Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.752
Filtrar
1.
Sci Total Environ ; 931: 172862, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705286

RESUMO

Intricate microbial associations contribute greatly to the multiple functions (multifunctionality) of natural ecosystems. However, the relationship between microbial associations and soil multifunctionality (SMF) in artificial ecosystems, particularly in agricultural ecosystem with frequent fertilization, remains unclear. In this study, based on a 28-year paddy field experiment, high-throughput sequencing and networks analysis was performed to investigate changes in soil microbial (archaea, bacteria, fungi, and protists) associations and how these changes correlate with SMF under long-term fertilization. Compared to no fertilization (CK), both chemical fertilization with N, P, and K (CF) and chemical fertilization plus rice straw retention (CFR) treatments showed significantly higher soil nutrient content, grain yield, microbial abundance, and SMF. With the exception of archaeal diversity, the CF treatment exhibited the lowest bacterial, fungal, and protist diversity, and the simplest microbial co-occurrence network. In contrast, the CFR treatment had the lowest archaeal diversity, but the highest bacterial, fungal, and protist diversity. Moreover, the CFR treatment exhibited the most complex microbial co-occurrence network with the highest number of nodes, edges, and interkingdom edges. These results highlight that both chemical fertilization with and without straw retention caused high ecosystem multifunctionality while changing microbial association oppositely. Furthermore, these results indicate that rice straw retention contributes to the development of the soil microbiome and ensures the sustainability of high-level ecosystem multifunctionality.


Assuntos
Agricultura , Fertilizantes , Microbiologia do Solo , Solo , Fertilizantes/análise , Solo/química , Agricultura/métodos , Bactérias/classificação , Fungos , Oryza , Ecossistema , Microbiota/efeitos dos fármacos , Archaea
2.
Chemosphere ; 358: 142272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719128

RESUMO

The study assessed the ecotoxicity and bioavailability of potential metals (PMs) from tannery waste sludge, alongside addressing the environmental concerns of overuse of chemical fertilizers, by comparing the impacts of organic vermicomposted tannery waste, chemical fertilizers, and sole application of tannery waste on soil and rice (Oryza sativa L.) plants. The results revealed that T3, which received high-quality vermicomposted tannery waste as an amendment, exhibited superior enzymatic characteristics compared to tannery sludge amended (TWS) treatments (T8, T9). After harvesting, vermicomposted tannery waste treatment (T3) showed a more significant decrease in PMs bioavailability. Accumulation of PMs in rice was minimal across all treatments except T8 and T9, where toxic tannery waste was present, resulting in a high-risk classification (class 5 < 0.01) according to the SAMOE risk assessment. Results from Fuzzy-TOPSIS, ANN, and Sobol sensitivity analyses (SSA) further indicated that elevated concentrations of PMs (Ni, Pb, Cr, Cu) adversely impacted soil-plant health synergy, with T3 showing a minimal risk in comparison to T8 and T9. According to SSA, microbial biomass carbon and acid phosphatase activity were the most sensitive factors affected by PMs concentrations in TWS. The results from the ANN assay revealed that the primary contributing factor of toxicity on the TWS was the exchangeable fraction of Cr. Correlation statistics underscored the significant detrimental effect of PMs' bioavailability on microbial and enzymatic parameters. Overall, the findings suggest that vermicomposting of tannery sludge waste shows potential as a viable organic amendment option in the near future.


Assuntos
Aprendizado de Máquina , Oryza , Esgotos , Poluentes do Solo , Curtume , Áreas Alagadas , Esgotos/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais/toxicidade , Solo/química , Compostagem/métodos , Fertilizantes , Animais , Metais Pesados/toxicidade , Metais Pesados/análise
3.
J Environ Manage ; 359: 121043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723497

