Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.777
Filtrar
1.
Acta Derm Venereol ; 104: adv34892, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898675

RESUMO

Psoriasis results from both genetic predisposition and environmental triggers, such as Streptococcal infections. This study aimed to explore the correlation between the abundance of the Streptococcus genus on the skin and psoriasis severity in individuals carrying specific psoriasis-associated genetic variants. Studying 39 chronic plaque psoriasis patients, the elbow skin microbiome and 49 psoriasis-related single nucleotide polymorphisms (SNPs) were analysed using a MiSeq instrument for 16S rDNA sequencing, and CLC Genomic Workbench for processing and analysis. Through multivariate linear regression analysis, a positive correlation was found between Streptococcus genus abundance and psoriasis severity in patients with certain FBXL19 gene-related heterozygous SNPs (rs12924903, rs10782001, rs12445568). Conversely, a negative association was observed in patients with homozygous genotypes. Moreover, we identified an association between Streptococcus abundance and psoriasis severity in patients with genetic variants related to IL-22, ERAP1, NOS2, and ILF3. This is the first study highlighting a positive association between Streptococcus skin colonization and psoriasis severity in patients with heterozygous genotypes within the FBXL19 gene region. FXBL19 targets the IL-33/IL1RL1 axis, crucial in infectious diseases and innate immunity promotion. These novel results suggests an intricate interaction among host genetics, Streptococcus skin colonization, and psoriasis inflammation, offering potential avenues for novel treatment approaches.


Assuntos
Proteínas F-Box , Polimorfismo de Nucleotídeo Único , Psoríase , Índice de Gravidade de Doença , Pele , Streptococcus , Humanos , Masculino , Psoríase/genética , Psoríase/microbiologia , Feminino , Pessoa de Meia-Idade , Adulto , Pele/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Proteínas F-Box/genética , Predisposição Genética para Doença , Fenótipo , Heterozigoto , Interações Hospedeiro-Patógeno , Homozigoto , Ribotipagem , Idoso
2.
Int J Med Sci ; 21(8): 1575-1588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903918

RESUMO

Gastric cancer (GC) is a prevalent malignancy characterized by significant morbidity and mortality, yet its underlying pathogenesis remains elusive. The etiology of GC is multifaceted, involving the activation of oncogenes and the inactivation of antioncogenes. The ubiquitin-proteasome system (UPS), responsible for protein degradation and the regulation of physiological and pathological processes, emerges as a pivotal player in GC development. Specifically, the F-box protein (FBP), an integral component of the SKP1-Cullin1-F-box protein (SCF) E3 ligase complex within the UPS, has garnered attention for its prominent role in carcinogenesis, tumor progression, and drug resistance. Dysregulation of several FBPs has recently been observed in GC, underscoring their significance in disease progression. This comprehensive review aims to elucidate the distinctive characteristics of FBPs involved in GC, encompassing their impact on cell proliferation, apoptosis, invasive metastasis, and chemoresistance. Furthermore, we delve into the emerging role of FBPs as downstream target proteins of non-coding RNAs(ncRNAs) in the regulation of gastric carcinogenesis, outlining the potential utility of FBPs as direct therapeutic targets or advanced therapies for GC.


Assuntos
Proteínas F-Box , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células/genética , Apoptose/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Carcinogênese/genética
3.
Nature ; 631(8019): 134-141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867047

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Assuntos
Aneuploidia , Cromossomos Humanos X , Células Clonais , Leucócitos , Mosaicismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doenças Autoimunes/genética , Bancos de Espécimes Biológicos , Segregação de Cromossomos/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Células Clonais/metabolismo , Células Clonais/patologia , Exoma/genética , Proteínas F-Box/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Leucemia/genética , Leucócitos/metabolismo , Modelos Genéticos , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética
4.
Cell Biol Toxicol ; 40(1): 45, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864940

RESUMO

MALT1 has been implicated as an upstream regulator of NF-κB signaling in immune cells and tumors. This study determined the regulatory mechanisms and biological functions of MALT1 in non-small cell lung cancer (NSCLC). In cell culture and orthotopic xenograft models, MALT1 suppression via gene expression interference or protein activity inhibition significantly impaired malignant phenotypes and enhanced radiation sensitivity of NSCLC cells. CSN5, the core subunit of COP9 signalosome, was firstly verified to stabilize MALT1 via disturbing the interaction with E3 ligase FBXO3. Loss of FBXO3 in NSCLC cells reduced MALT1 ubiquitination and promoted its accumulation, which was reversed by CSN5 interference. An association between CSN5/FBXO3/MALT1 regulatory axis and poor prognosis in NSCLC patients was identified. Our findings revealed the detail mechanism of continuous MALT1 activation in NF-κB signaling, highlighting its significance as predictor and potential therapeutic target in NSCLC.


