Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 912
Filtrar
1.
Nat Commun ; 15(1): 3976, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729948

RESUMO

Bleeding and thrombosis are known as common complications of polycythemia for a long time. However, the role of coagulation system in erythropoiesis is unclear. Here, we discover that an anticoagulant protein tissue factor pathway inhibitor (TFPI) plays an essential role in erythropoiesis via the control of heme biosynthesis in central macrophages. TFPI levels are elevated in erythroblasts of human erythroblastic islands with JAK2V617F mutation and hypoxia condition. Erythroid lineage-specific knockout TFPI results in impaired erythropoiesis through decreasing ferrochelatase expression and heme biosynthesis in central macrophages. Mechanistically, the TFPI interacts with thrombomodulin to promote the downstream ERK1/2-GATA1 signaling pathway to induce heme biosynthesis in central macrophages. Furthermore, TFPI blockade impairs human erythropoiesis in vitro, and normalizes the erythroid compartment in mice with polycythemia. These results show that erythroblast-derived TFPI plays an important role in the regulation of erythropoiesis and reveal an interplay between erythroblasts and central macrophages.


Assuntos
Eritroblastos , Eritropoese , Fator de Transcrição GATA1 , Heme , Lipoproteínas , Macrófagos , Policitemia , Policitemia/metabolismo , Policitemia/genética , Policitemia/patologia , Eritroblastos/metabolismo , Heme/metabolismo , Humanos , Animais , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Camundongos , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA1/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Trombomodulina/metabolismo , Trombomodulina/genética , Camundongos Knockout , Ferroquelatase/metabolismo , Ferroquelatase/genética , Masculino , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Feminino
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124120, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479228

RESUMO

Ferrochelatases catalyze the insertion of ferrous iron into the porphyrin during the heme b biosynthesis pathway, which is fundamental for both prokaryotes and eukaryotes. Interestingly, in the active site of ferrochelatases, the proximal ligand coordinating the porphyrin iron of the product is not conserved, and its catalytic role is still unclear. Here we compare the L. monocytogenes bacterial coproporphyrin ferrochelatase native enzyme together with selected variants, where the proximal Tyr residue was replaced by a His (i.e. the most common ligand in heme proteins), a Met or a Phe (as in human and actinobacterial ferrochelatases, respectively), in their Fe(III), Fe(II) and Fe(II)-CO adduct forms. The study of the active site structure and the activity of the proteins in solution has been performed by UV-vis electronic absorption and resonance Raman spectroscopies, biochemical characterization, and classical MD simulations. All the mutations alter the H-bond interactions between the iron porphyrin propionate groups and the protein, and induce effects on the activity, depending on the polarity of the proximal ligand. The overall results confirm that the weak or non-existing coordination of the porphyrin iron by the proximal residue is essential for the binding of the substrate and the release of the final product.


Assuntos
Ferroquelatase , Porfirinas , Humanos , Domínio Catalítico , Ferroquelatase/química , Ferroquelatase/metabolismo , Compostos Férricos , Ligantes , Porfirinas/química , Ferro/química , Compostos Ferrosos/metabolismo
3.
Meat Sci ; 213: 109477, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492321

RESUMO

A total of 134 fresh hams, assayed for Ferrochelatase (FeCH) activity and ultimate pH (pH48), were processed in compliance with the procedures established for PDO Parma ham and finally, analyzed for salt, moisture, Zinc Protoporphyrin IX (ZnPP), heme, iron and zinc contents, and proteolysis index (PI). The variation in ZnPP content was related to the intrinsic parameters of fresh and matured hams by a Partial Least Square Regression model. The most favorable factors on the formation of ZnPP were total iron content (representative of the initial hemoprotein content), and FeCH activity, demonstrating the main role played by these raw matter-specific predictors in the long matured dry-cured hams. To a lesser extent, zinc content and pH48 were involved with a positive and negative role, respectively. Salt content and PI of matured hams showed an inhibitory and a favorable influence, respectively, toward the ZnPP formation. Principal Component Analysis showed the associations between the sensory red color profile and the physicochemical traits of matured hams. The red color intensity increased in agreement with the red-violet and red-pink hues scores. The formation of a high amount of ZnPP was associated with the increased perception of the red-violet shade, with a lower lightness (L*) and Hue angle (h°). Moisture increase contributed to the shift in color perception to red-pink, while marked progress in PI strengthened the perception of the red-brown shade. ZnPP and final heme favored the red color of matured hams, although a high concentration of these pigments increased in particular the red-violet perception.