RESUMO

Fertilizer-intensive agriculture leads to emissions of reactive nitrogen (Nr), posing threats to climate via nitrous oxide (N2O) and to air quality and human health via nitric oxide (NO) and ammonia (NH3) that form ozone and particulate matter (PM) downwind. Adding nitrification inhibitors (NIs) to fertilizers can mitigate N2O and NO emissions but may stimulate NH3 emissions. Quantifying the net effects of these trade-offs requires spatially resolving changes in emissions and associated impacts. We introduce an assessment framework to quantify such trade-off effects. It deploys an agroecosystem model with enhanced capabilities to predict emissions of Nr with or without the use of NIs, and a social cost of greenhouse gas to monetize the impacts of N2O on climate. The framework also incorporates reduced-complexity air quality and health models to monetize associated impacts of NO and NH3 emissions on human health downwind via ozone and PM. Evaluation of our model against available field measurements showed that it captured the direction of emission changes but underestimated reductions in N2O and overestimated increases in NH3 emissions. The model estimated that, averaged over applicable U.S. agricultural soils, NIs could reduce N2O and NO emissions by an average of 11% and 16%, respectively, while stimulating NH3 emissions by 87%. Impacts are largest in regions with moderate soil temperatures and occur mostly within two to three months of N fertilizer and NI application. An alternative estimate of NI-induced emission changes was obtained by multiplying the baseline emissions from the agroecosystem model by the reported relative changes in Nr emissions suggested from a global meta-analysis: -44% for N2O, -24% for NO and +20% for NH3. Monetized assessments indicate that on an annual scale, NI-induced harms from increased NH3 emissions outweigh (8.5-33.8 times) the benefits of reducing NO and N2O emissions in all agricultural regions, according to model-based estimates. Even under meta-analysis-based estimates, NI-induced damages exceed benefits by a factor of 1.1-4. Our study highlights the importance of considering multiple pollutants when assessing NIs, and underscores the need to mitigate NH3 emissions. Further field studies are needed to evaluate the robustness of multi-pollutant assessments.


Assuntos
Agricultura , Fertilizantes , Nitrificação , Óxido Nitroso , Fertilizantes/análise , Óxido Nitroso/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Amônia/análise , Espécies Reativas de Nitrogênio/análise , Nitrogênio/análise , Poluição do Ar/análise
4.
J Environ Manage ; 359: 121084, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723505

RESUMO

Extensive global dependency on rice and wheat crops has necessitated the adoption of intensive cultivation practices, thereby compelling to closely monitor the potential yield-limiting factors, among which, boron (B) deficiency stands out to be a prime concern. The present study explores the effects of B fertilization strategies within the Rice-Wheat Cropping System (RWCS) in the Tarai region of North-West India. A comprehensive six-year field experiment was conducted (2013-2019) at G.B. Pant University of Agriculture and Technology, Uttarakhand, India. The experiment tested graded B doses (0.5, 1.0, 1.5, and 2.0 kg ha-1) at varied frequencies (single, alternate, and annual) in a factorial design. The study revealed significant impacts of alternate B application at 1.5 kg ha-1 on crop yields and the Sustainable Yield Index (SYI). The System Rice Equivalent Yield (SREY) exhibited an increase of 6.7% with B supplementation over B-deprived plots, highlighting the pivotal role of B fertilizer in enhancing productivity within the RWCS. The economic optimum B dose was found to be 1.422 kg ha-1 using a linear plus plateau model, resulting in a calculated annual SREY of 9.73 t ha-1 when applied alternately to the cropping system. Continuous application and higher B rates demonstrated substantial increases in various B fractions, while the mobility factor remained within 10%, depicting safe ecological limits. The distribution of fractions in B-treated plots on average followed the order: residual B > organically-bound B > oxide bound B > specifically adsorbed B > readily soluble B. Similarities in the distribution patterns of B fractions between B-treated plots and the control indicated potential influence of biotic or abiotic processes on B fraction dynamics, even in the absence of external B application. To sum up, B application in alternate years at 1.5 kg ha-1 was most sustainable in enhancing the SREY, SYI, available soil B, and B fractions and lowering the environmental hazards.


Assuntos
Agricultura , Boro , Produtos Agrícolas , Fertilizantes , Oryza , Triticum , Oryza/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Índia , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química
5.
BMC Plant Biol ; 24(1): 423, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760709

RESUMO

BACKGROUND: Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS: The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION: Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.