Assuntos
Complexo do Signalossomo COP9 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , NF-kappa B , Transdução de Sinais , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Complexo do Signalossomo COP9/metabolismo , Complexo do Signalossomo COP9/genética , NF-kappa B/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Ubiquitinação , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Progressão da Doença , Camundongos Endogâmicos BALB C , Feminino , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Peptídeos e Proteínas de Sinalização Intracelular
5.
Nat Commun ; 15(1): 4790, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839752

RESUMO

Cancer cells are often addicted to serine synthesis to support growth. How serine synthesis is regulated in cancer is not well understood. We recently demonstrated protein arginine methyltransferase 1 (PRMT1) is upregulated in hepatocellular carcinoma (HCC) to methylate and activate phosphoglycerate dehydrogenase (PHGDH), thereby promoting serine synthesis. However, the mechanisms underlying PRMT1 upregulation and regulation of PRMT1-PHGDH axis remain unclear. Here, we show the E3 ubiquitin ligase F-box-only protein 7 (FBXO7) inhibits serine synthesis in HCC by binding PRMT1, inducing lysine 37 ubiquitination, and promoting proteosomal degradation of PRMT1. FBXO7-mediated PRMT1 downregulation cripples PHGDH arginine methylation and activation, resulting in impaired serine synthesis, accumulation of reactive oxygen species (ROS), and inhibition of HCC cell growth. Notably, FBXO7 is significantly downregulated in human HCC tissues, and inversely associated with PRMT1 protein and PHGDH methylation level. Overall, our study provides mechanistic insights into the regulation of cancer serine synthesis by FBXO7-PRMT1-PHGDH axis, and will facilitate the development of serine-targeting strategies for cancer therapy.


Assuntos
Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Fosfoglicerato Desidrogenase , Proteína-Arginina N-Metiltransferases , Serina , Ubiquitinação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Serina/metabolismo , Serina/biossíntese , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Camundongos , Proliferação de Células , Metilação , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Masculino , Células HEK293 , Feminino , Células Hep G2
6.
J Neuroimmunol ; 392: 578381, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823119

RESUMO

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a rare immune-mediated neuropathy for which there is no clearly identified risk factor. The present study identified rare variants in the FBXO38 gene in three familial cases of CIDP with response to corticosteroids in three generations with incomplete penetrance, and in an unrelated fourth case with diffuse nerve hypertrophy. FBXO38 may be involved in the regulation of the immunity mediated by CD8 T cells, which have an important role in CIDP pathophysiology, through PD1 degradation. Considering these findings, FBXO38 should be investigated as a potential genetic factor in larger cohorts of patients with CIDP.


Assuntos
Proteínas F-Box , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/genética , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas F-Box/genética , Adulto , Linhagem , Idoso
7.
Nat Commun ; 15(1): 5409, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926334

RESUMO

Targeted protein degradation (TPD) relies on small molecules to recruit proteins to E3 ligases to induce their ubiquitylation and degradation by the proteasome. Only a few of the approximately 600 human E3 ligases are currently amenable to this strategy. This limits the actionable target space and clinical opportunities and thus establishes the necessity to expand to additional ligases. Here we identify and characterize SP3N, a specific degrader of the prolyl isomerase FKBP12. SP3N features a minimal design, where a known FKBP12 ligand is appended with a flexible alkylamine tail that conveys degradation properties. We found that SP3N is a precursor and that the alkylamine is metabolized to an active aldehyde species that recruits the SCFFBXO22 ligase for FKBP12 degradation. Target engagement occurs via covalent adduction of Cys326 in the FBXO22 C-terminal domain, which is critical for ternary complex formation, ubiquitylation and degradation. This mechanism is conserved for two recently reported alkylamine-based degraders of NSD2 and XIAP, thus establishing alkylamine tethering and covalent hijacking of FBXO22 as a generalizable TPD strategy.


