Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.947
Filtrar
1.
Eur Radiol Exp ; 8(1): 89, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090380

RESUMO

BACKGROUND: Lower extremity peripheral artery disease frequently presents with calcifications which reduces the accuracy of computed tomography (CT) angiography, especially below-the-knee. Photon-counting detector (PCD)-CT offers improved spatial resolution and less calcium blooming. We aimed to identify the optimal reconstruction parameters for PCD-CT angiography of the lower legs. METHODS: Tubes with different diameters (1-5 mm) were filled with different iodine concentrations and scanned in a water container. Images were reconstructed with 0.4 mm isotropic resolution using a quantitative kernel at all available sharpness levels (Qr36 to Qr76) and using different levels of quantum iterative reconstruction (QIR-2-4). Noise and image sharpness were determined for all reconstructions. Additionally, CT angiograms of 20 patients, reconstructed with a medium (Qr44), sharp (Qr60), and ultrasharp (Qr72) kernel at QIR-2-4, were evaluated by three readers assessing noise, delineation of plaques and vessel walls, and overall quality. RESULTS: In the phantom study, increased kernel sharpness led to higher image noise (e.g., 16, 38, 77 HU for Qr44, Qr60, Qr72, and QIR-3). Image sharpness increased with increasing kernel sharpness, reaching a plateau at the medium-high level 60. Higher QIR levels decreased image noise (e.g., 51, 38, 25 HU at QIR-2-4 and Qr60) without reducing vessel sharpness. The qualitative in vivo results confirmed these findings: the sharp kernel (Qr60) with the highest QIR yielded the best overall quality. CONCLUSION: The combination of a sharpness level optimized reconstruction kernel (Qr60) and the highest QIR level yield the best image quality for PCD-CT angiography of the lower legs when reconstructed at 0.4-mm resolution. RELEVANCE STATEMENT: Using high-resolution PCD-CT angiography with optimized reconstruction parameters might improve diagnostic accuracy and confidence in peripheral artery disease of the lower legs. KEY POINTS: Effective exploitation of the potential of PCD-CT angiography requires optimized reconstruction parameters. Too soft or too sharp reconstruction kernels reduce image quality. The highest level of quantum iterative reconstruction provides the best image quality.


Assuntos
Angiografia por Tomografia Computadorizada , Imagens de Fantasmas , Fótons , Angiografia por Tomografia Computadorizada/métodos , Humanos , Doença Arterial Periférica/diagnóstico por imagem , Extremidade Inferior/diagnóstico por imagem , Extremidade Inferior/irrigação sanguínea , Masculino , Perna (Membro)/diagnóstico por imagem , Perna (Membro)/irrigação sanguínea , Feminino , Idoso , Pessoa de Meia-Idade
2.
Radiol Cardiothorac Imaging ; 6(4): e230328, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39023373

RESUMO

Purpose To investigate the impact of plaque size and density on virtual noncontrast (VNC)-based coronary artery calcium scoring (CACS) using photon-counting detector CT and to provide safety net reconstructions for improved detection of subtle plaques in patients whose VNC-based CACS would otherwise be erroneously zero when compared with true noncontrast (TNC)-based CACS. Materials and Methods In this prospective study, CACS was evaluated in a phantom containing calcifications with different diameters (5, 3, and 1 mm) and densities (800, 400, and 200 mg/cm3) and in participants who underwent TNC and contrast-enhanced cardiac photon-counting detector CT (July 2021-March 2022). VNC images were reconstructed at different virtual monoenergetic imaging (55-80 keV) and quantum iterative reconstruction (QIR) levels (QIR,1-4). TNC scans at 70 keV with QIR off served as the reference standard. In vitro CACS was analyzed using standard settings (3.0-mm sections, kernel Qr36, 130-HU threshold). Calcification detectability and CACS of small and low-density plaques were also evaluated using 1.0-mm sections, kernel Qr44, and 120- or 110-HU thresholds. Safety net reconstructions were defined based on background Agatston scores and evaluated in vivo in TNC plaques initially nondetectable using standard VNC reconstructions. Results The in vivo cohort included 63 participants (57.8 years ± 15.5 [SD]; 37 [59%] male, 26 [41%] female). Correlation and agreement between standard CACSVNC and CACSTNC were higher in large- and medium-sized and high- and medium-density than in low-density plaques (in vitro: intraclass correlation coefficient [ICC] ≥ 0.90; r > 0.9 vs ICC = 0.20-0.48; r = 0.5-0.6). Small plaques were not detectable using standard VNC reconstructions. Calcification detectability was highest using 1.0-mm sections, kernel Qr44, 120- and 110-HU thresholds, and QIR level of 2 or less VNC reconstructions. Compared with standard VNC, using safety net reconstructions (55 keV, QIR 2, 110-HU threshold) for in vivo subtle plaque detection led to higher detection (increased by 89% [50 of 56]) and improved correlation and agreement of CACSVNC with CACSTNC (in vivo: ICC = 0.51-0.61; r = 0.6). Conclusion Compared with TNC-based calcium scoring, VNC-based calcium scoring was limited for small and low-density plaques but improved using safety net reconstructions, which may be particularly useful in patients with low calcium scores who would otherwise be treated based on potentially false-negative results. Keywords: Coronary Artery Calcium CT, Photon-Counting Detector CT, Virtual Noncontrast, Plaque Size, Plaque Density Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Doença da Artéria Coronariana , Imagens de Fantasmas , Placa Aterosclerótica , Humanos , Masculino , Feminino , Estudos Prospectivos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Pessoa de Meia-Idade , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Idoso , Fótons , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/patologia , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Angiografia Coronária/métodos , Meios de Contraste
3.
Biomed Phys Eng Express ; 10(5)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968931