Assuntos
Cor , Produtos da Carne , Protoporfirinas , Animais , Produtos da Carne/análise , Concentração de Íons de Hidrogênio , Zinco/análise , Manipulação de Alimentos/métodos , Humanos , Ferroquelatase , Heme/química , Suínos , Ferro/análise , Proteólise , Carne de Porco/análise
4.
FEBS J ; 291(10): 2260-2272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38390750

RESUMO

The identification of the coproporphyrin-dependent heme biosynthetic pathway, which is used almost exclusively by monoderm bacteria in 2015 by Dailey et al. triggered studies aimed at investigating the enzymes involved in this pathway that were originally assigned to the protoporphyrin-dependent heme biosynthetic pathway. Here, we revisit the active site of coproporphyrin ferrochelatase by a biophysical and biochemical investigation using the physiological substrate coproporphyrin III, which in contrast to the previously used substrate protoporphyrin IX has four propionate substituents and no vinyl groups. In particular, we have compared the reactivity of wild-type coproporphyrin ferrochelatase from the firmicute Listeria monocytogenes with those of variants, namely, His182Ala (H182A) and Glu263Gln (E263Q), involving two key active site residues. Interestingly, both variants are active only toward the physiological substrate coproporphyrin III but inactive toward protoporphyrin IX. In addition, E263 exchange impairs the final oxidation step from ferrous coproheme to ferric coproheme. The characteristics of the active site in the context of the residues involved and the substrate binding properties are discussed here using structural and functional means, providing a further contribution to the deciphering of this enigmatic reaction mechanism.


Assuntos
Domínio Catalítico , Coproporfirinas , Ferroquelatase , Ácido Glutâmico , Histidina , Protoporfirinas , Ferroquelatase/metabolismo , Ferroquelatase/química , Ferroquelatase/genética , Coproporfirinas/metabolismo , Coproporfirinas/química , Protoporfirinas/metabolismo , Protoporfirinas/química , Histidina/metabolismo , Histidina/química , Histidina/genética , Ácido Glutâmico/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/genética , Heme/metabolismo , Heme/química , Especificidade por Substrato , Modelos Moleculares , Oxirredução , Cinética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Catálise
6.
ACS Synth Biol ; 12(12): 3669-3679, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37963151

RESUMO

Exchanging the native iron of heme for other metals yields artificial metalloproteins with new properties for spectroscopic studies and biocatalysis. Recently, we reported a method for the biosynthesis and incorporation of a non-natural metallocofactor, cobalt protoporphyrin IX (CoPPIX), into hemoproteins using the common laboratory strain Escherichia coli BL21(DE3). This discovery inspired us to explore the determinants of metal specificity for metallocofactor biosynthesis in E. coli. Herein, we report detailed kinetic analysis of the ferrochelatase responsible for metal insertion, EcHemH (E. coli ferrochelatase). This enzyme exhibits a small, less than 2-fold preference for Fe2+ over the non-native Co2+ substrate in vitro. To test how mutations impact EcHemH, we used a surrogate metal specificity screen to identify variants with altered metal insertion preferences. This engineering process led to a variant with an ∼30-fold shift in specificity toward Co2+. When assayed in vivo, however, the impact of this mutation is small compared to the effects of alteration of the external metal concentrations. These data suggest that incorporation of cobalt into PPIX is enabled by the native promiscuity of EcHemH coupled with BL21's impaired ability to maintain transition-metal homeostasis. With this knowledge, we generated a method for CoPPIX production in rich media, which yields cobalt-substituted hemoproteins with >95% cofactor purity and yields comparable to standard expression protocols for the analogous native hemoproteins.


Assuntos
Cobalto , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Ferroquelatase/química , Ferroquelatase/genética , Ferroquelatase/metabolismo , Cinética , Metais/química
7.
Ital J Pediatr ; 49(1): 156, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996925