Assuntos
Esterco , Aves Domésticas , Salinidade , Solo , Triticum , Triticum/crescimento & desenvolvimento , Solo/química , Animais , Microbiologia do Solo , Plântula/crescimento & desenvolvimento , Fertilizantes/análise , Alcaligenes faecalis/crescimento & desenvolvimento
6.
BMC Plant Biol ; 24(1): 419, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760728

RESUMO

BACKGROUND: Rice (Oryza sativa L.) is one of the most important food crops in the world and the application of nitrogen fertilizer is an effective means of ensuring stable and high rice yields. However, excessive application of nitrogen fertilizer not only causes a decline in the quality of rice, but also leads to a series of environmental costs. Nitrogen reutilization is closely related to leaf senescence, and nitrogen deficiency will lead to early functional leaf senescence, whereas moderate nitrogen application will help to delay leaf senescence and promote the production of photosynthetic assimilation products in leaves to achieve yield increase. Therefore, it is important to explore the mechanism by which nitrogen affects rice senescence, to search for genes that are tolerant to low nitrogen, and to delay the premature senescence of rice functional leaves. RESULTS: The present study was investigated the transcriptional changes in flag leaves between full heading and mature grain stages of rice (O. sativa) sp. japonica 'NanGeng 5718' under varying nitrogen (N) application: 0 kg/ha (no nitrogen; 0N), 240 kg/ha (moderate nitrogen; MN), and 300 kg/ha (high nitrogen; HN). Compared to MN condition, a total of 10427 and 8177 differentially expressed genes (DEGs) were detected in 0N and HN, respectively. We selected DEGs with opposite expression trends under 0N and HN conditions for GO and KEGG analyses to reveal the molecular mechanisms of nitrogen response involving DEGs. We confirmed that different N applications caused reprogramming of plant hormone signal transduction, glycolysis/gluconeogenesis, ascorbate and aldarate metabolism and photosynthesis pathways in regulating leaf senescence. Most DEGs of the jasmonic acid, ethylene, abscisic acid and salicylic acid metabolic pathways were up-regulated under 0N condition, whereas DEGs related to cytokinin and ascorbate metabolic pathways were induced in HN. Major transcription factors include ERF, WRKY, NAC and bZIP TF families have similar expression patterns which were induced under N starvation condition. CONCLUSION: Our results revealed that different nitrogen levels regulate rice leaf senescence mainly by affecting hormone levels and ascorbic acid biosynthesis. Jasmonic acid, ethylene, abscisic acid and salicylic acid promote early leaf senescence under low nitrogen condition, ethylene and ascorbate delay senescence under high nitrogen condition. In addition, ERF, WRKY, NAC and bZIP TF families promote early leaf senescence. The relevant genes can be used as candidate genes for the regulation of senescence. The results will provide gene reference for further genomic studies and new insights into the gene functions, pathways and transcription factors of N level regulates leaf senescence in rice, thereby improving NUE and reducing the adverse effects of over-application of N.


Assuntos
Perfilação da Expressão Gênica , Nitrogênio , Oryza , Folhas de Planta , Fatores de Transcrição , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/fisiologia , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Senescência Vegetal/genética , Regulação da Expressão Gênica de Plantas , Vias Biossintéticas/genética , Transcriptoma , Fertilizantes , Genes de Plantas
7.
Sci Rep ; 14(1): 11389, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762518

