Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81.259
Filtrar
1.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38831649

RESUMO

The mitogenome is an important tool for taxonomic and evolutionary investigation. Here, a few complete mitogenomes of red algae have been reported. We have reported the complete mitogenome sequences of Grateloupia cornea Okamura, 1913 (Rhodophyta, Halymeniales). The genome is 30,595 bp in circumference, and has a strongly biased [AT] = 66.9%. Like most other Grateloupia species, it has a group II intron in the cox1 gene. Maximum likelihood and maximum parsimony analyses showed that G. cornea is more closely related to G. asiatica. This shows that the group II intron in the cox1 ORF present in most species of Grateloupia was present in their common ancestor, and uniquely lost in G. asiatica. The seven Grateloupia species with known mitogenome sequences remain monophyletic, with the genus Polyopes as sister taxon. The complete mitochondrial genome data will be valuable for future research on comparative mitochondrial genome analysis, an extensive understanding of gene content and organization, evolution of the cox1 intron in Rhodophyta as well as phylogenetic analysis.


Assuntos
Genoma Mitocondrial , Filogenia , Rodófitas , Rodófitas/genética , Rodófitas/classificação , Íntrons/genética , Evolução Molecular
2.
BMC Genomics ; 25(1): 569, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844874

RESUMO

BACKGROUND: Lycium is an economically and ecologically important genus of shrubs, consisting of approximately 70 species distributed worldwide, 15 of which are located in China. Despite the economic and ecological importance of Lycium, its phylogeny, interspecific relationships, and evolutionary history remain relatively unknown. In this study, we constructed a phylogeny and estimated divergence time based on the chloroplast genomes (CPGs) of 15 species, including subspecies, of the genus Lycium from China. RESULTS: We sequenced and annotated 15 CPGs in this study. Comparative analysis of these genomes from these Lycium species revealed a typical quadripartite structure, with a total sequence length ranging from 154,890 to 155,677 base pairs (bp). The CPGs was highly conserved and moderately differentiated. Through annotation, we identified a total of 128-132 genes. Analysis of the boundaries of inverted repeat (IR) regions showed consistent positioning: the junctions of the IRb/LSC region were located in rps19 in all Lycium species, IRb/SSC between the ycf1 and ndhF genes, and SSC/IRa within the ycf1 gene. Sequence variation in the SSC region exceeded that in the IR region. We did not detect major expansions or contractions in the IR region or rearrangements or insertions in the CPGs of the 15 Lycium species. Comparative analyses revealed five hotspot regions in the CPG: trnR(UCU), atpF-atpH, ycf3-trnS(GGA), trnS(GGA), and trnL-UAG, which could potentially serve as molecular markers. In addition, phylogenetic tree construction based on the CPG indicated that the 15 Lycium species formed a monophyletic group and were divided into two typical subbranches and three minor branches. Molecular dating suggested that Lycium diverged from its sister genus approximately 17.7 million years ago (Mya) and species diversification within the Lycium species of China primarily occurred during the recent Pliocene epoch. CONCLUSION: The divergence time estimation presented in this study will facilitate future research on Lycium, aid in species differentiation, and facilitate diverse investigations into this economically and ecologically important genus.


Assuntos
Evolução Molecular , Genoma de Cloroplastos , Lycium , Filogenia , Lycium/genética , Lycium/classificação , China , Variação Genética
3.
Genome Biol ; 25(1): 146, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844976

RESUMO

BACKGROUND: DNA methylation is an important epigenetic modification which has numerous roles in modulating genome function. Its levels are spatially correlated across the genome, typically high in repressed regions but low in transcription factor (TF) binding sites and active regulatory regions. However, the mechanisms establishing genome-wide and TF binding site methylation patterns are still unclear. RESULTS: Here we use a comparative approach to investigate the association of DNA methylation to TF binding evolution in mammals. Specifically, we experimentally profile DNA methylation and combine this with published occupancy profiles of five distinct TFs (CTCF, CEBPA, HNF4A, ONECUT1, FOXA1) in the liver of five mammalian species (human, macaque, mouse, rat, dog). TF binding sites are lowly methylated, but they often also have intermediate methylation levels. Furthermore, biding sites are influenced by the methylation status of CpGs in their wider binding regions even when CpGs are absent from the core binding motif. Employing a classification and clustering approach, we extract distinct and species-conserved patterns of DNA methylation levels at TF binding regions. CEBPA, HNF4A, ONECUT1, and FOXA1 share the same methylation patterns, while CTCF's differ. These patterns characterize alternative functions and chromatin landscapes of TF-bound regions. Leveraging our phylogenetic framework, we find DNA methylation gain upon evolutionary loss of TF occupancy, indicating coordinated evolution. Furthermore, each methylation pattern has its own evolutionary trajectory reflecting its genomic contexts. CONCLUSIONS: Our epigenomic analyses indicate a role for DNA methylation in TF binding changes across species including that specific DNA methylation profiles characterize TF binding and are associated with their regulatory activity, chromatin contexts, and evolutionary trajectories.