RESUMO

Quantitative contrast-enhanced breast computed tomography (CT) has the potential to improve the diagnosis and management of breast cancer. Traditional CT methods using energy-integrated detectors and dual-exposure images with different incident spectra for material discrimination can increase patient radiation dose and be susceptible to motion artifacts and spectral resolution loss. Photon Counting Detectors (PCDs) offer a promising alternative approach, enabling acquisition of multiple energy levels in a single exposure and potentially better energy resolution. Gallium arsenide (GaAs) is particularly promising for breast PCD-CT due to its high quantum efficiency and reduction of fluorescence x-rays escaping the pixel within the breast imaging energy range. In this study, the spectral performance of a GaAs PCD for quantitative iodine contrast-enhanced breast CT was evaluated. A GaAs detector with a pixel size of 100µm, a thickness of 500µm was simulated. Simulations were performed using cylindrical phantoms of varying diameters (10 cm, 12 cm, and 16 cm) with different concentrations and locations of iodine inserts, using incident spectra of 50, 55, and 60 kVp with 2 mm of added aluminum filtration and and a mean glandular dose of 10 mGy. We accounted for the effects of beam hardening and energy detector response using TIGRE CT open-source software and the publicly available Photon Counting Toolkit (PcTK). Material-specific images of the breast phantom were produced using both projection and image-based material decomposition methods, and iodine component images were used to estimate iodine intake. Accuracy and precision of the proposed methods for estimating iodine concentration in breast CT images were assessed for different material decomposition methods, incident spectra, and breast phantom thicknesses. The results showed that both the beam hardening effect and imperfection in the detector response had a significant impact on performance in terms of Root Mean Squared Error (RMSE), precision, and accuracy of estimating iodine intake in the breast. Furthermore, the study demonstrated the effectiveness of both material decomposition methods in making accurate and precise iodine concentration predictions using a GaAs-based photon counting breast CT system, with better performance when applying the projection-based material decomposition approach. The study highlights the potential of GaAs-based photon counting breast CT systems as viable alternatives to traditional imaging methods in terms of material decomposition and iodine concentration estimation, and proposes phantoms and figures of merit to assess their performance.


Assuntos
Arsenicais , Neoplasias da Mama , Mama , Meios de Contraste , Gálio , Iodo , Mamografia , Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X , Gálio/química , Humanos , Feminino , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste/química , Mamografia/métodos , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Simulação por Computador , Método de Monte Carlo , Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação
4.
Radiat Prot Dosimetry ; 200(11-12): 1167-1172, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016473