Assuntos
Proteínas F-Box , Proteólise , Ubiquitinação , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/química , Células HEK293 , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Ubiquitina-Proteína Ligases/metabolismo , Aminas/metabolismo , Aminas/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligantes , Receptores Citoplasmáticos e Nucleares
8.
J Biol Chem ; 300(6): 107359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735474

RESUMO

FOXK2 is a crucial transcription factor implicated in a wide array of biological activities and yet understanding of its molecular regulation at the level of protein turnover is limited. Here, we identify that FOXK2 undergoes degradation in lung epithelia in the presence of the virulent pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae through ubiquitin-proteasomal processing. FOXK2 through its carboxyl terminus (aa 428-478) binds the Skp-Cullin-F-box ubiquitin E3 ligase subunit FBXO24 that mediates multisite polyubiquitylation of the transcription factor resulting in its nuclear degradation. FOXK2 was detected within the mitochondria and targeted depletion of the transcription factor or cellular expression of FOXK2 mutants devoid of key carboxy terminal domains significantly impaired mitochondrial function. In experimental bacterial pneumonia, Fbxo24 heterozygous mice exhibited preserved mitochondrial function and Foxk2 protein levels compared to WT littermates. The results suggest a new mode of regulatory control of mitochondrial energetics through modulation of FOXK2 cellular abundance.


Assuntos
Fatores de Transcrição Forkhead , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Humanos , Proteólise , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitinação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Respiração Celular
9.
Biomolecules ; 14(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38785960

RESUMO

Histone demethylases, enzymes responsible for removing methyl groups from histone proteins, have emerged as critical players in regulating gene expression and chromatin dynamics, thereby influencing various cellular processes. LSD2 and LSD1 have attracted considerable interest among these demethylases because of their associations with cancer. However, while LSD1 has received significant attention, LSD2 has not been recognized to the same extent. In this study, we conduct a comprehensive comparison between LSD2 and LSD1, with a focus on exploring LSD2's implications. While both share structural similarities, LSD2 possesses unique features as well. Functionally, LSD2 shows diverse roles, particularly in cancer, with tissue-dependent roles. Additionally, LSD2 extends beyond histone demethylation, impacting DNA methylation, cancer cell reprogramming, E3 ubiquitin ligase activity and DNA damage repair pathways. This study underscores the distinct roles of LSD2, providing insights into their contributions to cancer and other cellular processes.


Assuntos
Metilação de DNA , Epigênese Genética , Histona Desmetilases , Neoplasias , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Metilação de DNA/genética , Histonas/metabolismo , Histonas/genética , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Proteínas F-Box , Histona Desmetilases com o Domínio Jumonji
10.
Oncogene ; 43(25): 1917-1929, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698266

RESUMO

c-Myc is a proto-oncoprotein that regulates various cellular processes and whose abnormal expression leads to tumorigenesis. c-Myc protein stability has been shown to be predominantly controlled by the ubiquitin ligase (E3) CRL1Fbxw7 in a manner dependent on glycogen synthase kinase 3 (GSK3)-mediated phosphorylation. Here we show that, in some types of cancer cells, c-Myc degradation is largely insensitive to the GSK3 inhibitor (GSK3i) CHIR99021, suggesting the existence of an E3 other than CRL1Fbxw7 for c-Myc degradation. Mass spectrometry identified CRL2KLHDC3 as such an E3. In GSK3i-insensitive cancer cells, combined depletion of Fbxw7 and KLHDC3 resulted in marked stabilization of c-Myc, suggestive of a cooperative action of Fbxw7 and KLHDC3. Furthermore, transplantation of such cells deficient in both Fbxw7 and KLHDC3 into immunodeficient mice gave rise to larger tumors compared with those formed by cells lacking only Fbxw7. GSK3i-insensitive pancreatic cancer cells expressed lower levels of SHISA2, a negative regulator of the Wnt signaling pathway, than did GSK3i-sensitive cells. KLHDC3 mRNA abundance was associated with prognosis in pancreatic cancer patients with a low level of SHISA2 gene expression. These results suggest that KLHDC3 cooperates with Fbxw7 to promote c-Myc degradation in a subset of cancer cells with low GSK3 activity.


Assuntos
Proteína 7 com Repetições F-Box-WD , Proteólise , Proteínas Proto-Oncogênicas c-myc , Ubiquitina-Proteína Ligases , Humanos , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
11.
FEBS J ; 291(12): 2562-2564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708447

RESUMO

Around 10% of Parkinson's disease (PD) cases are associated with mutations in various genes, including FBXO7, which encodes the substrate-recognition component for the Skp1-Cullin-F-box (SCF) class of ubiquitin E3 ligases that target proteins for proteasomal degradation. In their recent study, Al Rawi et al. characterized a new mutation in FBXO7, L250P, in a pediatric patient. Their findings reveal that the L250P mutation abolishes Fbxo7 interaction with the proteasome regulator, proteasome inhibitor 31kD (PI31), affecting proteasomal activity and the ubiquitination of some of the ligase's targets. Furthermore, the authors show that this previously undescribed mutation impairs mitochondrial function and mitophagy, emphasizing the importance of mitochondrial and proteasomal dysfunction in PD pathogenesis.