RESUMO

BACKGROUND: Erythropoietic protoporphyria is a rare disorder which represents an important health problem in children, causing painful photosensitivity. Little is known on the correlation between genetic profile and clinical manifestations. The standard of care for Erythropoietic protoporphyria is based on avoiding sun and using sun protections, but recent literature has suggested that cimetidine may have a role in improving sun sensitivity. Herein we report our case series describing the successful use of cimetidine and analyzing potential phenotype-genotype correlations. CASE PRESENTATION: This case series describes five patients presented to our Rheumatology Service complaining sun sensitivity. Blood exams and genetic analysis were consistent with the diagnosis of erythropoietic protoporphyria. Four of 5 patients received cimetidine in addition to standard therapies and the effect of treatment was evaluated by Erythropoietic Protoporphyria - Quality of Life questionnaire. CONCLUSIONS: Erythropoietic protoporphyria usually manifests in early childhood after a short sun exposure. Skin manifestations are the main reason for investigations, although sometimes they can be more subtle, leading to a significant diagnostic delay. Skin diseases in children can have profound effects on their family and social relationships. A treatment with cimetidine appears to be an excellent therapeutic option in children with Erythropoietic protoporphyria.


Assuntos
Transtornos de Fotossensibilidade , Protoporfiria Eritropoética , Criança , Humanos , Pré-Escolar , Protoporfiria Eritropoética/diagnóstico , Protoporfiria Eritropoética/terapia , Protoporfiria Eritropoética/complicações , Ferroquelatase/genética , Cimetidina , Qualidade de Vida , Diagnóstico Tardio , Transtornos de Fotossensibilidade/etiologia
8.
Protein Sci ; 32(11): e4788, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743577

RESUMO

Understanding the reaction mechanism of enzymes at the molecular level is generally a difficult task, since many parameters affect the turnover. Often, due to high reactivity and formation of transient species or intermediates, detailed information on enzymatic catalysis is obtained by means of model substrates. Whenever possible, it is essential to confirm a reaction mechanism based on substrate analogues or model systems by using the physiological substrates. Here we disclose the ferrous iron incorporation mechanism, in solution, and in crystallo, by the coproporphyrin III-coproporphyrin ferrochelatase complex from the firmicute, pathogen, and antibiotic resistant, Listeria monocytogenes. Coproporphyrin ferrochelatase plays an important physiological role as the metalation represents the penultimate reaction step in the prokaryotic coproporphyrin-dependent heme biosynthetic pathway, yielding coproheme (ferric coproporphyrin III). By following the metal titration with resonance Raman spectroscopy and x-ray crystallography, we prove that upon metalation the saddling distortion becomes predominant both in the crystal and in solution. This is a consequence of the readjustment of hydrogen bond interactions of the propionates with the protein scaffold during the enzymatic catalysis. Once the propionates have established the interactions typical of the coproheme complex, the distortion slowly decreases, to reach the almost planar final product.


Assuntos
Coproporfirinas , Ferro , Coproporfirinas/metabolismo , Ferro/metabolismo , Ferroquelatase/química , Ferroquelatase/metabolismo , Propionatos/química , Catálise
9.
Hepatol Commun ; 7(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695073

RESUMO

BACKGROUND: Bile, which contains bile acids, the natural ligands for farnesoid x receptor (FXR), moves from the liver to the intestine through bile ducts. Ductular reaction often occurs during biliary obstruction. A subset of patients with erythropoietic protoporphyria, an inherited genetic mutation in heme biosynthetic enzyme ferrochelatase, accumulate porphyrin-containing bile plugs, leading to cholestasis. Here, we examined the link between FXR, bile plug formation, and how heme biosynthesis relates to this connection. METHODS: We treated female and male wild-type and global and tissue-specific Fxr knockout mice with a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine, an inhibitor of ferrochelatase, and examined the expression of heme biosynthetic genes. We mined FXR mouse ChIP-Seq data, performed biochemical and histological analysis, and tested HepG2 and primary human hepatocytes after treatment with obeticholic acid, an FXR agonist. RESULTS: We observed that hepatic but not intestinal Fxr loss resulted in reduced bile plugs and ductular reaction in the liver. Then, we examined if FXR plays a regulatory role in heme biosynthesis and found significantly lower porphyrin accumulation in 3,5-diethoxycarbonyl-1, 4-dihydrocollidine-fed Fxr knockout mice. Gene expression and FXR mouse ChIP-Seq atlas analysis revealed that FXR orchestrates the expression of multiple heme biosynthetic enzymes. Finally, human HepG2 cells and primary human hepatocytes treated with obeticholic acid, showed increased expression of several heme biosynthetic genes. CONCLUSIONS: Overall, our data show that hepatic Fxr is necessary to maintain ductular reaction and accumulation of bile plugs. FXR can direct the expression of multiple heme biosynthetic genes. Thus, modulating FXR activity in EPP patients may help alleviate its associated liver disease.