Assuntos
Metilação de DNA , Evolução Molecular , Fatores de Transcrição , Animais , Sítios de Ligação , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Ratos , Ilhas de CpG , Cães , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Ligação Proteica , Fígado/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética
4.
Genome Biol ; 25(1): 148, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845023

RESUMO

BACKGROUND: Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS: We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS: Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.


Assuntos
Cabras , Animais , Cabras/genética , Ovinos/genética , Evolução Molecular , Variação Estrutural do Genoma , Locos de Características Quantitativas , Genoma , Variação Genética , Domesticação , Fenótipo , Seleção Genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética
5.
Sci Rep ; 14(1): 12774, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834652

RESUMO

The diversity of marine cyanobacteria has been extensively studied due to their vital roles in ocean primary production. However, little is understood about the diversity of cyanobacterial species involved in symbiotic relationships. In this study, we successfully sequenced the complete genome of a cyanobacterium in symbiosis with Citharistes regius, a dinoflagellate species thriving in the open ocean. A phylogenomic analysis revealed that the cyanobacterium (CregCyn) belongs to the marine picocyanobacterial lineage, akin to another cyanobacterial symbiont (OmCyn) of a different dinoflagellate closely related to Citharistes. Nevertheless, these two symbionts are representing distinct lineages, suggesting independent origins of their symbiotic lifestyles. Despite the distinct origins, the genome analyses of CregCyn revealed shared characteristics with OmCyn, including an obligate symbiotic relationship with the host dinoflagellates and a degree of genome reduction. In contrast, a detailed analysis of genome subregions unveiled that the CregCyn genome carries genomic islands that are not found in the OmCyn genome. The presence of the genomic islands implies that exogenous genes have been integrated into the CregCyn genome at some point in its evolution. This study contributes to our understanding of the complex history of the symbiosis between dinoflagellates and cyanobacteria, as well as the genomic diversity of marine picocyanobacteria.


Assuntos
Cianobactérias , Dinoflagellida , Genoma Bacteriano , Filogenia , Simbiose , Dinoflagellida/genética , Dinoflagellida/fisiologia , Simbiose/genética , Cianobactérias/genética , Cianobactérias/classificação , Evolução Molecular
6.
Physiol Rep ; 12(11): e16089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828713

RESUMO

Solute carrier family 26 (Slc26) is a family of anion exchangers with 11 members in mammals (named Slc26a1-a11). Here, we identified a novel member of the slc26 family, slc26a12, located in tandem with slc26a2 in the genomes of several vertebrate lineages. BLAST and synteny analyses of various jawed vertebrate genome databases revealed that slc26a12 is present in coelacanths, amphibians, reptiles, and birds but not in cartilaginous fishes, lungfish, mammals, or ray-finned fishes. In some avian and reptilian lineages such as owls, penguins, egrets, and ducks, and most turtles examined, slc26a12 was lost or pseudogenized. Phylogenetic analysis showed that Slc26a12 formed an independent branch with the other Slc26 members and Slc26a12, Slc26a1 and Slc26a2 formed a single branch, suggesting that these three members formed a subfamily in Slc26. In jawless fish, hagfish have two genes homologous to slc26a2 and slc26a12, whereas lamprey has a single gene homologous to slc26a2. African clawed frogs express slc26a12 in larval gills, skin, and fins. These results show that slc26a12 was present at least before the separation of lobe-finned fish and tetrapods; the name slc26a12 is appropriate because the gene duplication occurred in the distant past.


Assuntos
Filogenia , Animais , Répteis/genética , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Anfíbios/genética , Anfíbios/metabolismo , Aves/genética , Evolução Molecular
7.
Physiol Plant ; 176(3): e14363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837786

RESUMO

Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.


Assuntos
Agaricales , Genoma Mitocondrial , Filogenia , Genoma Mitocondrial/genética , Agaricales/genética , Agaricales/classificação , Evolução Molecular , Genoma Fúngico/genética
8.
Nat Commun ; 15(1): 4781, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839766

RESUMO

Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.


Assuntos
Processos de Determinação Sexual , Cromossomo X , Cromossomo Y , Animais , Masculino , Feminino , Processos de Determinação Sexual/genética , Cromossomo Y/genética , Cromossomo X/genética , Anfíbios/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA não Traduzido/genética , Genoma , Evolução Molecular
9.
Sci Rep ; 14(1): 12944, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839875

RESUMO

Locomotor preferences and habitat types may drive animal evolution. In this study, we speculated that locomotor preference and habitat type may have diverse influences on Bovidae mitochondrial genes. We used selection pressure and statistical analysis to explore the evolution of mitochondrial DNA (mtDNA) protein-coding genes (PCGs) from diverse locomotor preferences and habitat types. Our study demonstrates that locomotor preference (energy demand) drives the evolution of Bovidae in mtDNA PCGs. The habitat types had no significant effect on the rate of evolution in Bovidae mitochondrial genes. Our study provides deep insight into the adaptation of Bovidae.


Assuntos
DNA Mitocondrial , Evolução Molecular , Genes Mitocondriais , Animais , DNA Mitocondrial/genética , Locomoção/genética , Seleção Genética , Ecossistema , Filogenia
10.
BMC Genomics ; 25(1): 561, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840044

RESUMO

BACKGROUND: Artemisia selengensis, classified within the genus Artemisia of the Asteraceae family, is a perennial herb recognized for its dual utility in culinary and medicinal domains. There are few studies on the chloroplast genome of A. selengensis, and the phylogeographic classification is vague, which makes phylogenetic analysis and evolutionary studies very difficult. RESULTS: The chloroplast genomes of 10 A. selengensis in this study were highly conserved in terms of gene content, gene order, and gene intron number. The genome lengths ranged from 151,148 to 151,257 bp and were typical of a quadripartite structure with a total GC content of approximately 37.5%. The chloroplast genomes of all species encode 133 genes, including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Due to the contraction and expansion of the inverted repeats (IR), the overlap of ycf1 and ndhF genes occurred at the inverted repeats B (IRB) and short single copy sequence (SSC) boundaries. According to a codon use study, the frequent base in the chloroplast genome of A. selengensis' third codon position was A/T. The number of SSR repeats was 42-44, most of which were single nucleotide A/T repeats. Sequence alignment analysis of the chloroplast genome showed that variable regions were mainly distributed in single copy regions, nucleotide diversity values of 0 to 0.009 were calculated by sliding window analysis, 8 mutation hotspot regions were detected, and coding regions were more conserved than non-coding regions. Analysis of non-synonymous substitution (Ka) and synonymous substitution (Ks) revealed that accD, rps12, petB, and atpF genes were affected by positive selection and no genes were affected by neutral selection. Based on the findings of the phylogenetic analysis, Artemisia selengensis was sister to the genus Artemisia Chrysanthemum and formed a monophyletic group with other Artemisia genera. CONCLUSIONS: In this research, the present study systematically compared the chloroplast genomic features of A. selengensis and provided important information for the study of the chloroplast genome of A. selengensis and the evolutionary relationships among Asteraceae species.


Assuntos
Artemisia , Genoma de Cloroplastos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Artemisia/genética , Artemisia/classificação , Composição de Bases , Repetições de Microssatélites , Evolução Molecular , Uso do Códon
11.
BMC Genomics ; 25(1): 567, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840073

RESUMO

BACKGROUND: The auxin/indole-3-acetic acid (Aux/IAA) gene family is a crucial element of the auxin signaling pathway, significantly influencing plant growth and development. Hence, we conducted a comprehensive investigation of Aux/IAAs gene family using the Sp75 and Monoe-Viroflay genomes in spinach. RESULTS: A total of 24 definitive Aux/IAA genes were identified, exhibiting diverse attributes in terms of amino acid length, molecular weight, and isoelectric points. This diversity underscores potential specific roles within the family, such as growth regulation and stress response. Structural analysis revealed significant variations in gene length and molecular weight. These variations indicate distinct roles within the Aux/IAA gene family. Chromosomal distribution analysis exhibited a dispersed pattern, with chromosomes 4 and 1 hosting the highest and lowest numbers of Aux/IAA genes, respectively. Phylogenetic analysis grouped the identified genes into distinct clades, revealing potential evolutionary relationships. Notably, the phylogenetic tree highlighted specific gene clusters suggesting shared genetic ancestry and potential functional synergies within spinach. Expression analysis under NAA treatment unveiled gene-specific and time-dependent responses, with certain genes exhibiting distinct temporal expression patterns. Specifically, SpoIAA5 displayed a substantial increase at 2 h post-NAA treatment, while SpoIAA7 and SpoIAA9 demonstrated continuous rises, peaking at the 4-hour time point. CONCLUSIONS: These observations indicate a complex interplay of gene-specific and temporal regulation in response to auxin. Moreover, the comparison with other plant species emphasized both shared characteristics and unique features in Aux/IAA gene numbers, providing insights into the evolutionary dynamics of this gene family. This comprehensive characterization of Aux/IAA genes in spinach not only establishes the foundation for understanding their specific functions in spinach development but also provides a valuable resource for experimental validation and further exploration of their roles in the intricate network of auxin signaling pathways.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Família Multigênica , Filogenia , Spinacia oleracea , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Cromossomos de Plantas/genética , Evolução Molecular
12.
PeerJ ; 12: e17523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846750

RESUMO

Background: Influenza A(H3N2) virus evolves continuously. Its hemagglutinin (HA) and neuraminidase (NA) genes have high genetic variation due to the antigenic drift. This study aimed to investigate the characteristics and evolution of HA and NA genes of the influenza A(H3N2) virus in Thailand. Methods: Influenza A positive respiratory samples from 2015 to 2018 were subtyped by multiplex real-time RT-PCR. Full-length HA and NA genes from the positive samples of influenza A(H3N2) were amplified and sequenced. Phylogenetic analysis with the maximum likelihood method was used to investigate the evolution of the virus compared with the WHO-recommended influenza vaccine strain. Homology modeling and N-glycosylation site prediction were also performed. Results: Out of 443 samples, 147 (33.18%) were A(H1N1)pdm09 and 296 (66.82%) were A(H3N2). The A(H3N2) viruses circulating in 2015 were clade 3C.2a whereas sub-clade 3C.2a1 and 3C.2a2 dominated in 2016-2017 and 2018, respectively. Amino acid substitutions were found in all antigenic sites A, B, C, D, and E of HA but the majority of the substitutions were located at antigenic sites A and B. The S245N and N329S substitutions in the NA gene affect the N-glycosylation. None of the mutations associated with resistance to NA inhibitors were observed. Mean evolutionary rates of the HA and NA genes were 3.47 × 10 -3 and 2.98 × 10-3 substitutions per site per year. Conclusion: The influenza A(H3N2) virus is very genetically diverse and is always evolving to evade host defenses. The HA and NA gene features including the evolutionary rate of the influenza A(H3N2) viruses that were circulating in Thailand between 2015 and 2018 are described. This information is useful for monitoring the genetic characteristics and evolution in HA and NA genes of influenza A(H3N2) virus in Thailand which is crucial for predicting the influenza vaccine strains resulting in high vaccine effectiveness.


Assuntos
Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Neuraminidase , Filogenia , Tailândia/epidemiologia , Neuraminidase/genética , Vírus da Influenza A Subtipo H3N2/genética , Humanos , Influenza Humana/virologia , Influenza Humana/epidemiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Substituição de Aminoácidos
13.
Euro Surveill ; 29(23)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847119

RESUMO

BackgroundThe COVID-19 pandemic was largely driven by genetic mutations of SARS-CoV-2, leading in some instances to enhanced infectiousness of the virus or its capacity to evade the host immune system. To closely monitor SARS-CoV-2 evolution and resulting variants at genomic-level, an innovative pipeline termed SARSeq was developed in Austria.AimWe discuss technical aspects of the SARSeq pipeline, describe its performance and present noteworthy results it enabled during the pandemic in Austria.MethodsThe SARSeq pipeline was set up as a collaboration between private and public clinical diagnostic laboratories, a public health agency, and an academic institution. Representative SARS-CoV-2 positive specimens from each of the nine Austrian provinces were obtained from SARS-CoV-2 testing laboratories and processed centrally in an academic setting for S-gene sequencing and analysis.ResultsSARS-CoV-2 sequences from up to 2,880 cases weekly resulted in 222,784 characterised case samples in January 2021-March 2023. Consequently, Austria delivered the fourth densest genomic surveillance worldwide in a very resource-efficient manner. While most SARS-CoV-2 variants during the study showed comparable kinetic behaviour in all of Austria, some, like Beta, had a more focused spread. This highlighted multifaceted aspects of local population-level acquired immunity. The nationwide surveillance system enabled reliable nowcasting. Measured early growth kinetics of variants were predictive of later incidence peaks.ConclusionWith low automation, labour, and cost requirements, SARSeq is adaptable to monitor other pathogens and advantageous even for resource-limited countries. This multiplexed genomic surveillance system has potential as a rapid response tool for future emerging threats.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Humanos , Áustria/epidemiologia , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/diagnóstico , Mutação , Genômica/métodos , Pandemias , Evolução Molecular , Sequenciamento Completo do Genoma/métodos
14.
Elife ; 132024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847396

RESUMO

Laboratory experiments on a fluorescent protein in E. coli reveal how duplicate genes are rapidly inactivated by mutations during evolution.


Assuntos
Escherichia coli , Escherichia coli/genética , Mutação , Evolução Molecular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
15.
Emerg Microbes Infect ; 13(1): 2361814, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38828746

RESUMO

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. From 2018 to 2023, a surge in severe neonatal cases and fatalities linked to a novel variant of genotype D5 was documented in China, France, and Italy. However, the prevention and control of E11 variants have been hampered by limited background data on the virus circulation and genetic variance. Therefore, the present study investigated the circulating dynamics of E11 and the genetic variation and molecular evolution of genotype D5 through the collection of strains from the national acute flaccid paralysis (AFP) and hand, foot, and mouth disease (HFMD) surveillance system in China during 2000-2022 and genetic sequences published in the GenBank database. The results of this study revealed a prevalent dynamic of E11 circulation, with D5 being the predominant genotype worldwide. Further phylogenetic analysis of genotype D5 indicated that it could be subdivided into three important geographic clusters (D5-CHN1: 2014-2019, D5-CHN2: 2016-2022, and D5-EUR: 2022-2023). Additionally, variant-specific (144) amino acid mutation sites and positive-selection pressure sites (132, 262) were identified in the VP1 region. Cluster-specific recombination patterns were also identified, with CVB5, E6, and CVB4 as the major recombinant viruses. These findings provide a preliminary landscape of E11 circulation worldwide and basic scientific data for further study of the pathogenicity of E11 variants.


Assuntos
Enterovirus Humano B , Evolução Molecular , Variação Genética , Genótipo , Filogenia , China/epidemiologia , Humanos , Enterovirus Humano B/genética , Enterovirus Humano B/classificação , Enterovirus Humano B/isolamento & purificação , Recém-Nascido , Infecções por Echovirus/virologia , Infecções por Echovirus/epidemiologia , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/epidemiologia , Lactente
16.
Nat Commun ; 15(1): 4839, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844462

RESUMO

Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation. Here we systematically profile the epigenome of the recently expanded murine Ly49 gene family that mainly encode either inhibitory or activating surface receptors on natural killer cells. We identify a set of cis-regulatory elements (CREs) for activating Ly49 genes. In addition, we show that in mice, inhibitory and activating Ly49 genes are regulated by two separate sets of proximal CREs, likely resulting from lineage-specific losses of CRE activity. Furthermore, we find that some Ly49 genes are cross-regulated by the CREs of other Ly49 genes, suggesting that the Ly49 family has begun to evolve a concerted cis-regulatory mechanism. Collectively, we demonstrate the different modes of cis-regulatory evolution for a rapidly expanding gene family.


Assuntos
Evolução Molecular , Família Multigênica , Subfamília A de Receptores Semelhantes a Lectina de Células NK , Animais , Camundongos , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Regulação da Expressão Gênica , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos C57BL
17.
Planta ; 260(1): 14, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829418

RESUMO

MAIN CONCLUSION: Significant past, present, and potential future research into the organellar (plastid and mitochondrial) genomes of gymnosperms that can provide insight into the unknown origin and evolution of plants is highlighted. Gymnosperms are vascular seed plants that predominated the ancient world before their sister clade, angiosperms, took over during the Late Cretaceous. The divergence of gymnosperms and angiosperms took place around 300 Mya, with the latter evolving into the diverse group of flowering plants that dominate the plant kingdom today. Although gymnosperms have reportedly made some evolutionary innovations, the literature on their genome advances, particularly their organellar (plastid and mitochondrial) genomes, is relatively scattered and fragmented. While organellar genomes can shed light on plant origin and evolution, they are frequently overlooked, due in part to their limited contribution to gene expression and lack of evolutionary dynamics when compared to nuclear genomes. A better understanding of gymnosperm organellar genomes is critical because they reveal genetic changes that have contributed to their unique adaptations and ecological success, potentially aiding in plant survival, enhancement, and biodiversity conservation in the face of climate change. This review reveals significant information and gaps in the existing knowledge base of organellar genomes in gymnosperms, as well as the challenges and research needed to unravel their complexity.


Assuntos
Cycadopsida , Genoma Mitocondrial , Genoma de Planta , Cycadopsida/genética , Genoma de Planta/genética , Genoma Mitocondrial/genética , Genomas de Plastídeos/genética , Evolução Molecular , Filogenia , Evolução Biológica
18.
Proc Natl Acad Sci U S A ; 121(24): e2218927121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830094

RESUMO

Oomycete protists share phenotypic similarities with fungi, including the ability to cause plant diseases, but branch in a distant region of the tree of life. It has been suggested that multiple horizontal gene transfers (HGTs) from fungi-to-oomycetes contributed to the evolution of plant-pathogenic traits. These HGTs are predicted to include secreted proteins that degrade plant cell walls, a barrier to pathogen invasion and a rich source of carbohydrates. Using a combination of phylogenomics and functional assays, we investigate the diversification of a horizontally transferred xyloglucanase gene family in the model oomycete species Phytophthora sojae. Our analyses detect 11 xyloglucanase paralogs retained in P. sojae. Using heterologous expression in yeast, we show consistent evidence that eight of these paralogs have xyloglucanase function, including variants with distinct protein characteristics, such as a long-disordered C-terminal extension that can increase xyloglucanase activity. The functional variants analyzed subtend a phylogenetic node close to the fungi-to-oomycete transfer, suggesting the horizontally transferred gene was a bona fide xyloglucanase. Expression of three xyloglucanase paralogs in Nicotiana benthamiana triggers high-reactive oxygen species (ROS) generation, while others inhibit ROS responses to bacterial immunogens, demonstrating that the paralogs differentially stimulate pattern-triggered immunity. Mass spectrometry of detectable enzymatic products demonstrates that some paralogs catalyze the production of variant breakdown profiles, suggesting that secretion of variant xyloglucanases increases efficiency of xyloglucan breakdown as well as diversifying the damage-associated molecular patterns released. We suggest that this pattern of neofunctionalization and the variant host responses represent an aspect of the Red Queen host-pathogen coevolutionary dynamic.


Assuntos
Transferência Genética Horizontal , Glicosídeo Hidrolases , Filogenia , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Phytophthora/patogenicidade , Phytophthora/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Evolução Molecular , Duplicação Gênica
19.
Proc Natl Acad Sci U S A ; 121(24): e2319679121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830106

RESUMO

Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.


Assuntos
Evolução Molecular , Genoma de Planta , Filogenia , Poliploidia , Cromossomos de Plantas/genética , Duplicação Gênica
20.
Proc Natl Acad Sci U S A ; 121(24): e2321619121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833475

RESUMO

Angiotensin-convertingenzyme 2 (ACE2) has dual functions, regulating cardiovascular physiology and serving as the receptor for coronaviruses. Bats, the only true flying mammals and natural viral reservoirs, have evolved positive alterations in traits related to both functions of ACE2. This suggests significant evolutionary changes in ACE2 during bat evolution. To test this hypothesis, we examine the selection pressure in ACE2 along the ancestral branch of all bats (AncBat-ACE2), where powered flight and bat-coronavirus coevolution occurred, and detect a positive selection signature. To assess the functional effects of positive selection, we resurrect AncBat-ACE2 and its mutant (AncBat-ACE2-mut) created by replacing the positively selected sites. Compared to AncBat-ACE2-mut, AncBat-ACE2 exhibits stronger enzymatic activity, enhances mice's performance in exercise fatigue, and shows lower affinity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings indicate the functional pleiotropy of positive selection in the ancient ACE2 of bats, providing an alternative hypothesis for the evolutionary origin of bats' defense against coronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , Quirópteros , Seleção Genética , Quirópteros/virologia , Quirópteros/genética , Animais , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Camundongos , Pleiotropia Genética , Evolução Molecular , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/genética , Coronavirus/genética , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...