Assuntos
Proteínas F-Box , Mitocôndrias , Doença de Parkinson , Complexo de Endopeptidases do Proteassoma , Humanos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Mitofagia/genética , Ubiquitinação
12.
COPD ; 21(1): 2342797, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38712759

RESUMO

Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.


Assuntos
Proteínas Quinases Ativadas por AMP , Células Epiteliais , Proteínas F-Box , Proteínas Serina-Treonina Quinases , Fumaça , Animais , Humanos , Masculino , Camundongos , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular , Fumar Cigarros/efeitos adversos , Cicloeximida/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Leupeptinas/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteólise/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/efeitos dos fármacos , RNA Interferente Pequeno , Fumaça/efeitos adversos
13.
Cancer Lett ; 595: 216987, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815798

RESUMO

Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. Aberrant metabolism, a key hallmark of human cancers, plays a crucial role in tumor progression, therapeutic responses and TNBC-related death. However, the underlying mechanisms are not fully understood. In this study, we delineate a previously unrecognized role of aberrant glucose metabolism in regulating the turnover of Snail1, which is a key transcriptional factor of epithelial-mesenchymal transition (EMT) and critically contributes to the acquisition of stemness, metastasis and chemo-resistance. Mechanistically, we demonstrate that AMP-activated protein kinase (AMPK), when activated in response to glucose deprivation, directly phosphorylates Snail1 at Ser11. Such a phosphorylation modification of Snail1 facilitates its recruitment of the E3 ligase FBXO11 and promotes its degradation, thereby suppressing stemness, metastasis and increasing cellular sensitivity to chemotherapies in vitro and in vivo. Clinically, histological analyses reveal a negative correlation between p-AMPKα and Snail1 in TNBC specimens. Taken together, our findings establish a novel mechanism and functional significance of AMPK in linking glucose status to Snail1-dependent malignancies and underscore the potential of AMPK agonists as a promising therapeutic strategy in the management of TNBC.


Assuntos
Proteínas Quinases Ativadas por AMP , Transição Epitelial-Mesenquimal , Fatores de Transcrição da Família Snail , Neoplasias de Mama Triplo Negativas , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Humanos , Fosforilação , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Feminino , Linhagem Celular Tumoral , Camundongos , Glucose/metabolismo , Estabilidade Proteica , Metabolismo Energético/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética
15.
Inorg Chem ; 63(23): 10737-10755, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38781256

RESUMO

Nonheme Fe(II) and 2-oxoglutarate (2OG)-dependent histone lysine demethylases 2A (KDM2A) catalyze the demethylation of the mono- or dimethylated lysine 36 residue in the histone H3 peptide (H3K36me1/me2), which plays a crucial role in epigenetic regulation and can be involved in many cancers. Although the overall catalytic mechanism of KDMs has been studied, how KDM2 catalysis takes place in contrast to other KDMs remains unknown. Understanding such differences is vital for enzyme redesign and can help in enzyme-selective drug design. Herein, we employed molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) to explore the complete catalytic mechanism of KDM2A, including dioxygen diffusion and binding, dioxygen activation, and substrate oxidation. Our study demonstrates that the catalysis of KDM2A is controlled by the conformational change of the second coordination sphere (SCS), specifically by a change in the orientation of Y222, which unlocks the 2OG rearrangement from off-line to in-line mode. The study demonstrates that the variant Y222A makes the 2OG rearrangement more favorable. Furthermore, the study reveals that it is the size of H3K36me3 that prevents the 2OG rearrangement, thus rendering the enzyme inactivity with trimethylated lysine. Calculations show that the SCS and long-range interacting residues that stabilize the HAT transition state in KDM2A differ from those in KDM4A, KDM7B, and KDM6A, thus providing the basics for the enzyme-selective redesign and modulation of KDM2A without influencing other KDMs.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Simulação de Dinâmica Molecular , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Humanos , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Biocatálise , Teoria Quântica , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Proteínas F-Box
16.
PLoS Pathog ; 20(5): e1012269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814984

RESUMO

Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Animais , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Toxoplasmose/genética , Estágios do Ciclo de Vida
17.
Front Biosci (Landmark Ed) ; 29(5): 202, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38812312

RESUMO

OBJECTIVE: The F-box protein (FBXO) family plays a key role in the malignant progression of tumors. However, the biological functions and clinical value of the FBXO family in liver cancer remain unclear. Our study comprehensively assessed the clinical value of the FBXO family in hepatocellular carcinoma (HCC) and constructed a novel signature based on the FBXO family to predict prognosis and guide precision immunotherapy. METHODS: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases were utilized to investigate the expression characteristics and prognostic value of the FBXO family in HCC. A predictive model based on the FBXO family using TCGA database; and its predictive ability was validated using the ICGC database. Further analyses revealed that this predictive model can independently predict the overall survival (OS) rate of patients with HCC. We further analyzed the association of this predictive model with signaling pathways, clinical pathological features, somatic mutations, and immune therapy responses. Finally, we validated the biological functions of cyclin F (CCNF) through in vitro experiments. RESULTS: A predictive model involving three genes (CCNF, FBXO43, and FBXO45) was constructed, effectively identifying high and low-risk patients with differences in OS, clinicopathological characteristics, somatic mutations, and immune cell infiltration status. Additionally, knock-down of CCNF in HCC cell lines reduced cell proliferation in vitro, suggesting that CCNF may be a potential therapeutic target for HCC. CONCLUSIONS: The predictive model based on the FBXO family can effectively predict OS and the immune therapy response in HCC. Additionally, CCNF is a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Prognóstico , Masculino , Feminino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Ciclinas/genética , Ciclinas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células/genética , Bases de Dados Genéticas
18.
Nat Commun ; 15(1): 3894, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719837

RESUMO

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Assuntos
Cádmio , Ligação Proteica , Proteínas Ligases SKP Culina F-Box , Cádmio/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação , Domínios Proteicos , Humanos , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
19.
Cell Biochem Funct ; 42(4): e4020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702967

RESUMO

The regulatory potential of long noncoding RNA (lncRNA) FBXL19-AS1 has been highlighted in various cancers, but its effect on triple-negative breast cancer (TNBC) remains unclear. Here, we aimed to elucidate the role of FBXL19-AS1 in TNBC and its underlying mechanism. RT-qPCR was employed to detect the expressions of FBXL19-AS1 and miR-378a-3p in tissues and cells. Immunohistochemical staining and western blot were utilized to detect the expression levels of proteins. Cell activities were detected using flow cytometry, CCK-8, and transwell assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were deployed to investigate interactions of different molecules. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathways were used to analyze the downstream pathway. In vivo xenograft model was conducted to detect the effect of FBXL19-AS1 on tumor growth. FBXL19-AS1 was overexpressed in TNBC tissues and cell lines compared with counterparts. FBXL19-AS1 knockdown suppressed TNBC cell activities, whereas its overexpression exhibited the opposite effect. Mechanistically, FBXL19-AS1 was found to interact with miR-378a-3p. Further analysis revealed that miR-378a-3p exerted tumor-suppressive effects in TNBC cells. Additionally, miR-378a-3p targeted and downregulated the expression of ubiquitin aldehyde binding 2 (OTUB2), a deubiquitinase associated with TNBC progression. In vivo experiments substantiated the inhibitory effects of FBXL19-AS1 knockdown on TNBC tumorigenesis, and a miR-378a-3p inhibitor partially rescued these effects. The downstream pathway of the miR-378a-3p/OTUB2 axis was explored, revealing connections with proteins involved in modifying other proteins, removing ubiquitin molecules, and influencing signaling pathways, including the Hippo signaling pathway. Western blot analysis confirmed changes in YAP and TAZ expression levels, indicating a potential regulatory network. In summary, FBXL19-AS1 promotes exacerbation in TNBC by suppressing miR-378a-3p, leading to increased OTUB2 expression. The downstream mechanism may be related to the Hippo signaling pathway. These findings propose potential therapeutic targets for TNBC treatment.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Enzimas Desubiquitinantes/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética
20.
Mol Plant Pathol ; 25(6): e13459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38808386

RESUMO

F-box protein is a subunit of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which plays a critical role in regulating different pathways in plant immunity. In this study, we identified the rice (Oryza sativa) F-box protein OsFBX156, which targets the heat shock protein 70 (OsHSP71.1) to regulate resistance to the rice blast fungus Magnaporthe oryzae. Overexpression of OsFBX156 or knockout of OsHSP71.1 in rice resulted in the elevation of pathogenesis-related (PR) genes and an induction burst of reactive oxygen species (ROS) after flg22 and chitin treatments, thereby enhancing resistance to M. oryzae. Furthermore, OsFBX156 can promote the degradation of OsHSP71.1 through the 26S proteasome pathway. This study sheds lights on a novel mechanism wherein the F-box protein OsFBX156 targets OsHSP71.1 for degradation to promote ROS production and PR gene expression, thereby positively regulating rice innate immunity.


Assuntos
Resistência à Doença , Proteínas F-Box , Oryza , Doenças das Plantas , Proteínas de Plantas , Ubiquitinação , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Imunidade Vegetal/genética , Ascomicetos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...