RESUMO

Phosphorus (P) use efficiency in alkaline/calcareous soils is only 20% due to precipitation of P2O5 with calcium and magnesium. However, coating Diammonium Phosphate (DAP) with phosphorus solubilizing bacteria (PSB) is more appropriate to increase fertilizer use efficiency. Therefore, with the aim to use inorganic fertilizers more effectively present study was conducted to investigate comparative effect of coated DAP with PSB strains Bacillus subtilis ZE15 (MN003400), Bacillus subtilis ZR3 (MN007185), Bacillus megaterium ZE32 (MN003401) and Bacillus megaterium ZR19 (MN007186) and their extracted metabolites with uncoated DAP under axenic conditions. Gene sequencing was done against various sources of phosphorus to analyze genes responsible for phosphatase activity. Alkaline phosphatase (ALP) gene amplicon of 380bp from all tested strains was showed in 1% w/v gel. Release pattern of P was also improved with coated fertilizer. The results showed that coated phosphatic fertilizer enhanced shoot dry weight by 43 and 46% under bacterial and metabolites coating respectively. Shoot and root length up to 44 and 42% with metabolites coated DAP and 41% with bacterial coated DAP. Physiological attributes also showed significant improvement with coated DAP over conventional. The results supported the application of coated DAP as a useful medium to raise crop yield even at lower application rates i.e., 50 and 75% DAP than non-coated 100% DAP application which advocated this coating technique a promising approach for advancing circular economy and sustainable development in modern agriculture.


Assuntos
Bacillus megaterium , Fertilizantes , Fosfatos , Fósforo , Microbiologia do Solo , Solo , Zea mays , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Fósforo/metabolismo , Solo/química , Bacillus megaterium/metabolismo , Bacillus megaterium/genética , Bacillus megaterium/crescimento & desenvolvimento , Fosfatos/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética
8.
J Environ Manage ; 359: 120964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692027

RESUMO

Improving soil quality without creating any environmental problems is an unescapable goal of sustainable agroecosystem management, according to the United Nations 2030 Agenda for Sustainable Development. Therefore, sustainable solutions are in high demand. One of these is the use of biopolymers derived from microbes and seaweed. This paper aims to provide an overview of the sources of extraction and use of microbial (bacteria and cyanobacteria) and seaweed-based biopolymers as soil conditioners, the characteristics of biopolymer-treated soils, and their environmental concerns. A preliminary search was also carried out on the entire Scopus database on biopolymers to find out how much attention has been paid to biopolymers as biofertilizers compared to other applications of these molecules until now. Several soil quality indicators were evaluated, including soil moisture, color, structure, porosity, bulk density, temperature, aggregate stability, nutrient availability, organic matter, and microbial activity. The mechanisms involved in improving soil quality were also discussed.


Assuntos
Alga Marinha , Solo , Solo/química , Biopolímeros/análise , Microbiologia do Solo , Cianobactérias , Bactérias , Fertilizantes/análise
9.
J Environ Manage ; 359: 121055, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701585

RESUMO

Globally, forest soils are considered as important sources and sinks of greenhouse gases (GHGs). However, most studies on forest soil GHG fluxes are confined to the topsoils (above 20 cm soil depths), with only very limited information being available regarding these fluxes in the subsoils (below 20 cm soil depths), especially in managed forests. This limits deeper understanding of the relative contributions of different soil depths to GHG fluxes and global warming potential (GWP). Here, we used a concentration gradient-based method to comprehensively investigate the effects of thinning intensity (15% vs. 35%) and nutrient addition (no fertilizer vs. NPK fertilizers) on soil GHG fluxes from the 0-40 cm soil layers at 10 cm depth intervals in a Chinese fir (Cunninghamia lanceolata) plantation. Results showed that forest soils were the sources of CO2 and N2O, but the sinks of CH4. Soil GHG fluxes decreased with increasing soil depth, with the 0-20 cm soil layers identified as the dominant producers of CO2 and N2O and consumers of CH4. Thinning intensity did not significantly affect soil GHG fluxes. However, fertilization significantly increased CO2 and N2O emissions and CH4 uptake at 0-20 cm soil layers, but decreased them at 20-40 cm soil layers. This is because fertilization alleviated microbial N limitation and decreased water filled pore space (WFPS) in topsoils, while it increased WFPS in subsoils, ultimately suggesting that soil WFPS and N availability (especially NH4+-N) were the predominant regulators of GHG fluxes along soil profiles. Generally, there were positive interactive effects of thinning and fertilization on soil GHG fluxes. Moreover, the 35% thinning intensity without fertilization had the lowest GWP among all treatments. Overall, our results suggest that fertilization may not only cause depth-dependent effects on GHG fluxes within soil profiles, but also impede efforts to mitigate climate change by promoting GHG emissions in managed forest plantations.