RESUMO

There has been an increase in the use of high energy photon beam for container scanners in many countries for multi purposes such as detecting high atomic number materials which might be nuclear materials, drugs, high explosive materials and other contrabands etc. High energy photon beams generally 6 and 9 MV can be used for scanning such materials. However, it is important to ensure that radiation level beyond the container scanner installation is within the permissible dose limit specified by the national competent authority for the protection of public and radiation workers. In this paper, challenges in the biological shielding during the installation of high energy X-ray system for scanning vehicles containing suspected materials are discussed. The purpose of the present study is to develop a methodology for shielding design and evaluation for container scanner installations. The basic concept pertaining to shielding evaluation of radiotherapy installations provided in National Council on Radiation Protection and Measurements (NCRP)/International Atomic Energy Agency (IAEA) reports are referred, and appropriately used to calculate optimized shielding thicknesses requirements for container scanner installation. Workload is estimated based on number of containers scanned, machine ON time and dose rate at 1 m. The shielding evaluation includes use of beam stopper in the primary beam, scattering by heterogeneous metallic scrap materials or any other suspected materials contained in the vehicle and their impact on the thickness of shielding walls. A model lay out plan to be used for installation of container scanner is developed. A methodology for shielding evaluation for various protective walls and ceiling of this model is also discussed. The study provides basic requirement for designing a structural room for installing 9MV container scanner from radiological safety view point.


Assuntos
Desenho de Equipamento , Proteção Radiológica , Proteção Radiológica/instrumentação , Proteção Radiológica/normas , Humanos , Doses de Radiação , Fótons , Raios X
5.
World J Urol ; 42(1): 433, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037610

RESUMO

PURPOSE: This ex vivo study aimed to compare a newly developed dual-source photon-counting CT (PCCT) with a 3rd generation dual-source dual-energy CT (DECT) for the detection and measurement (stone lengths and volumetrics) of urinary stones. METHODS: 143 urinary stones with a known geometry were physically measured and defined as reference values. Next, urinary stones were placed in an anthropomorphic abdomen-model and were scanned with DECT and PCCT. Images were read by two experienced examiners and automatically evaluated using a specific software. RESULTS: DECT and PCCT showed a high sensitivity for manual stone detection of 97.9% and 94.4%, and for automatic detection of 93.0% and 87.4%, respectively. Compared to that uric acid and xanthine stones were recognized slightly worse by DECT and PCCT with manual stone detection (93.3% and 82.2%), and with automatic detection (77.8% and 60.0%). All other stone entities were completely recognized. By comparing the maximum diameter of the reference value and DECT, Pearson-correlation was 0.96 (p < 0.001) for manual and 0.97 (p < 0.001) for automatic measurement, and for PCCT it was 0.94 (p < 0.001) for manual and 0.97 (p < 0.001) for automatic measurements. DECT and PCCT can also reliably determine volume manually and automatically with a Pearson-correlation of 0.99 (p < 0.001), respectively. CONCLUSION: Both CTs showed comparable results in stone detection, length measurement and volumetry compared to the reference values. Automatic measurement tends to underestimate the maximum diameter. DECT proved to be slightly superior in the recognition of xanthine and uric acid stones.


Assuntos
Cálculos Renais , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/química , Cálculos Renais/patologia , Fótons , Ácido Úrico/análise
6.
Opt Lett ; 49(14): 4054-4057, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008774

RESUMO

Two-photon autofluorescence (TPAF) imaging is able to offer precise cellular metabolic information with high spatiotemporal resolution, making it a promising biopsy tool. The technique is greatly hampered by the complexity of either the optical system or data processing. Here, the excitation wavelength was optimized to simultaneously excite both flavin adenine dinucleotide and nicotinamide adenine dinucleotide and eliminate the unexpected TPAF. The optical redox ratio (ORR) images were robustly achieved without additional calibration under the optimized single-wavelength excitation. The in vitro, ex vivo, and in vivo biopsy by the TPAF method were systematically studied and compared using hepato-cellular carcinoma and metastasis as examples. It was demonstrated that the proposed TPAF method simplified the optical system, improved the robustness of ORR, and enabled early-stage cancer diagnosis, showing distinguished advantages as compared with previous methods.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Imagem Óptica , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Imagem Óptica/métodos , Humanos , Animais , Metástase Neoplásica , Biópsia , Camundongos , NAD/metabolismo , Fótons , Flavina-Adenina Dinucleotídeo/metabolismo , Linhagem Celular Tumoral
7.
Phys Med ; 123: 103427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959576

