groups showed oral glucose intolerance and insulin resistance, but only the HFRU20 group exhibited increased inflammation. The increased lipogenic and endoplasmic reticulum stress markers triggered hepatic fibrogenesis. Hence, time-dependent perivascular fibrosis with positive immunostaining for alpha-smooth muscle actin and reelin in HFRU mice was observed, ensuring fibrosis development in this mouse model. Our study showed time-dependent and progressive damage on hepatic cytoarchitecture, with maximization of hepatic steatosis without overweight in HFRU20 mice. ER stress and liver inflammation could mediate hepatic stellate cell activation and fibrogenesis, emerging as targets to prevent NAFLD progression and fibrosis onset in this dietary model.


Assuntos
Frutose , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Frutose/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fibrose , Inflamação/complicações , Estresse do Retículo Endoplasmático
19.
Exp Biol Med (Maywood) ; 248(19): 1684-1693, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38031237

RESUMO

The replicative success of vaccinia virus (VACV) depends on its ability to subvert host functions. Poxviruses multiplication and maturation are closely associated with the endoplasmic reticulum (ER) and its membranes. This organelle responds to disturbances caused by the accumulation of misfolded proteins, leading to processing of these proteins or even programmed cell death through the unfolded protein response (UPR). Several studies show that different viruses can activate UPR pathway components and negatively modulate others. Here, we investigate the effects of infections by zoonotic VACV strains from Brazil, Guarani P1 virus (GP1V) and Passatempo virus (PSTV), in the activation of UPR pathway sensors. We observed translocation of ATF6 to the nucleus as well as transcriptional increase after GP1V, PSTV, and reference strain Western Reserve (WR) infection. XBP1 processing appears to be negatively modulated after VACV infection; however, inhibition of the inositol-requiring enzyme 1 (IRE1) kinase domain led to a reduction in plaque sizes for these viruses. The absence of PKR-like endoplasmic reticulum kinase (PERK) has an impact on the plaque phenotype of GP1V, PSTV viruses, as well as for the prototypical strain WR. These results indicate that the VACV manipulates the three arms of the UPR path differently to ensure replicative success.


Assuntos
Resposta a Proteínas não Dobradas , Vaccinia virus , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Replicação do DNA
20.
Reprod Biomed Online ; 47(5): 103289, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657301

RESUMO

RESEARCH QUESTION: Do microRNAs (miRNAs) play a role in regulating endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) in decidualized cells and endometrium associated with reproductive failures? DESIGN: Endometrial stromal cell line St-T1b was decidualized in vitro with 8-Br-cAMP over 5 days, or treated with the ERS inducer thapsigargin. Expression of ERS sensors, UPR markers and potential miRNA regulators was analysed by quantitative PCR. Endometrial biopsies from patients with recurrent pregnancy loss (RPL) and recurrent implantation failure (RIF) were investigated for the location of miRNA expression. RESULTS: Decidualization of St-T1b cells resulted in increased expression of ERS sensors including ATF6α, PERK and IRE1α, and the UPR marker, CHOP. TXNIP, which serves as a link between the ERS pathway and inflammation, as well as inflammasome NLRP3 and interleukin 1ß expression increased in decidualized cells. An in-silico analysis identified miR-17-5p, miR-21-5p and miR-193b-3p as miRNAs potentially involved in regulation of the ERS/UPR pathways and inflammation associated with embryo implantation. Their expression decreased significantly (P ≤ 0.0391) in non-decidualized cells in the presence of thapsigargin. Finally, expression of the selected miRNAs was localized by in-situ hybridization in stromal and glandular epithelial cells in endometrial samples from patients with RPL and RIF. Expression in stroma cells from patients with RPL was lower in comparison with stroma cells from patients with RIF. CONCLUSIONS: Decidualization in St-T1b cells is accompanied by ERS/UPR processes, associated with an inflammatory response that is potentially influenced by miR-17-5p, miR-21-5p and miR-193b-3p. These miRNAs are expressed differentially in stromal cells from patients with RPL and RIF, indicating an alteration in regulation of the ERS/UPR pathways.


Assuntos
Aborto Habitual , MicroRNAs , Gravidez , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Endorribonucleases/metabolismo , Tapsigargina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Endométrio/metabolismo , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Aborto Habitual/patologia , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA