Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.417
Filtrar
1.
Transl Vis Sci Technol ; 13(5): 1, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691083

RESUMO

Purpose: This feasibility study investigated the practicability of collecting and analyzing tear proteins from preterm infants at risk of retinopathy of prematurity (ROP). We sought to identify any tear proteins which might be implicated in the pathophysiology of ROP as well as prognostic markers. Methods: Schirmer's test was used to obtain tear samples from premature babies, scheduled for ROP screening, after parental informed consent. Mass spectrometry was used for proteomic analysis. Results: Samples were collected from 12 infants, which were all adequate for protein analysis. Gestational age ranged from 25 + 6 to 31 + 1 weeks. Postnatal age at sampling ranged from 19 to 66 days. One infant developed self-limiting ROP. Seven hundred one proteins were identified; 261 proteins identified in the majority of tear samples, including several common tear proteins, were used for analyses. Increased risk of ROP as determined by the postnatal growth ROP (G-ROP) criteria was associated with an increase in lactate dehydrogenase B chain in tears. Older infants demonstrated increased concentration of immunoglobulin complexes within their tear samples and two sets of twins in the cohort showed exceptionally similar proteomes, supporting validity of the analysis. Conclusions: Tear sampling by Schirmer test strips and subsequent proteomic analysis by mass spectrometry in preterm infants is feasible. A larger study is required to investigate the potential use of tear proteomics in identification of ROP. Translational Relevance: Tear sampling and subsequent mass spectrometry in preterm infants is feasible. Investigation of the premature tear proteome may increase our understanding of retinal development and provide noninvasive biomarkers for identification of treatment-warranted ROP.


Assuntos
Biomarcadores , Proteínas do Olho , Estudos de Viabilidade , Idade Gestacional , Recém-Nascido Prematuro , Proteômica , Retinopatia da Prematuridade , Lágrimas , Humanos , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/metabolismo , Proteômica/métodos , Recém-Nascido , Feminino , Lágrimas/química , Lágrimas/metabolismo , Masculino , Biomarcadores/metabolismo , Biomarcadores/análise , Proteínas do Olho/metabolismo , Proteínas do Olho/análise , Lactente , Espectrometria de Massas/métodos
2.
Invest Ophthalmol Vis Sci ; 65(5): 9, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700873

RESUMO

Purpose: We sought to explore whether sex imbalances are discernible in several autosomally inherited macular dystrophies. Methods: We searched the electronic patient records of our large inherited retinal disease cohort, quantifying numbers of males and females with the more common (non-ABCA4) inherited macular dystrophies (associated with BEST1, EFEMP1, PROM1, PRPH2, RP1L1, and TIMP3). BEST1 cases were subdivided into typical autosomal dominant and recessive disease. For PRPH2, only patients with variants at codons 172 or 142 were included. Recessive PROM1 and recessive RP1L1 cases were excluded because these variants give a more widespread or peripheral degeneration. The proportion of females was calculated for each condition; two-tailed binomial testing was performed. Where a significant imbalance was found, previously published cohorts were also explored. Results: Of 325 patients included, numbers for BEST1, EFEMP1, PROM1, PRPH2, RP1L1, and TIMP3 were 152, 35, 30, 50, 14, and 44, respectively. For autosomal dominant Best disease (n = 115), there were fewer females (38%; 95% confidence interval [CI], 29-48%; P = 0.015). For EFEMP1-associated disease (n = 35), there were significantly more females (77%; 95% CI, 60%-90%; P = 0.0019). No significant imbalances were seen for the other genes. When pooling our cohort with previous large dominant Best disease cohorts, the proportion of females was 37% (95% CI, 31%-43%; P = 1.2 × 10-5). Pooling previously published EFEMP1-cases with ours yielded an overall female proportion of 62% (95% CI, 54%-69%; P = 0.0023). Conclusions: This exploratory study found significant sex imbalances in two autosomal macular dystrophies, suggesting that sex could be a modifier. Our findings invite replication in further cohorts and the investigation of potential mechanisms.