Assuntos
Colestase , Porfirinas , Animais , Feminino , Humanos , Masculino , Camundongos , Ferroquelatase , Heme , Fígado
10.
Biomolecules ; 13(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627333

RESUMO

In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical SAM enzymes containing a SPASM/Twitch domain carrying either one or two auxiliary iron-sulfur clusters in addition to the characteristic Radical SAM cluster. In previous studies, AhbD was reported to contain one auxiliary [4Fe-4S] cluster. In this study, the amino acid sequence motifs containing conserved cysteine residues in AhbD proteins from different archaea and sulfate-reducing bacteria were reanalyzed. Amino acid sequence alignments and computational structural models of AhbD suggested that a subset of AhbD proteins possesses the full SPASM motif and might contain two auxiliary iron-sulfur clusters (AuxI and AuxII). Therefore, the cluster content of AhbD from Methanosarcina barkeri was studied using enzyme variants lacking individual clusters. The purified enzymes were analyzed using UV/Visible absorption and EPR spectroscopy as well as iron/sulfide determinations showing that AhbD from M. barkeri contains two auxiliary [4Fe-4S] clusters. Heme synthase activity assays suggested that the AuxI cluster might be involved in binding the reaction intermediate and both clusters potentially participate in electron transfer.


Assuntos
Ferroquelatase , Methanosarcina barkeri , Archaea , Heme , Ferro , Sulfatos
11.
Tohoku J Exp Med ; 261(2): 117-122, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37495523

RESUMO

Erythropoietic protoporphyria (EPP) is a very rare disease with an estimated prevalence of 1 in 200,000 individuals. Decreased ferrochelatase activity causes the accumulation of protoporphyrin in the body, and light exposure results in the generation of active oxygen, causing photosensitivity. Liver damage has the greatest influence on the prognosis, and liver transplantation is the only treatment option for patients with decompensated liver cirrhosis. We report a case of living-donor liver transplantation for decompensated liver cirrhosis associated with EPP. The patient was a 52-year-old male who led a normal life except for mild photosensitivity. When the patient was 37-year-old, hepatic dysfunction was noticed. At 48-year-old, high erythrocyte protoporphyrin levels, skin biopsy, and genetic tests resulted in a diagnosis of EPP. The patient underwent living- donor liver transplantation because of decompensated liver cirrhosis. In the operating room and intensive care unit, a special light-shielding film was applied to all light sources to block light with harmful wavelengths during treatment. Due to the need for special measures, a lecture on patients with EPP was given before surgery to deepen understanding among all medical professionals involved in the treatment. As a result, no adverse events occurred during the perioperative period, and the patient was discharged on the 46th post-operative day. Currently, the transplanted liver is functioning extremely well, and the patient is alive 3 years post-transplant. Herein, we describe a case of living donor liver transplantation for EPP with a brief literature review.


Assuntos
Hepatopatias , Transplante de Fígado , Protoporfiria Eritropoética , Masculino , Humanos , Pessoa de Meia-Idade , Adulto , Protoporfiria Eritropoética/cirurgia , Protoporfiria Eritropoética/complicações , Protoporfiria Eritropoética/genética , Transplante de Fígado/efeitos adversos , Doadores Vivos , Protoporfirinas , Ferroquelatase/genética , Ferroquelatase/metabolismo , Hepatopatias/complicações , Cirrose Hepática/complicações , Cirrose Hepática/cirurgia
12.
Br J Clin Pharmacol ; 89(10): 3092-3104, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37259680

RESUMO

AIMS: To explore the potential value of serum glutamate dehydrogenase (GLDH), ferrochelatase (FECH), heme oxygenase-1 (HO-1) and glutathione-S-transferase-α (GST-α) as diagnostic biomarkers for liver injury caused by antituberculosis drugs. METHODS: We established a rat model of isoniazide-induced liver injury and recruited 122 hospitalized tuberculosis patients taking antituberculosis drugs. We detected the concentration of GLDH, FECH, HO-1 and GST-α by enzyme-linked immunosorbent assay. GraphPad Prism8 and SPSS 26.0 were used for statistical analysis. RESULTS: In the rat model, serum GLDH concentration gradually increased during isoniazid (INH) administration, while serum FECH, HO-1 and GST-α concentrations significantly increased after INH administration was stopped. The receiver operating characteristic curve showed that the areas under the curve (AUCs) of serum GLDH and FECH for the diagnosis of anti-tuberculosis (TB) drug-induced liver injury (anti-TB-DILI) were 0.7692 (95% confidence interval [CI] 0.5442-0.9943) and 0.7284 (95% CI 0.4863-0.9705) and the diagnostic accuracies were 81.25% and 78.79%, respectively. In clinical research, the AUCs of GLDH and FECH were 0.9124 (95% CI 0.8380-0.9867) and 0.6634 (95% CI 0.5391-0.7877), and the optimal thresholds were 10.40 mIU/mL and 1.304 ng/mL, respectively. The diagnostic accuracy, specificity and positive predictive value (PPV) of GLDH were 82.61%, 79.38% and 47.22%. We performed a joint diagnostic test for GLDH and FECH. The diagnostic accuracy (90.43%), specificity (91.75%) and PPV (65.21%) of serial tests were better than for GLDH and FECH alone. CONCLUSIONS: GLDH in the diagnosis of liver injury induced by anti-TB drugs has high sensitivity, but low specificity and low PPV. The combination of GLDH and FECH could significantly improve the specificity, PPV and diagnostic accuracy, and reduce the false-positive rate of anti-TB-DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Ratos , Animais , Antituberculosos/efeitos adversos , Glutamato Desidrogenase , Ferroquelatase , Fígado , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
13.
Animal ; 17(7): 100864, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37327525

RESUMO

A genome-wide association study (GWAS) was performed as a preliminary step to identify regions potentially related to ham quality traits. In this research, genomic information was obtained from 238 commercial hybrid pigs utilising the GeneSeek® Genomic Profiler genome-wide porcine genotyping array. Carcasses were tested for hot weight, the thickness of backfat and loin, and lean meat percentage. The corresponding fresh hams were assayed for weight and ultimate pH; the activities of Cathepsin B and Ferrochelatase of Semimembranosus muscle were determined through fluorimetric methods. The lean meat percentage of fresh ham (LMPH), salt absorbed after first (SALT1) and overall salting stages (SALT) were estimated online by the Ham Inspector™ apparatus. Hams were processed in compliance with the procedures established for Protected Designation of Origin Parma ham, and ham weight losses were measured at the main processing stages. Hot carcass weights showed a significant negative correlation with their lean meat percentage and LMPH, while LMPH was correlated positively with carcass lean meat, SALT1, SALT, and weight losses. The GWAS detected genome-wide association for 12 single nucleotide polymorphisms with Ferrochelatase activity. The results obtained in this preliminary study were achieved by combining innovative and non-destructive technologies for screening hams under processing, measures of enzymatic muscle properties relevant to dry-cured ham quality, and genomic information obtained through a GWAS. Additional studies carried out in a larger number of pigs have been planned to investigate the effect of gene variants of Ferrochelatase activity in the dry-cured ham's quality with main reference to colour development and to confirm the GWAS results obtained in this study.


Assuntos
Carne de Porco , Suínos/genética , Animais , Carne de Porco/análise , Marcadores Genéticos , Estudo de Associação Genômica Ampla/veterinária , Manipulação de Alimentos/métodos , Ferroquelatase , Músculo Esquelético , Carne/análise , Redução de Peso , Composição Corporal
14.
Arch Biochem Biophys ; 744: 109665, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348627

RESUMO

In eukaryotes and many aerobic prokaryotes, the final step of aerobic respiration is catalyzed by an aa3-type cytochrome c oxidase, which requires a modified heme cofactor, heme a. The conversion of heme b, the prototypical cellular heme, to heme o and ultimately to heme a requires two modifications, the latter of which is conversion of a methyl group to an aldehyde, catalyzed by heme a synthase (HAS). The N- and C-terminal halves of HAS share homology, and each half contains a heme-binding site. Previous reports indicate that the C-terminal site is occupied by a heme b cofactor. The N-terminal site may function as the substrate (heme o) binding site, although this has not been confirmed experimentally. Here, we assess the role of conserved residues from the N- and C-terminal heme-binding sites in HAS from prokaryotic (Shewanella oneidensis) and eukaryotic (Saccharomyces cerevisiae) species - SoHAS/CtaA and ScHAS/Cox15, respectively. A glutamate within the N-terminal site is found to be critical for activity in both types of HAS, consistent with the hypothesis that a carbocation forms transiently during catalysis. In contrast, the residue occupying the analogous C-terminal position is dispensable for enzyme activity. In SoHAS, the C-terminal heme ligands are critical for stability, while in ScHAS, substitutions in either heme-binding site have little effect on global structure. In both species, in vivo accumulation of heme o requires the presence of an inactive HAS variant, highlighting a potential regulatory role for HAS in heme o biosynthesis.