RESUMO

BACKGROUND: Reirradiation of head and neck cancer (HNC) became more accessible in the last decade, owing to modern irradiation techniques which offer a reduction in treatment related toxicities. The aim of this paper was to comparatively evaluate the dosimetric aspects derived from intensity modulated photon vs. proton treatment planning in reirradiated HNC patients. METHODS: Six recurrent HNC patients were enrolled in this retrospective study. For each patient two treatment plans were created: one IMRT/VMAT and one IMPT plan. The prescribed dose for the second irradiation was between 50 and 70 Gy RBE. The study comparatively analyzed the CTV coverage, doses to organs at risk (OARs) and low doses received by the healthy tissue (other than OAR). RESULTS: Similar CTV coverage was achieved for photon vs proton plans, with the latter presenting better homogeneity in four cases. Maximum dose to CTV was generally higher for photon plans, with differences ranging from 0.3 to 1.9%. For parotid glands and body, the mean dose was lower for proton plans. A notable reduction of low dose to healthy tissue (other than OARs) could be achieved with protons, with an average of 60% and 64% for D10% and Dmean, respectively. CONCLUSION: The dosimetric comparison between photon and proton reirradiation of HNC showed a great need for treatment individualization, concluding that protons should be considered for reirradiation on an individual basis.


Assuntos
Neoplasias de Cabeça e Pescoço , Órgãos em Risco , Fótons , Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Reirradiação , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Terapia com Prótons/métodos , Fótons/uso terapêutico , Radioterapia de Intensidade Modulada/métodos , Reirradiação/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Estudos Retrospectivos
8.
Sci Rep ; 14(1): 15459, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965299

RESUMO

Two-photon vision enables near-infrared light perception in humans. We investigate the possibility to utilize this phenomenon as an indicator of the location of the outer segments of photoreceptor cells in the OCT images. Since two-photon vision is independent on OCT imaging, it could provide external to OCT reference relative to which positions of retinal layers visible in OCT imaging could be measured. We show coincidence between OCT imaging of outer retinal layers and two-photon light perception. The experiment utilizes an intrinsic nonlinear process in the retina, two-photon absorption of light by visual photopigments, which triggers perception of near-infrared light. By shifting the focus of the imaging/stimulus beam, we link the peak efficiency of two-photon vision with the visibility of outer segments of photoreceptor cells, which can be seen as in vivo identification of a retinal layer containing visual photopigments in OCT images. Determination of the in-focus retinal layer is achieved by analysis of en face OCT image contrast. We discuss experimental methods and experimental factors that may influence two-photon light perception and the accuracy of the results. The limits of resolution are discussed in analysis of the one-photon and two-photon point spread functions.


Assuntos
Psicofísica , Retina , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Humanos , Retina/diagnóstico por imagem , Retina/fisiologia , Fótons , Percepção Visual/fisiologia
9.
Sci Rep ; 14(1): 15066, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956113

RESUMO

Living cells have spontaneous ultraweak photon emission derived from metabolic reactions associated with physiological conditions. The ORCA-Quest CMOS camera (Hamamatsu Photonics, Japan) is a highly sensitive and essential tool for photon detection; its use with a microscope incubator (Olympus) enables the detection of photons emitted by embryos with the exclusion of harmful visible light. With the application of the second law of thermodynamics, the low-entropy energy absorbed and used by embryos can be distinguished from the higher-entropy energy released and detectable in their environment. To evaluate higher-entropy energy data from embryos, we developed a unique algorithm for the calculation of the entropy-weighted spectral fractal dimension, which demonstrates the self-similar structure of the energy (photons) released by embryos. Analyses based on this structure enabled the distinction of living and degenerated mouse embryos, and of frozen and fresh embryos and the background. This novel detection of ultra-weak photon emission from mouse embryos can provide the basis for the development of a photon emission embryo control system. The ultraweak photon emission fingerprints of embryos may be used for the selection of viable specimens in an ideal dark environment.


Assuntos
Algoritmos , Embrião de Mamíferos , Fótons , Animais , Camundongos , Feminino
10.
Cell Mol Biol Lett ; 29(1): 105, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030477

RESUMO

BACKGROUND: The organism-wide effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection are well studied, but little is known about the dynamics of how the infection spreads in time among or within cells due to the scarcity of suitable high-resolution experimental systems. It has been reported that SARS-CoV-2 infection pathways converge at calcium influx and subcellular calcium distribution changes. Imaging combined with a proper staining technique is an effective tool for studying subcellular calcium-related infection and replication mechanisms at such resolutions. METHODS: Using two-photon (2P) fluorescence imaging with our novel Ca-selective dye, automated image analysis and clustering analysis were applied to reveal titer and variant effects on SARS-CoV-2-infected Vero E6 cells. RESULTS: The application of a new calcium sensor molecule is shown, combined with a high-end 2P technique for imaging and identifying the patterns associated with cellular infection damage within cells. Vero E6 cells infected with SARS-CoV-2 variants, D614G or B.1.1.7, exhibit elevated cytosolic calcium levels, allowing infection monitoring by tracking the cellular changes in calcium level by the internalized calcium sensor. The imaging provides valuable information on how the level and intracellular distribution of calcium are perturbed during the infection. Moreover, two-photon calcium sensing allowed the distinction of infections by two studied viral variants via cluster analysis of the image parameters. This approach will facilitate the study of cellular correlates of infection and their quantification depending on viral variants and viral load. CONCLUSIONS: We propose a new two-photon microscopy-based method combined with a cell-internalized sensor to quantify the level of SARS-CoV-2 infection. We optimized the applied dye concentrations to not interfere with viral fusion and viral replication events. The presented method ensured the proper monitoring of viral infection, replication, and cell fate. It also enabled distinguishing intracellular details of cell damage, such as vacuole and apoptotic body formation. Using clustering analysis, 2P microscopy calcium fluorescence images were suitable to distinguish two different viral variants in cell cultures. Cellular harm levels read out by calcium imaging were quantitatively related to the initial viral multiplicity of infection numbers. Thus, 2P quantitative calcium imaging might be used as a correlate of infection or a correlate of activity in cellular antiviral studies.


Assuntos
COVID-19 , Cálcio , Corantes Fluorescentes , SARS-CoV-2 , Chlorocebus aethiops , Células Vero , Cálcio/metabolismo , Cálcio/análise , Animais , COVID-19/virologia , COVID-19/metabolismo , Corantes Fluorescentes/química , Humanos , Fótons
11.
Radiat Oncol ; 19(1): 85, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956684

RESUMO

BACKGROUND: Radiotherapy is essential in the treatment of prostate cancer. An alternative to conventional photon radiotherapy is the application of carbon ions, which provide a superior intratumoral dose distribution and less induced damage to adjacent healthy tissue. A common characteristic of prostate cancer cells is their dependence on androgens which is exploited therapeutically by androgen deprivation therapy in the advanced prostate cancer stage. Here, we aimed to analyze the transcriptomic response of prostate cancer cells to irradiation by photons in comparison to carbon ions, focusing on DNA damage, DNA repair and androgen receptor signaling. METHODS: Prostate cancer cell lines LNCaP (functional TP53 and androgen receptor signaling) and DU145 (dysfunctional TP53 and androgen receptor signaling) were irradiated by photons or carbon ions and the subsequent DNA damage was assessed by immuno-cytofluorescence. Furthermore, the cells were treated with an androgen-receptor agonist. The effects of irradiation and androgen treatment on the gene regulation and the transcriptome were investigated by RT-qPCR and RNA sequencing, followed by bioinformatic analysis. RESULTS: Following photon or carbon ion irradiation, both LNCaP and DU145 cells showed a dose-dependent amount of visible DNA damage that decreased over time, indicating occurring DNA repair. In terms of gene regulation, mRNAs involved in the TP53-dependent DNA damage response were significantly upregulated by photons and carbon ions in LNCaP but not in DU145 cells, which generally showed low levels of gene regulation after irradiation. Both LNCaP and DU145 cells responded to photons and carbon ions by downregulation of genes involved in DNA repair and cell cycle, partially resembling the transcriptome response to the applied androgen receptor agonist. Neither photons nor carbon ions significantly affected canonical androgen receptor-dependent gene regulation. Furthermore, certain genes that were specifically regulated by either photon or carbon ion irradiation were identified. CONCLUSION: Photon and carbon ion irradiation showed a significant congruence in terms of induced signaling pathways and transcriptomic responses. These responses were strongly impacted by the TP53 status. Nevertheless, irradiation mode-dependent distinct gene regulations with undefined implication for radiotherapy outcome were revealed. Androgen receptor signaling and irradiations shared regulation of certain genes with respect to DNA-repair and cell-cycle.