Assuntos
Degeneração Macular , Humanos , Feminino , Masculino , Distribuição por Sexo , Degeneração Macular/genética , Degeneração Macular/diagnóstico , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Periferinas/genética , Inibidor Tecidual de Metaloproteinase-3/genética
3.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713624

RESUMO

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Córtex Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Fator de Transcrição 2 de Oligodendrócitos , Fator de Transcrição PAX6 , Animais , Neurogênese/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Neuroglia/metabolismo , Neuroglia/citologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/citologia , Linhagem da Célula , Humanos
4.
Nat Commun ; 15(1): 4316, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773095

RESUMO

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily. Defects in this process, due to mutations, cause retinitis pigmentosa (RP). Whilst fundamental for vision, the mechanism of photoreceptor disc generation is poorly understood. Here, we show membrane deformation required for disc genesis is driven by dynamic actin changes in a process akin to ectocytosis. We show RPGR, a leading RP gene, regulates actin-binding protein activity central to this process. Actin dynamics, required for disc formation, are perturbed in Rpgr mouse models, leading to aborted membrane shedding as ectosome-like vesicles, photoreceptor death and visual loss. Actin manipulation partially rescues this, suggesting the pathway could be targeted therapeutically. These findings help define how actin-mediated dynamics control outer segment turnover.


Assuntos
Actinas , Proteínas do Olho , Retinose Pigmentar , Animais , Actinas/metabolismo , Camundongos , Retinose Pigmentar/metabolismo , Retinose Pigmentar/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Cílios/metabolismo , Humanos , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Membrana Celular/metabolismo
5.
Exp Eye Res ; 243: 109887, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609044

RESUMO

The pathophysiology of Primary Open Angle Glaucoma (POAG) remains poorly understood. Through proteomic analysis of aqueous humour (AH) from POAG patients, we aim to identify changes in protein composition of these samples compared to control samples. High resolution mass spectrometry-based TMT6plex quantitative proteomics analysis is performed on AH samples collected from POAG patients, and compared against a control group of patients with cataracts. Data are available via ProteomeXchange with identifier PXD033153. 1589 proteins were quantified from the aqueous samples using Proteome Discoverer version 2.2 software. Among these proteins, 210 were identified as unique master proteins. The proteins which were up or down-regulated by ±3 fold-change were considered significant. Human neuroblastoma full-length cDNA clone CS0DD006YL02 was significantly upregulated in patients with severe POAG on >2 medications, while actin, cytoplasmic 1, V2-7 protein (fragment), immunoglobulin-like polypeptide 1 and phosphatidylethanolamine-binding protein 4 were only present in these patients with severe POAG on >2 medications. Beta-crystallin B1 and B2, Gamma-crystallin C, D and S were significantly downregulated in the severe POAG ≤2 glaucoma medications group. Beta-crystallin B2, Gamma-crystallin D and GCT-A9 light chain variable region (fragment) were significantly downregulated in the non-severe POAG group. Actin, cytoplasmic 1 was significantly upregulated in subjects with severe POAG who required more than 2 glaucoma medications. Crystallins (Beta-crystallin B1 and B2, Gamma-crystallin C, D and S) were significantly downregulated in subjects with severe POAG who required less than 2 glaucoma medications.


Assuntos
Humor Aquoso , Proteínas do Olho , Glaucoma de Ângulo Aberto , Proteômica , Humanos , Glaucoma de Ângulo Aberto/metabolismo , Humor Aquoso/metabolismo , Feminino , Masculino , Proteínas do Olho/metabolismo , Idoso , Pessoa de Meia-Idade , Proteômica/métodos , Pressão Intraocular/fisiologia , Povo Asiático
6.
Exp Eye Res ; 243: 109903, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642601

RESUMO

Pseudoexfoliation syndrome (PEX) is characterized by the deposition of fibrous pseudoexfoliation material (PEXM) in the eye, and secondary glaucoma associated with this syndrome has a faster and more severe clinical course. The incidence of PEX and pseudoexfoliative glaucoma (PEXG) exhibits ethnic clustering; however, few proteomic studies related to PEX and PEXG have been conducted in Asian populations. Therefore, we aimed to conduct proteomic analysis on the aqueous humor (AH) obtained from Uyghur patients with cataracts, those with PEX and cataracts, and those with PEXG and cataracts to better understand the molecular mechanisms of the disease and identify its potential biomarkers. To this end, AH was collected from patients with cataracts (n = 10, control group), PEX with cataracts (n = 10, PEX group), and PEXG with cataracts (n = 10, PEXG group) during phacoemulsification. Label-free quantitative proteomic techniques combined with bioinformatics were used to identify and analyze differentially expressed proteins (DEPs) in the AH of PEX and PEXG groups. Then, independent AH samples (n = 12, each group) were collected to validate DEPs by enzyme-linked immunosorbent assay (ELISA). The PEX group exhibited 25 DEPs, while the PEXG group showed 44 DEPs, both compared to the control group. Subsequently, we found three newly identified proteins in both PEX and PEXG groups, wherein FRAS1-related extracellular matrix protein 2 (FREM2) and osteoclast-associated receptor (OSCAR) exhibited downregulation, whereas coagulation Factor IX (F9) displayed upregulation. Bioinformatics analysis suggested that extracellular matrix interactions, abnormal blood-derived proteins, and lysosomes were mainly involved in the process of PEX and PEXG, and the PPI network further revealed F9 may serve as a potential biomarker for both PEX and PEXG. In conclusion, this study provides new information for understanding the proteomics of AH in PEX and PEXG.


Assuntos
Humor Aquoso , Síndrome de Exfoliação , Proteínas do Olho , Proteômica , Humanos , Síndrome de Exfoliação/metabolismo , Humor Aquoso/metabolismo , Proteômica/métodos , Masculino , Feminino , Idoso , Proteínas do Olho/metabolismo , China/epidemiologia , Glaucoma de Ângulo Aberto/metabolismo , Pessoa de Meia-Idade , Biomarcadores/metabolismo , Ensaio de Imunoadsorção Enzimática , Catarata/metabolismo , Pressão Intraocular/fisiologia
7.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570189

RESUMO

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Assuntos
Amaurose Congênita de Leber , Retinose Pigmentar , Animais , Humanos , Peixe-Zebra/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte/metabolismo
8.
BMC Med Genomics ; 17(1): 88, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627714

RESUMO

BACKGROUND: Liver cancer ranks sixth in incidence and third in mortality globally and hepatocellular carcinoma (HCC) accounts for 90% of it. Hypoxia, glycolysis, and lactate metabolism have been found to regulate the progression of HCC separately. However, there is a lack of studies linking the above three to predict the prognosis of HCC. The present study aimed to identify a hypoxia-glycolysis-lactate-related gene signature for assessing the prognosis of HCC. METHODS: This study collected 510 hypoxia-glycolysis-lactate genes from Molecular Signatures Database (MSigDB) and then classified HCC patients from TCGA-LIHC by analyzing their hypoxia-glycolysis-lactate genes expression. Differentially expressed genes (DEGs) were screened out to construct a gene signature by LASSO-Cox analysis. Univariate and multivariate regression analyses were used to evaluate the independent prognostic value of the gene signature. Analyses of immune infiltration, somatic cell mutations, and correlation heatmap were conducted by "GSVA" R package. Single-cell analysis conducted by "SingleR", "celldex", "Seurat", and "CellCha" R packages revealed how signature genes participated in hypoxia/glycolysis/lactate metabolism and PPI network identified hub genes. RESULTS: We classified HCC patients from TCGA-LIHC into two clusters and screened out DEGs. An 18-genes prognostic signature including CDCA8, CBX2, PDE6A, MED8, DYNC1LI1, PSMD1, EIF5B, GNL2, SEPHS1, CCNJL, SOCS2, LDHA, G6PD, YBX1, RTN3, ADAMTS5, CLEC3B, and UCK2 was built to stratify the risk of HCC. The risk score of the hypoxia-glycolysis-lactate gene signature was further identified as a valuable independent factor for estimating the prognosis of HCC. Then we found that the features of clinical characteristics, immune infiltration, somatic cell mutations, and correlation analysis differed between the high-risk and low-risk groups. Furthermore, single-cell analysis indicated that the signature genes could interact with the ligand-receptors of hepatocytes/fibroblasts/plasma cells to participate in hypoxia/glycolysis/lactate metabolism and PPI network identified potential hub genes in this process: CDCA8, LDHA, YBX1. CONCLUSION: The hypoxia-glycolysis-lactate-related gene signature we built could provide prognostic value for HCC and suggest several hub genes for future HCC studies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ácido Láctico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico , Hipóxia , Proteínas do Olho , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Dineínas do Citoplasma
9.
Nat Commun ; 15(1): 3146, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605029

RESUMO

Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.


Assuntos
Proteínas Intrinsicamente Desordenadas , Peptídeos , Humanos , Fosforilação , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Regulação da Expressão Gênica , Mutação , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligação Proteica , Sítios de Ligação , Proteínas do Olho/genética
10.
Mol Vis ; 30: 49-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586605

RESUMO

RPGR pathogenic variants are the major cause of X-linked retinitis pigmentosa. Here, we report the results from 1,033 clinical DNA tests that included sequencing of RPGR. A total of 184 RPGR variants were identified: 78 pathogenic or likely pathogenic, 14 uncertain, and 92 likely benign or benign. Among the pathogenic and likely pathogenic variants, 23 were novel, and most were frameshift or nonsense mutations (87%) and enriched (67%) in RPGR exon 15 (ORF15). Identical pathogenic variants found in different families were largely on different haplotype backgrounds, indicating relatively frequent, recurrent RPGR mutations. None of the 16 mother/affected son pairs showed de novo mutations; all 16 mothers were heterozygous for the pathogenic variant. These last two observations support the occurrence of most RPGR mutations in the male germline.


Assuntos
Proteínas do Olho , Retinose Pigmentar , Humanos , Proteínas do Olho/genética , Linhagem , Mutação , Mutação da Fase de Leitura , Transtornos da Visão , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
11.
Indian J Ophthalmol ; 72(Suppl 3): S509-S513, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648460

RESUMO

PURPOSE: Mutations of G protein-coupled receptor 143 (GPR143) and FERM domain containing 7 (FRMD7) may result in congenital nystagmus (CN) in the first 6 months of life. We aimed to compare the differences in ocular oscillations between patients with these two gene mutations as well as the functional and structural changes in their retinas and visual pathways. METHODS: Medical records were retrospectively reviewed to identify patients of congenital nystagmus with confirmed mutations in either GPR143 or FMRD7 genes from January 2018 to May 2023. The parameters of the ocular oscillations were recorded using Eyelink 1000 Plus. The retinal structure and function were evaluated using optical coherence tomography and multi-focal electroretinography (mERG). The visual pathway and optical nerve projection were evaluated using visual evoked potentials. The next-generation sequencing technique was used to identify the pathogenic variations in the disease-causing genes for CN. RESULTS: Twenty nystagmus patients of GPR143 and 21 patients of FMRD7 who had been confirmed by molecular testing between January 2018 and May 2023 were included. Foveal hypoplasia was detected only in patients with the GPR143 pathogenic variant. mERG examination showed a flat response topography in the GPR143 group compared to the FRMD7 group. VEP showed that bilateral amplitude inconsistency was detected only in the patients with GPR143 gene mutation. The amplitude and frequency of the ocular oscillations were not found to differ between patients with two different genetic mutations. CONCLUSIONS: Although the etiology and molecular mechanisms are completely different between CN patients, they may have similar ocular oscillations. A careful clinical examination and electrophysiological test will be helpful in making a differential diagnosis. Our novel identified variants will further expand the spectrum of the GPR143 and FRMD7 variants.


Assuntos
Proteínas do Citoesqueleto , Proteínas de Membrana , Nistagmo Congênito , Feminino , Humanos , Masculino , Proteínas do Citoesqueleto/genética , DNA/genética , Análise Mutacional de DNA , Eletrorretinografia , Potenciais Evocados Visuais/fisiologia , Movimentos Oculares/fisiologia , Proteínas do Olho/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mutação , Nistagmo Congênito/genética , Nistagmo Congênito/fisiopatologia , Nistagmo Congênito/diagnóstico , Retina/fisiopatologia , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos
12.
Int J Biol Macromol ; 267(Pt 1): 131274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569991

RESUMO

The vitreous is a vital component of the eye, occupying a substantial portion of its volume and maintaining its structure. This study delves into the presence and significance of intrinsically disordered proteins (IDPs) within the vitreous, utilizing a dataset of 1240 vitreous proteins previously discovered in the vitreous proteome by Murthy et al.in five healthy subjects. The results indicate that 26.9 % of vitreous proteins are highly disordered, 68.8 % possess moderate disorder, and only 4.3 % are highly ordered. A complex interaction network among these proteins suggests their biological importance, and approximately 25 % may undergo liquid-liquid phase separation (LLPS). These findings offer new perspectives on the vitreous' molecular composition and behavior, potentially impacting our understanding of eye-related diseases, physiological changes such as vitreous syneresis. Further research is needed to translate these insights into clinical applications, although the intrinsic protein disorder and its association with LLPS appears to play a role in vitreous proteome function.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteoma , Corpo Vítreo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteoma/metabolismo , Corpo Vítreo/metabolismo , Proteínas do Olho/metabolismo
13.
JCI Insight ; 9(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646933

RESUMO

Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein-coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Distrofias Retinianas , Peixe-Zebra , Animais , Humanos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Luz/efeitos adversos , Mutação , Organoides/metabolismo , Retina/metabolismo , Retina/patologia , Distrofias Retinianas/terapia , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo
14.
CRISPR J ; 7(2): 100-110, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579141

RESUMO

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding genetic disorders caused by pathogenic variants in genes expressed in the retina. In this study, we sought to develop a method for rapid evaluation of IRD gene variant pathogenicity by inducing expression of retinal genes in patient-derived fibroblasts using CRISPR-activation (CRISPRa). We demonstrate CRISPRa of CRB1 expression in fibroblasts derived from patients with retinitis pigmentosa, enabling investigation of pathogenic mechanisms associated with specific variants. We show the CRB1 c.4005 + 1G>A variant caused exon 11 skipping in CRISPR-activated fibroblasts and retinal organoids (ROs) derived from the same RP12 patient. The c.652 + 5G>C variant was shown to enhance exon 2 skipping in CRISPR-activated fibroblasts and differentially affected CRB1 isoform expression in fibroblasts and ROs. Our study demonstrates an accessible platform for transcript screening of IRD gene variants in patient-derived fibroblasts, which can potentially be applied for rapid pathogenicity assessments of any gene variant.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Virulência , Edição de Genes , Expressão Gênica , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
15.
Hum Gene Ther ; 35(9-10): 342-354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38661546

RESUMO

X-linked retinoschisis (XLRS) is a monogenic recessive inherited retinal disease caused by defects in retinoschisin (RS1). It manifests clinically as retinal schisis cavities and a disproportionate reduction of b-wave amplitude compared with the a-wave amplitude. Currently there is no approved treatment. In the last decade, there has been major progress in the development of gene therapy for XLRS. Previous preclinical studies have demonstrated the treatment benefits of hRS1 gene augmentation therapy in mouse models. However, outcomes in clinical trials have been disappointing, and this might be attributed to dysfunctional assembly of RS1 complexes and/or the impaired targeted cells. In this study, the human synapsin 1 gene promoter (hSyn) was used to control the expression of hRS1 to specifically target retinal ganglion cells and our results confirmed the specific expression and functional assembly of the protein. Moreover, our results demonstrated that a single intravitreal injection of rAAV2-hSyn-hRS1 results in architectural restoration of retinal schisis cavities and improvement in vision in a mouse model of XLRS. In brief, this study not only supports the clinical development of the rAAV2-hSyn-hRS1 vector in XLRS patients but also confirms the therapeutic potential of rAAV-based gene therapy in inherited retinal diseases.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Injeções Intravítreas , Camundongos Knockout , Células Ganglionares da Retina , Retinosquise , Sinapsinas , Animais , Dependovirus/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Camundongos , Terapia Genética/métodos , Retinosquise/terapia , Retinosquise/genética , Humanos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Expressão Gênica , Regiões Promotoras Genéticas , Retina/metabolismo , Retina/patologia , Técnicas de Transferência de Genes
16.
BMC Ophthalmol ; 24(1): 167, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622537

RESUMO

PURPOSE: The goal of the study was to search for novel bi-allelic CRB1 mutations, and then to analyze the CRB1 literature at the genotypic and phenotypic levels. APPROACH: We screened various variables such as the CRB1 mutation types, domains, exons, and genotypes and their relation with specific ocular phenotypes. An emphasis was given to the bi-allelic missense and nonsense mutations because of their high prevalence compared to other mutation types. Finally, we quantified the effect of various non-modifiable factors over the best-corrected visual acuity oculus uterque (BCVA OU) using multivariate linear regression models and identified genetic interactions. RESULTS: A novel bi-allelic missense in the exon 9 of CRB1; c.2936G > A; p.(Gly979Asp) was found to be associated with rod-cone dystrophy (RCD). CRB1 mutation type, exons, domains, and genotype distribution varied significantly according to fundus characteristics, such as peripheral pigmentation and condition, optic disc, vessels, macular condition, and pigmentation (P < 0.05). Of the 154 articles retrieved from PubMed, 96 studies with 439 bi-allelic CRB1 patients were included. Missense mutations were significantly associated with an absence of macular pigments, pale optic disc, and periphery pigmentation, resulting in a higher risk of RCD (P < 0.05). In contrast, homozygous nonsense mutations were associated with macular pigments, periphery pigments, and a high risk of LCA (P < 0.05) and increased BCVA OU levels. We found that age, mutation types, and inherited retinal diseases were critical determinants of BCVA OU as they significantly increased it by 33% 26%, and 38%, respectively (P < 0.05). Loss of function alleles additively increased the risk of LCA, with nonsense having a more profound effect than indels. Finally, our analysis showed that p.(Cys948Tyr) and p.(Lys801Ter) and p.(Lys801Ter); p.(Cys896Ter) might interact to modify BCVA OU levels. CONCLUSION: This meta-analysis updated the literature and identified genotype-phenotype associations in bi-allelic CRB1 patients.


Assuntos
Códon sem Sentido , Proteínas do Tecido Nervoso , Humanos , Alelos , Proteínas do Tecido Nervoso/genética , Estudos de Associação Genética , Retina , Fenótipo , Mutação , Proteínas do Olho/genética , Linhagem , Análise Mutacional de DNA , Proteínas de Membrana/genética
17.
Cells ; 13(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534367

RESUMO

We report a novel RPGR missense variant co-segregated with a familial X-linked retinitis pigmentosa (XLRP) case. The brothers were hemizygous for this variant, but only the proband presented with primary ciliary dyskinesia (PCD). Thus, we aimed to elucidate the role of the RPGR variant and other modifier genes in the phenotypic variability observed in the family and its impact on motile cilia. The pathogenicity of the variant on the RPGR protein was evaluated by in vitro studies transiently transfecting the mutated RPGR gene, and immunofluorescence analysis on nasal brushing samples. Whole-exome sequencing was conducted to identify potential modifier variants. In vitro studies showed that the mutated RPGR protein could not localise to the cilium and impaired cilium formation. Accordingly, RPGR was abnormally distributed in the siblings' nasal brushing samples. In addition, a missense variant in CEP290 was identified. The concurrent RPGR variant influenced ciliary mislocalisation of the protein. We provide a comprehensive characterisation of motile cilia in this XLRP family, with only the proband presenting PCD symptoms. The variant's pathogenicity was confirmed, although it alone does not explain the respiratory symptoms. Finally, the CEP290 gene may be a potential modifier for respiratory symptoms in patients with RPGR mutations.


Assuntos
Transtornos da Motilidade Ciliar , Retinose Pigmentar , Humanos , Masculino , Transtornos da Motilidade Ciliar/genética , Proteínas do Olho/metabolismo , Genes Modificadores , Mutação , Retinose Pigmentar/genética
18.
Invest Ophthalmol Vis Sci ; 65(3): 31, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517429