Assuntos
Fertilizantes , Gases de Efeito Estufa , Solo , Gases de Efeito Estufa/análise , Solo/química , Florestas , Metano/análise , Dióxido de Carbono/análise , Cunninghamia/crescimento & desenvolvimento , Aquecimento Global , Óxido Nitroso/análise , China
10.
Environ Monit Assess ; 196(6): 534, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727864

RESUMO

Escherichia coli is one of the key bacteria responsible for a variety of diseases in humans and livestock-associated infections around the globe. It is the leading cause of mortality in neonatal and weaned piglets in pig husbandry, causing diarrhea and significant harm to the industry. Furthermore, the frequent and intensive use of antimicrobials for the prevention of diseases, particularly gastrointestinal diseases, may promote the selection of multidrug-resistant (MDR) strains. These resistant genotypes can be transmitted through the excrement of animals, including swine. It is common practice to use porcine manure processed by biodigesters as fertilizer. This study aimed to examine the antimicrobial susceptibility, the presence of virulence genes frequently associated with pathotypes of intestinal pathogenic E. coli (InPEC), and antimicrobial resistance genes (ARGs) of 28 E. coli isolates collected from swine manure fertilizers. In addition, the enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) technique was used to investigate the genetic relationship among the strains. Using disk diffusion, the antimicrobial susceptibility profiles of the strains were determined. Using polymerase chain reaction (PCR), 14 distinct virulence genes associated with the most prevalent diarrhea and intestinal pathogenic E. coli (DEC/InPEC) and five ARGs were analyzed. All isolates tested positive for multidrug resistance. There was no detection of any of the 14 virulence genes associated with InPECs, indicating the presence of an avirulent commensal microbiota. Molecular classification by ERIC-PCR revealed that the majority of isolates (27 isolates) coalesced into a larger cluster with a genetic similarity of 47.7%; only one strain did not cluster in this cluster, indicating a high level of genetic diversity among the analyzed isolates. Thus, it is of the utmost importance to conduct epidemiological surveillance of animal breeding facilities in order to determine their microbiota and formulate plans to reduce the use of antimicrobials and improve animal welfare.


Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli , Fertilizantes , Esterco , Animais , Suínos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Esterco/microbiologia , Brasil , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia
11.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710565

RESUMO

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Assuntos
Galactanos , Substâncias Húmicas , Hidrogéis , Mananas , Gomas Vegetais , Compostos de Amônio Quaternário , Solo , Gomas Vegetais/química , Galactanos/química , Mananas/química , Hidrogéis/química , Solo/química , Compostos de Amônio Quaternário/química , Fertilizantes , Preparações de Ação Retardada/química , Germinação/efeitos dos fármacos , Água/química
12.
BMC Plant Biol ; 24(1): 366, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711037

RESUMO

BACKGROUND: Nitrogen (N) is essential for plant growth and development. In Lithocarpus polystachyus Rehd., a species known for its medicinal and food value, phlorizin is the major bioactive compound with pharmacological activity. Research has revealed a positive correlation between plant nitrogen (N) content and phlorizin synthesis in this species. However, no study has analyzed the effect of N fertilization on phlorizin content and elucidated the molecular mechanisms underlying phlorizin synthesis in L. polystachyus. RESULTS: A comparison of the L. polystachyus plants grown without (0 mg/plant) and with N fertilization (25, 75, 125, 175, 225, and 275 mg/plant) revealed that 75 mg N/plant fertilization resulted in the greatest seedling height, ground diameter, crown width, and total phlorizin content. Subsequent analysis of the leaves using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detected 150 metabolites, including 42 flavonoids, that were differentially accumulated between the plants grown without and with 75 mg/plant N fertilization. Transcriptomic analysis of the L. polystachyus plants via RNA sequencing revealed 162 genes involved in flavonoid biosynthesis, among which 53 significantly differed between the N-treated and untreated plants. Fertilization (75 mg N/plant) specifically upregulated the expression of the genes phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and phlorizin synthase (PGT1) but downregulated the expression of trans-cinnamate 4-monooxygenase (C4H), shikimate O-hydroxycinnamoyltransferase (HCT), and chalcone isomerase (CHI), which are related to phlorizin synthesis. Finally, an integrated analysis of the transcriptome and metabolome revealed that the increase in phlorizin after N fertilization was consistent with the upregulation of phlorizin biosynthetic genes. Quantitative real-time PCR (qRT‒PCR) was used to validate the RNA sequencing data. Thus, our results indicated that N fertilization increased phlorizin metabolism in L. polystachyus by regulating the expression levels of the PAL, PGT1, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase (C3'H), C4H, and HCT genes. CONCLUSIONS: Our results demonstrated that the addition of 75 mg/plant N to L. polystachyus significantly promoted the accumulation of flavonoids, including phlorizin, and the expression of flavonoid synthesis-related genes. Under these conditions, the genes PAL, 4CL, and PGT1 were positively correlated with phlorizin accumulation, while C4H, CHI, and HCT were negatively correlated with phlorizin accumulation. Therefore, we speculate that PAL, 4CL, and PGT1 participate in the phlorizin pathway under an optimal N environment, regulating phlorizin biosynthesis. These findings provide a basis for improving plant bioactive constituents and serve as a reference for further pharmacological studies.