Assuntos
Fótons , Neoplasias da Próstata , Receptores Androgênicos , Transdução de Sinais , Transcriptoma , Proteína Supressora de Tumor p53 , Humanos , Masculino , Carbono , Linhagem Celular Tumoral , Dano ao DNA/efeitos da radiação , Reparo do DNA , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Radioterapia com Íons Pesados , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais/efeitos da radiação , Transcriptoma/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
12.
PLoS One ; 19(7): e0306627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39058758

RESUMO

Photon-counting detector (PCD)-based computed tomography (CT) offers several advantages over conventional energy-integrating detector-based CT. Among them, the ability to discriminate energy exhibits significant potential for clinical applications because it provides material-specific information. That is, material decomposition (MD) can be achieved through energy discrimination. In this study, deep learning-based material decomposition was performed using live animal data. We propose MD-Unet, which is a deep learning strategy for material decomposition based on an Unet architecture trained with data from three energy bins. To mitigate the data insufficiency, we developed a pretrained model incorporating various simulation data forms and augmentation strategies. Incorporating these approaches into model training results in enhanced precision in material decomposition, thereby enabling the identification of distinct materials at individual pixel locations. The trained network was applied to the acquired animal data to evaluate material decomposition results. Compared with conventional methods, the newly generated MD-Unet demonstrated more accurate material decomposition imaging. Moreover, the network demonstrated an improved material decomposition ability and significantly reduced noise. In addition, they can potentially offer an enhancement level similar to that of a typical contrast agent. This implies that it can acquire images of the same quality with fewer contrast agents administered to patients, thereby demonstrating its significant clinical value.


Assuntos
Cálcio , Aprendizado Profundo , Iodo , Fótons , Tomografia Computadorizada por Raios X , Iodo/química , Tomografia Computadorizada por Raios X/métodos , Animais , Cálcio/análise , Processamento de Imagem Assistida por Computador/métodos , Meios de Contraste/química
13.
Tomography ; 10(7): 1168-1191, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39058061

RESUMO

Spectral photon-counting cone-beam computed tomography (CT) imaging is challenged by individual pixel response behaviours, which lead to noisy projection images and subsequent image artefacts like rings. Existing methods to correct for this either use calibration measurements, like signal-to-thickness calibration (STC), or perform a post-processing ring artefact correction of sinogram data or scan reconstructions without taking the pixel response explicitly into account. Here, we present a novel post-processing method (digital-to-analogue converter (DAC)-shifting) which explicitly measures the current pixel response using flat-field images and subsequently corrects the projection data. The DAC-shifting method was evaluated using a repeat series of the spectral photon-counting imaging (Medipix3) of a phantom with different density inserts and iodine K-edge imaging. The method was also compared against polymethyl methacrylate (PMMA)-based STC. The DAC-shifting method was shown to be effective in correcting individual pixel responses and was robust against detector instability; it led to a 47.4% average reduction in CT-number variation in homogeneous materials, with a range of 40.7-55.6%. On the contrary, the STC correction showed varying results; a 13.7% average reduction in CT-number variation, ranging from a 43.7% increase to a 45.5% reduction. In K-edge imaging, DAC-shifting provides a sharper attenuation peak and more uniform CT values, which are expected to benefit iodine concentration quantifications.


Assuntos
Artefatos , Imagens de Fantasmas , Fótons , Tomografia Computadorizada de Feixe Cônico/métodos , Reprodutibilidade dos Testes , Humanos , Processamento de Imagem Assistida por Computador/métodos , Calibragem , Algoritmos , Polimetil Metacrilato , Tomografia Computadorizada por Raios X/métodos
14.
Brain Nerve ; 76(7): 807-812, 2024 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-38970316

RESUMO

Two-photon excitation microscopy enables in vivo deep-tissue imaging within organisms. This technique is based on two-photon excitation, a nonlinear optical process that uses near-infrared light for excitation, resulting in high tissue permeability. Notably, two-photon excitation occurs only near the focal plane; therefore, minimally invasive tomographic images can be obtained. Owing to these features, two-photon excitation microscopy is currently widely used in medical and life-science research, particularly in the domain of neuroscience for in vivo visualization of deep tissues. However, the use of long-wavelength excitation light in two-photon excitation microscopy has resulted in a larger focused spot size and relatively low spatial resolution, which is a limitation of this technique for further applications. Recent studies have described super-resolution microscopy techniques applied to two-photon excitation microscopy in an attempt to observe living organisms "as they are in their natural state" with high spatial resolution. We have also addressed this topic using an optical approach (two-photon stimulated emission depletion microscopy) and an image analysis approach (two-photon super-resolution radial fluctuation). Here, we describe these approaches together with a discussion of our recent accomplishments.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Animais , Humanos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fótons , Microscopia/métodos , Processamento de Imagem Assistida por Computador/métodos
15.
Phys Chem Chem Phys ; 26(30): 20216-20240, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39042103