Assuntos
Ácido Glutâmico , Proteínas de Saccharomyces cerevisiae , Ácido Glutâmico/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Ferroquelatase , Heme/metabolismo
15.
New Phytol ; 239(2): 624-638, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161708

RESUMO

During photoperiodic growth, the light-dependent nature of chlorophyll synthesis in angiosperms necessitates robust control of the production of 5-aminolevulinic acid (ALA), the rate-limiting step in the initial stage of tetrapyrrole biosynthesis (TBS). We are interested in dissecting the post-translational control of this process, which suppresses ALA synthesis for chlorophyll synthesis in dark-grown plants. Using biochemical approaches for analysis of Arabidopsis wild-type (WT) and mutant lines as well as complementation lines, we show that the heme-synthesizing ferrochelatase 2 (FC2) interacts with protochlorophyllide oxidoreductase and the regulator FLU which both promote the feedback-controlled suppression of ALA synthesis by inactivation of glutamyl-tRNA reductase, thus preventing excessive accumulation of potentially deleterious tetrapyrrole intermediates. Thereby, FC2 stabilizes POR by physical interaction. When the interaction between FC2 and POR is perturbed, suppression of ALA synthesis is attenuated and photoreactive protochlorophyllide accumulates. FC2 is anchored in the thylakoid membrane via its membrane-spanning CAB (chlorophyll-a-binding) domain. FC2 is one of the two isoforms of ferrochelatase catalyzing the last step of heme synthesis. Although FC2 belongs to the heme-synthesizing branch of TBS, its interaction with POR potentiates the effects of the GluTR-inactivation complex on the chlorophyll-synthesizing branch and ensures reciprocal control of chlorophyll and heme synthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Aminolevulínico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Ferroquelatase/genética , Ferroquelatase/metabolismo , Heme/metabolismo , Protoclorifilida/metabolismo , Tetrapirróis/metabolismo
16.
J Mol Graph Model ; 122: 108490, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121168

RESUMO

Filarial infections are among the world's most disturbing diseases caused by 3 major parasitic worms; Onchocerca volvulus, Wuchereria bancrofti, and Brugia malayi, affecting more than 500 million people worldwide. Currently used drugs for mass drug administration (MDA) have been met with several challenges including the development of complications in individuals with filaria co-infections and parasitic drug resistance. The filarial endosymbiont, Wolbachia, has emerged as an attractive therapeutic target for filariasis elimination, due to the dependence of the filaria on this endosymbiont for survival. Here, we target an important enzyme in the Wolbachia heme biosynthetic pathway (ferrochelatase), using high-throughput virtual screening and molecular dynamics with MM-PBSA calculations. We identified four drug candidates; Nilotinib, Ledipasvir, 3-benzhydryloxy-8-methyl-8-azabicyclo[3.2.1]octane, and 2-(4-Amino-piperidin-1-yl)-ethanol as potential small molecules inhibitors as they could compete with the enzyme's natural substrate (Protoporphyrin IX) for active pocket binding. This prevents the worm from receiving the heme molecule from Wolbachia for their growth and survival, resulting in their death. This study which involved targeting enzymes in biosynthetic pathways of the parasitic worms' endosymbiont (Wolbachia), has proven to be an alternative therapeutic option leading to the discovery of new drugs, which will help facilitate the elimination of parasitic infections.


Assuntos
Brugia Malayi , Filariose , Wolbachia , Animais , Wolbachia/metabolismo , Ferroquelatase/metabolismo , Ferroquelatase/uso terapêutico , Filariose/tratamento farmacológico , Filariose/parasitologia , Heme/metabolismo
17.
Blood ; 141(24): 2921-2931, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36898083

RESUMO

Erythropoietic protoporphyria (EPP) is an inherited cutaneous porphyria caused by reduced expression of ferrochelatase, the enzyme that catalyzes the final step in heme biosynthesis. The resultant accumulation of protoporphyrin IX leads to severe, painful cutaneous photosensitivity, as well as potentially life-threatening liver disease in a small percentage of patients. X-linked protoporphyria (XLP) is clinically similar to EPP but results from increased activity of δ-aminolevulinic acid synthase 2, the first step in heme biosynthesis in the bone marrow, and also causes protoporphyrin accumulation. Although historically the management of EPP and XLP (collectively termed protoporphyria) centered around avoidance of sunlight, novel therapies have recently been approved or are in development, which will alter the therapeutic landscape for these conditions. We present 3 patient cases, highlighting key treatment considerations in patients with protoporphyria, including (1) approach to photosensitivity, (2) managing iron deficiency in protoporphyria, and (3) understanding hepatic failure in protoporphyria.


Assuntos
Hepatopatias , Transtornos de Fotossensibilidade , Protoporfiria Eritropoética , Humanos , Protoporfiria Eritropoética/terapia , Protoporfiria Eritropoética/complicações , Ferroquelatase/genética , Ferroquelatase/metabolismo , Transtornos de Fotossensibilidade/etiologia , Transtornos de Fotossensibilidade/terapia , Protoporfirinas , Heme/metabolismo
18.
Protein Sci ; 32(1): e4534, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36479958

RESUMO

Coproporphyrin ferrochelatases (CpfCs) are enzymes catalyzing the penultimate step in the coproporphyrin-dependent (CPD) heme biosynthesis pathway, which is mainly utilized by monoderm bacteria. Ferrochelatases insert ferrous iron into a porphyrin macrocycle and have been studied for many decades, nevertheless many mechanistic questions remain unanswered to date. Especially CpfCs, which are found in the CPD pathway, are currently in the spotlight of research. This pathway was identified in 2015 and revealed that the correct substrate for these ferrochelatases is coproporphyrin III (cpIII) instead of protoporphyrin IX, as believed prior the discovery of the CPD pathway. The chemistry of cpIII, which has four propionates, differs significantly from protoporphyrin IX, which features two propionate and two vinyl groups. These findings let us to thoroughly describe the physiological cpIII-ferrochelatase complex in solution and in the crystal phase. Here, we present the first crystallographic structure of the CpfC from the representative monoderm pathogen Listeria monocytogenes bound to its physiological substrate, cpIII, together with the in-solution data obtained by resonance Raman and UV-vis spectroscopy, for wild-type ferrochelatase and variants, analyzing propionate interactions. The results allow us to evaluate the porphyrin distortion and provide an in-depth characterization of the catalytically-relevant binding mode of cpIII prior to iron insertion. Our findings are discussed in the light of the observed structural restraints and necessities for this porphyrin-enzyme complex to catalyze the iron insertion process. Knowledge about this initial situation is essential for understanding the preconditions for iron insertion in CpfCs and builds the basis for future studies.


Assuntos
Porfirinas , Porfirinas/química , Coproporfirinas/metabolismo , Propionatos , Domínio Catalítico , Ferroquelatase/genética , Ferroquelatase/química , Ferroquelatase/metabolismo , Sítios de Ligação , Ferro/metabolismo
19.
Cell Rep ; 41(10): 111758, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476857

RESUMO

The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis.


Assuntos
Brassica , Ferroquelatase , Ferroquelatase/genética , Heme , Brassica/genética , Clorofila A , Mutação/genética
20.
Chem Res Toxicol ; 35(12): 2186-2193, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36459538

RESUMO

N-Methyl protoporphyrin IX (NmePPIX) is a derivative of protoporphyrin IX (PPIX) and the lattice of heme. Certain xenobiotics strongly induce NmePPIX production in the liver. The existence of endogenous NmePPIX in untreated animal liver has also been reported. The detailed mechanisms of NmePPIX biosynthesis remain unclear, but cytochrome P450 enzymes are thought to be critical in xenobiotic-induced NmePPIX production. High levels of NmePPIX cause PPIX accumulation because NmePPIX is a potent inhibitor (Ki = 7 nM) of ferrochelatase, the last enzyme in the heme biosynthesis pathway that converts PPIX to heme. NmePPIX is also involved in several other physiological processes, including inhibition of nitric oxide production and promotion of lamin aggregation. Compared to the two well-characterized porphyrins, PPIX and heme, NmePPIX is understudied regarding the mechanism of formation, fate, and physiological functions. This Review summarizes the current understanding of NmePPIX and provides perspectives on areas of future research on NmePPIX.


Assuntos
Porfirinas , Animais , Porfirinas/farmacologia , Protoporfirinas/metabolismo , Ferroquelatase/metabolismo , Heme/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...