RESUMO

Purpose: This study aimed to investigate the impact of 21 NDP mutations located at the dimer interface, focusing on their potential effects on protein assembly, secretion efficiency, and activation of the Norrin/ß-catenin signaling pathway. Methods: The expression level, secretion efficiency, and protein assembly of mutations were analyzed using Western blot. The Norrin/ß-catenin signaling pathway activation ability after overexpression of mutants or supernatant incubation of mutant proteins was tested in HEK293STF cells. The mutant norrin and wild-type (WT) FZD4 were overexpressed in HeLa cells to observe their co-localization. Immunofluorescence staining was conducted in HeLa cells to analyze the subcellular localization of Norrin and the Retention Using Selective Hook (RUSH) assay was used to dynamically observe the secretion process of WT and mutant Norrin. Results: Four mutants (A63S, E66K, H68P, and L103Q) exhibited no significant differences from WT in all evaluations. The other 17 mutants presented abnormalities, including inadequate protein assembly, reduced secretion, inability to bind to FZD4 on the cell membrane, and decreased capacity to activate Norrin/ß-catenin signaling pathway. The RUSH assay revealed the delay in endoplasmic reticulum (ER) exit and impairment of Golgi transport. Conclusions: Mutations at the Norrin dimer interface may lead to abnormal protein assembly, inability to bind to FZD4, and decreased secretion, thus contributing to compromised Norrin/ß-catenin signaling. Our results shed light on the pathogenic mechanisms behind a significant proportion of NDP gene mutations in familial exudative vitreoretinopathy (FEVR) or Norrie disease.


Assuntos
Proteínas do Olho , Receptores Frizzled , Doenças Retinianas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Receptores Frizzled/genética , Células HeLa , Mutação , Doenças Retinianas/genética , Proteínas do Tecido Nervoso/genética
19.
EMBO Mol Med ; 16(4): 805-822, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504136

RESUMO

For 15 years, gene therapy has been viewed as a beacon of hope for inherited retinal diseases. Many preclinical investigations have centered around vectors with maximal gene expression capabilities, yet despite efficient gene transfer, minimal physiological improvements have been observed in various ciliopathies. Retinitis pigmentosa-type 28 (RP28) is the consequence of bi-allelic null mutations in the FAM161A, an essential protein for the structure of the photoreceptor connecting cilium (CC). In its absence, cilia become disorganized, leading to outer segment collapses and vision impairment. Within the human retina, FAM161A has two isoforms: the long one with exon 4, and the short one without it. To restore CC in Fam161a-deficient mice shortly after the onset of cilium disorganization, we compared AAV vectors with varying promoter activities, doses, and human isoforms. While all vectors improved cell survival, only the combination of both isoforms using the weak FCBR1-F0.4 promoter enabled precise FAM161A expression in the CC and enhanced retinal function. Our investigation into FAM161A gene replacement for RP28 emphasizes the importance of precise therapeutic gene regulation, appropriate vector dosing, and delivery of both isoforms. This precision is pivotal for secure gene therapy involving structural proteins like FAM161A.


Assuntos
Retinose Pigmentar , Animais , Camundongos , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Éxons , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Terapia Genética , Proteínas do Olho/genética , Proteínas do Olho/química , Proteínas do Olho/metabolismo
20.
Exp Eye Res ; 242: 109872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514024

RESUMO

X-linked retinoschisis (XLRS) is an early onset degenerative retinal disease characterized by cystic lesions in the middle layers of the retina. These structural changes are accompanied by a loss of visual acuity and decreased contrast sensitivity. XLRS is caused by mutations in the gene Rs1 which encodes the secreted protein Retinoschisin 1. Young Rs1-mutant mouse models develop key hallmarks of XLRS including intraretinal schisis and abnormal electroretinograms. The electroretinogram (ERG) comprises activity of multiple cellular generators, and it is not known how and when each of these is impacted in Rs1 mutant mice. Here we use an ex vivo ERG system and pharmacological blockade to determine how ERG components generated by photoreceptors, ON-bipolar, and Müller glial cells are impacted in Rs1 mutants and to determine the time course of these changes. We report that ERG abnormalities begin near eye-opening and that all ERG components are involved.


Assuntos
Moléculas de Adesão Celular , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho , Retinosquise , Animais , Retinosquise/genética , Retinosquise/fisiopatologia , Camundongos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Camundongos Endogâmicos C57BL , Mutação , Células Ependimogliais/patologia , Células Ependimogliais/metabolismo , Masculino , Células Bipolares da Retina/patologia , Células Bipolares da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...