Assuntos
Fertilizantes , Metaboloma , Nitrogênio , Florizina , Transcriptoma , Nitrogênio/metabolismo , Metaboloma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Espectrometria de Massas em Tandem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
PLoS One ; 19(5): e0301254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713689

RESUMO

Oil seed crops are the second most important field crops after cereals in the agricultural economy globally. The use and demand for oilseed crops such as groundnut, soybean and sunflower have grown significantly, but climate change is expected to alter the agroecological conditions required for oilseed crop production. This study aims to present an approach that utilizes decision-making tools to assess the potential climate change impacts on groundnut, soybean and sunflower yields and the greenhouse gas emissions from the management of the crops. The Decision Support Tool for Agrotechnology Transfer (DSSAT v4.7), a dynamic crop model and the Cool Farm Tool, a GHG calculator, was used to simulate yields and estimate GHG emissions from these crops, respectively. Four representative concentration pathways (RCPs 2.6, 4.5, 6.0, and 8.5), three nitrogen (0, 75, and 150 kg/ha) and phosphorous (0, 30 and 60 P kg/ha) fertilizer rates at three sites in Limpopo, South Africa (Ofcolaco, Syferkuil and Punda Maria) were used in field trials for calibrating the models. The highest yield was achieved by sunflower across all crops, years and sites. Soybean yield is projected to decrease across all sites and scenarios by 2030 and 2050, except at Ofcolaco, where yield increases of at least 15.6% is projected under the RCP 4.5 scenario. Positive climate change impacts are predicted for groundnut at Ofcolaco and Syferkuil by 2030 and 2050, while negative impacts with losses of up to 50% are projected under RCP8.5 by 2050 at Punda Maria. Sunflower yield is projected to decrease across all sites and scenarios by 2030 and 2050. A comparison of the climate change impacts across sites shows that groundnut yield is projected to increase under climate change while notable yield losses are projected for sunflower and soybean. GHG emissions from the management of each crop showed that sunflower and groundnut production had the highest and lowest emissions across all sites respectively. With positive climate change impacts, a reduction of GHG emissions per ton per hectare was projected for groundnuts at Ofcolaco and Syferkuil and for sunflower in Ofcolaco in the future. However, the carbon footprint from groundnut is expected to increase by 40 to 107% in Punda Maria for the period up to 2030 and between 70-250% for 2050, with sunflower following a similar trend. We conclude that climate change will potentially reduce yield for oilseed crops while management will increase emissions. Therefore, in designing adaptation measures, there is a need to consider emission effects to gain a holistic understanding of how both climate change impacts on crops and mitigation efforts could be targeted.


Assuntos
Mudança Climática , Produtos Agrícolas , Produtos Agrícolas/crescimento & desenvolvimento , África do Sul , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Helianthus/crescimento & desenvolvimento , Modelos Teóricos , Fertilizantes/análise , Gases de Efeito Estufa/análise , Óleos de Plantas , Agricultura/métodos
14.
Sci Rep ; 14(1): 10556, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719847

RESUMO

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Assuntos
Fertilizantes , Glycine max , Níquel , Solo , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Fertilizantes/análise , Solo/química , Urease/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Agricultura/métodos
15.
Nat Commun ; 15(1): 3829, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714701

RESUMO

Human wellbeing depends on ecosystem services, highlighting the need for improving the ecosystem-service multifunctionality of food and feed production systems. We study Swiss agricultural grasslands to assess how employing and combining three widespread aspects of grassland management and their interactions can enhance 22 plot-level ecosystem service indicators, as well as ecosystem-service multifunctionality. The three management aspects we assess are i) organic production system, ii) an eco-scheme prescribing extensive management (without fertilization), and iii) harvest type (pasture vs. meadow). While organic production system and interactions between the three management aspects play a minor role, the main effects of eco-scheme and harvest type considerably shape single services. Moreover, the eco-scheme 'extensive management' and the harvest type 'pasture' enhance plot-scale ecosystem-service multifunctionality, mostly through facilitating cultural services at the expense of provisioning services. These changes in ecosystem-service supply occur mainly via changes in land-use intensity, i.e., reduced fertilizer input and harvest frequency. In conclusion, diversifying grassland management where this is currently homogeneous across farms and landscapes depicts an important first step to improve landscape-scale multifunctionality for sustainable grassland systems. To meet societal ecosystem services demand, the three studied management aspects can be systematically combined to increase ecosystem services that are in short supply.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pradaria , Conservação dos Recursos Naturais/métodos , Suíça , Agricultura/métodos , Fertilizantes , Humanos
16.
PLoS One ; 19(5): e0303080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722876

RESUMO

Cricket Frass Fertilizer (CFF) was tested for its efficiency and potential as a fertilizer on the growth of green beans (Phaseolus vulgaris L.) in central Madagascar from April 2020 to October 2020. We grew green beans experimentally for 93 days with seven different fertilizer treatments: NPK 200 kg/ha (0.47 g of N/plant), GUANOMAD (guano from bat) 300 kg/ha (0.26 g of N/ plant), CFF 100 kg/ha (0.12 g of N/plant), CFF 200 kg/ha (0.24 g of N/plant), CFF 300 kg/ha (0.38 g of N/plant), CFF 400 kg/ha (0.52 g of N/plant), and no fertilizer (0 g of N/plant). Three plant traits were measured: survival proportion, vegetative biomass, and pod biomass. The survival proportion of plants treated with the highest dose of CFF (400 kg/ha, 88.1%), NPK (79.8%), and GUANOMAD (81.2%) were similar, but plants treated with the former yielded significantly higher vegetative (35.5 g/plant) and pod biomass (11 g/plant). These results suggest that fertilizing green beans with CFF at a 400 kg/ha dose is sufficient for plant survival and growth, and improves pod production. In Madagascar where soil quality is poor, dependence on imported chemical fertilizers (NPK) and other organic fertilizer (GUANOMAD) can be reduced. Cricket Frass Fertilizer can be used as an alternative sustainable fertilizer for beans.


Assuntos
Fertilizantes , Phaseolus , Fertilizantes/análise , Phaseolus/crescimento & desenvolvimento , Phaseolus/efeitos dos fármacos , Biomassa , Madagáscar , Animais , Gryllidae/crescimento & desenvolvimento
17.
BMC Plant Biol ; 24(1): 359, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698306

RESUMO

BACKGROUND: Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS: A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION: These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.


Assuntos
Biomassa , Cádmio , Fertilizantes , Micorrizas , Rizosfera , Selênio , Microbiologia do Solo , Triticum , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Triticum/efeitos dos fármacos , Micorrizas/fisiologia , Cádmio/análise , Cádmio/toxicidade , Fertilizantes/análise , Selênio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Microbiota/efeitos dos fármacos
18.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700640

RESUMO

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Assuntos
Monitoramento Ambiental , Nitrogênio , Fósforo , Solo , Triticum , Solo/química , Nitrogênio/análise , Fósforo/análise , Fertilizantes/análise , Agricultura/métodos , Nutrientes/análise , Carbono/análise
19.
Environ Monit Assess ; 196(6): 524, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717730

RESUMO

The utilization of agricultural waste to create value-added goods has benefited waste management while resolving cost-effectiveness and food shortage problems. Returning biochar produced from agricultural waste to the agricultural field is a sustainable method of enhancing crop production while lowering the environmental effect of typical fertilizers. It also enhances soil condition by modulating pH, soil organic carbon, water retention capacity, and soil ion exchange potential. The current work concentrated on the production of iron oxide-loaded biochar from banana peels. Pyrolysis was carried out at temperatures ranging from 400 to 500 °C. The co-precipitation technique was utilized to impregnate Fe3O4 nanoparticles on biochar, and it showed to be an effective and trustworthy method. Loading was done in situ. Characterization techniques such as XRD, FTIR, CHNS, and TGA were employed to characterize synthesized materials. Swelling ratio, water retention, absorbance, and equilibrium water content percentage were used to study the adsorption capabilities of Fe3O4-loaded biochar, soil, and raw biochar. As a consequence, Fe3O4-enriched biochar was shown to have better adsorption capability than raw biochar, which in turn showed better adsorption properties than soil. Iron-loaded biochar was employed as a fertilizer in Abelmoschus esculentus (Okra), and the results showed that it is a cost-effective, environmentally friendly fertilizer.


Assuntos
Agricultura , Carvão Vegetal , Fertilizantes , Solo , Fertilizantes/análise , Carvão Vegetal/química , Agricultura/métodos , Solo/química , Ferro/química , Adsorção
20.
BMC Plant Biol ; 24(1): 386, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724922

RESUMO

BACKGROUND: Potato serves as a major non-cereal food crop and income source for small-scale growers in Punjab, Pakistan. Unfortunately, improper fertilization practices have led to low crop yields, worsened by challenging environmental conditions and poor groundwater quality in the Cholistan region. To address this, we conducted an experiment to assess the impact of two fertilizer application approaches on potato cv. Barna using plant growth-promoting bacteria (PGPB) coated biofertilizers. The first approach, termed conventional fertilizer application (CFA), involved four split applications of PGPB-coated fertilizers at a rate of 100:75 kg acre-1 (N and P). The second, modified fertilizer application (MFA), employed nine split applications at a rate of 80:40 kg acre-1. RESULTS: The MFA approach significantly improved various plant attributes compared to the CFA. This included increased plant height (28%), stem number (45%), leaf count (46%), leaf area index (36%), leaf thickness (three-folds), chlorophyll content (53%), quantum yield of photosystem II (45%), photosynthetically active radiations (56%), electrochromic shift (5.6%), proton flux (24.6%), proton conductivity (71%), linear electron flow (72%), photosynthetic rate (35%), water use efficiency (76%), and substomatal CO2 (two-folds), and lowered non-photochemical quenching (56%), non-regulatory energy dissipation (33%), transpiration rate (59%), and stomatal conductance (70%). Additionally, the MFA approach resulted in higher tuber production per plant (21%), average tuber weight (21.9%), tuber diameter (24.5%), total tuber yield (29.1%), marketable yield (22.7%), seed-grade yield (9%), specific gravity (9.6%), and soluble solids (7.1%). It also reduced undesirable factors like goli and downgrade yields by 57.6% and 98.8%, respectively. Furthermore, plants under the MFA approach exhibited enhanced nitrogen (27.8%) and phosphorus uptake (40.6%), with improved N (26.1%) and P uptake efficiency (43.7%) compared to the CFA approach. CONCLUSION: The use of PGPB-coated N and P fertilizers with a higher number of splits at a lower rate significantly boosts potato production in the alkaline sandy soils of Cholistan.


Assuntos
Fertilizantes , Nitrogênio , Fósforo , Solanum tuberosum , Fertilizantes/análise , Fósforo/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Paquistão , Solo/química , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...