RESUMO

In this perspective, gas-phase studies of group 1 monocations and group 12 dications with amino acids and small peptides are highlighted. Although the focus is on two experimental techniques, threshold collision-induced dissociation and infrared multiple photon dissociation action spectroscopy, these methods as well as complementary approaches are summarized. The synergistic interplay with theory, made particularly powerful by the small sizes of the systems explored and the absence of solvent and support, is also elucidated. Importantly, these gas-phase methods permit quantitative insight into the structures and thermodynamics of metal cations interacting with biological molecules. Periodic trends in how these interactions vary as the metal cations get heavier are discussed as are quantitative trends with changes in the amino acid side chain and effects of hydration. Such trends allow these results to transcend the limitations associated with the biomimetic model systems.


Assuntos
Peptídeos , Fótons , Peptídeos/química , Metais/química , Aminoácidos/química , Espectrofotometria Infravermelho , Termodinâmica , Íons/química
17.
Magy Onkol ; 68(2): 163-168, 2024 Jul 16.
Artigo em Húngaro | MEDLINE | ID: mdl-39013090

RESUMO

We present evaluation of junction of coplanar external beam photon fields and its portal dosimetric analysis for breast cancer with positive lymph nodes. In our work, we compared twelve patients affected by breast cancer with axillary and supraclavicular lymph nodes, using conformal external beam plans from a dosimetric point of view. 3-3 plans were prepared per patient. Three methods were used for the conformal technique to investigate the potential of lymph nodes treatment field's collimations. During the evaluation of the portal dosimetry images, it was concluded that the junction plane at isocenter appeared as a discrete coldline, when fitted the regional field with or without collimation manually and by the software. However, the coverage of the isocenter plane is strongly influenced by the linear accelerator and the fitted field edges. Based on our results, in order to avoid uncertainties arising from field junctions and the overdosed areas of the target volume, it is more appropriate to choose another advanced irradiation technique such as intensity-modulated radiation therapy.


Assuntos
Axila , Neoplasias da Mama , Linfonodos , Metástase Linfática , Fótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/patologia , Linfonodos/efeitos da radiação , Linfonodos/patologia , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Metástase Linfática/radioterapia , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos
18.
BMC Cancer ; 24(1): 837, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003464

RESUMO

BACKGROUND: This study aimed to compare the survival outcome and side effects in patients with primary high-grade glioma (HGG) who received carbon ion radiotherapy (CIRT) alone or as a boost strategy after photon radiation (photon + CIRTboost). PATIENTS AND METHODS: Thirty-four (34) patients with histologically confirmed HGG and received CIRT alone or Photon + CIRTboost, with concurrent temozolomide between 2020.03-2023.08 in Wuwei Cancer Hospital & Institute, China were retrospectively reviewed. Overall survival (OS), progression-free survival (PFS), and acute and late toxicities were analyzed and compared. RESULTS: Eight WHO grade 3 and 26 grade 4 patients were included in the analysis. The median PFS in the CIRT alone and Photon + CIRTboost groups were 15 and 19 months respectively for all HGG cases, and 15 and 17.5 months respectively for grade 4 cases. The median OS in the CIRT alone and Photon + CIRTboost groups were 28 and 31 months respectively for all HGG cases, and 21 and 19 months respectively for grade 4 cases. No significant difference in these survival outcomes was observed between the CIRT alone and Photon + CIRTboost groups. Only grade 1 acute toxicities were observed in CIRT alone and Photon + CIRTboost groups. CIRT alone group had a significantly lower ratio of acute toxicities compared to Photon + CIRTboost (3/18 vs. 9/16, p = 0.03). No significant difference in late toxicities was observed. CONCLUSION: Both CIRT alone and Photon + CIRTboost with concurrent temozolomide are safe, without significant differences in PFS and OS in HGG patients. It is meaningful to explore whether dose escalation of CIRTboost might improve survival outcomes of HGG patients in future randomized trials.


Assuntos
Glioma , Radioterapia com Íons Pesados , Fótons , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos , Feminino , Masculino , Glioma/radioterapia , Glioma/mortalidade , Glioma/patologia , Fótons/uso terapêutico , Fótons/efeitos adversos , Adulto , Idoso , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidade , Temozolomida/uso terapêutico , Gradação de Tumores , Adulto Jovem , Intervalo Livre de Progressão , Resultado do Tratamento
19.
J Biomed Opt ; 29(7): 076003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38989529

RESUMO

Significance: Tissues' biomechanical properties, such as elasticity, are related to tissue health. Optical coherence elastography produces images of tissues based on their elasticity, but its performance is constrained by the laser power used, working distance, and excitation methods. Aim: We develop a new method to reconstruct the elasticity contrast image over a long working distance, with only low-intensity illumination, and by non-contact acoustic wave excitation. Approach: We combine single-photon vibrometry and quantum parametric mode sorting (QPMS) to measure the oscillating backscattered signals at a single-photon level and derive the phantoms' relative elasticity. Results: We test our system on tissue-mimicking phantoms consisting of contrast sections with different concentrations and thus stiffness. Our results show that as the driving acoustic frequency is swept, the phantoms' vibrational responses are mapped onto the photon-counting histograms from which their mechanical properties-including elasticity-can be derived. Through lateral and longitudinal laser scanning at a fixed frequency, a contrast image based on samples' elasticity can be reliably reconstructed upon photon level signals. Conclusions: We demonstrated the reliability of QPMS-based elasticity contrast imaging of agar phantoms in a long working distance, low-intensity environment. This technique has the potential for in-depth images of real biological tissue and provides a new approach to elastography research and applications.


Assuntos
Técnicas de Imagem por Elasticidade , Imagens de Fantasmas , Fótons , Técnicas de Imagem por Elasticidade/métodos , Técnicas de Imagem por Elasticidade/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Elasticidade , Reprodutibilidade dos Testes
20.
Radiology ; 312(1): e232453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39078296

RESUMO

Background Contrast-unenhanced abdominal CT is the imaging standard for urinary calculi detection; however, studies comparing photon-counting detector (PCD) CT and energy-integrating detector (EID) CT dose-reduction potentials are lacking. Purpose To compare the radiation dose and image quality of optimized EID CT with those of an experimental PCD CT scan protocol including tin prefiltration in patients suspected of having urinary calculi. Materials and Methods This retrospective single-center study included patients who underwent unenhanced abdominal PCD CT or EID CT for suspected urinary caliculi between February 2022 and March 2023. Signal and noise measurements were performed at three anatomic levels (kidney, psoas, and obturator muscle). Nephrolithiasis and/or urolithiasis presence was independently assessed by three radiologists, and diagnostic confidence was recorded on a five-point scale (1, little to no confidence; 5, complete confidence). Reader agreement was determined by calculating Krippendorff α. Results A total of 507 patients (mean age, 51.7 years ± 17.4 [SD]; 317 male patients) were included (PCD CT group, 229 patients; EID CT group, 278 patients). Readers 1, 2, and 3 detected nephrolithiasis in 129, 127, and 129 patients and 94, 94, and 94 patients, whereas the readers detected urolithiasis in 113, 114, and 114 patients and 152, 153, and 152 patients in the PCD CT and EID CT groups, respectively. Regardless of protocol (PCD CT or EID CT) or calculus localization, near perfect interreader agreement was found (α ≥ 0.99; 95% CI: 0.99, 1). There was no evidence of a difference in reader confidence between PCD CT and EID CT (median confidence, 5; IQR, 5-5; P ≥ .57). The effective doses were 0.79 mSv (IQR, 0.63-0.99 mSv) and 1.39 mSv (IQR, 1.01-1.87 mSv) for PCD CT and EID CT, respectively. Despite the lower radiation exposure, the signal-to-noise ratios at the kidney, psoas, and obturator levels were 30%, 23%, and 17% higher, respectively, in the PCD CT group (P < .001). Conclusion Submillisievert abdominal PCD CT provided high-quality images for the diagnosis of urinary calculi; radiation exposure was reduced by 44% with a higher signal-to-noise ratio than with EID CT and with no evidence of a difference in reader confidence. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Nezami and Malayeri in this issue.


Assuntos
Tomografia Computadorizada por Raios X , Cálculos Urinários , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Cálculos Urinários/diagnóstico por imagem , Doses de Radiação , Adulto , Fótons , Radiografia Abdominal/métodos , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA