Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.336
Filtrar
1.
Anal Chim Acta ; 1309: 342665, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772653

RESUMO

BACKGROUND: The concentration of cytochrome C is demonstrated to be an effective indicator of the microbial corrosion strength of metals. Traditional cytochrome C sensor can detect cytochrome C with a low detection limit, but their use is limited by their high cost, cumbersome operation, and susceptibility to malignant environments. In addition, studies on the monitoring of cytochrome C in the field of microbial corrosion has still not been carried out. Therefore, there is a need for a highly sensitive, selective, low-cost, anti-interference, and stable cytochrome C sensor with online monitoring and remote sensing capabilities for in-situ measurement of microbial corrosion strength. RESULTS: This paper proposed a highly sensitive label-free fiber-optic sensor based on Mach-Zehnder interferometer (MZI) for in-situ measurement of the microbial corrosion marker cytochrome C. Two-dimensional Ti2C-MXene material is uniformly immobilized onto the surface of the sensing area to improve the sensitivity, hydrophilicity, and specific surface area of the sensing area, as well as to facilitate the immobilization of specific sensitive materials. The cytochrome C antibody is modified on the surface of Ti2C-MXene to specifically recognize cytochrome C, whose concentration variation can be measured by monitoring the spectral shift of MZI sensor. Results demonstrate a measurement sensitivity of 1.428 nm/µM for cytochrome C concentrations ranging from 0 to 7.04 µM. The detection limit of the sensor is calculated to be 0.392 µM with remarkable performance, including selectivity, stability, and reliability. Besides, the measurement result of the proposed sensor in real microbial corrosive environment is consistent with that of the ideal environment. SIGNIFICANCE AND NOVELTY: This is the first instance of achieving in-situ and label-free measurement of cytochrome C by using a fiber-optic MZI sensor, which undoubtedly provides a feasible solution for the effective monitoring of microbial metal corrosion in the environment.


Assuntos
Citocromos c , Tecnologia de Fibra Óptica , Interferometria , Titânio , Citocromos c/análise , Citocromos c/metabolismo , Titânio/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Fibras Ópticas , Corrosão
2.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732777

RESUMO

Optical fiber sensors are extensively employed for their unique merits, such as small size, being lightweight, and having strong robustness to electronic interference. The above-mentioned sensors apply to more applications, especially the detection and monitoring of vital signs in medical or clinical. However, it is inconvenient for daily long-term human vital sign monitoring with conventional monitoring methods under the uncomfortable feelings generated since the skin and devices come into direct contact. This study introduces a non-invasive surveillance system that employs an optical fiber sensor and advanced deep-learning methodologies for precise vital sign readings. This system integrates a monitor based on the MZI (Mach-Zehnder interferometer) with LSTM networks, surpassing conventional approaches and providing potential uses in medical diagnostics. This could be potentially utilized in non-invasive health surveillance, evaluation, and intelligent health care.


Assuntos
Aprendizado Profundo , Fibras Ópticas , Sinais Vitais , Humanos , Sinais Vitais/fisiologia , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Redes Neurais de Computação
3.
Opt Express ; 32(6): 10077-10092, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571228

RESUMO

Every year, millions of people suffer some form of illness associated with the consumption of contaminated food. Escherichia coli (E. coli), found in the intestines of humans and other animals, is commonly associated with various diseases, due to the existence of pathogenic strains. Strict monitoring of food products for human consumption is essential to ensure public health, but traditional cell culture-based methods are associated with long waiting times and high costs. New approaches must be developed to achieve cheap, fast, and on-site monitoring. Thus, in this work, we developed optical fiber sensors based on surface plasmon resonance. Gold and cysteamine-coated fibers were functionalized with anti-E. coli antibody and tested using E. coli suspensions with concentrations ranging from 1 cell/mL to 105 cells/mL. An average logarithmic sensitivity of 0.21 ± 0.01 nm/log(cells/mL) was obtained for three independent assays. An additional assay revealed that including molybdenum disulfide resulted in an increase of approximately 50% in sensitivity. Specificity and selectivity were also evaluated, and the sensors were used to analyze contaminated water samples, which verified their promising applicability in the aquaculture field.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Animais , Humanos , Ressonância de Plasmônio de Superfície/métodos , Escherichia coli , Fibras Ópticas , Técnicas Biossensoriais/métodos , Imunoensaio
4.
J Biomed Opt ; 29(4): 046001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585417

RESUMO

Significance: Endoscopic screening for esophageal cancer (EC) may enable early cancer diagnosis and treatment. While optical microendoscopic technology has shown promise in improving specificity, the limited field of view (<1 mm) significantly reduces the ability to survey large areas efficiently in EC screening. Aim: To improve the efficiency of endoscopic screening, we propose a novel concept of end-expandable endoscopic optical fiber probe for larger field of visualization and for the first time evaluate a deep-learning-based image super-resolution (DL-SR) method to overcome the issue of limited sampling capability. Approach: To demonstrate feasibility of the end-expandable optical fiber probe, DL-SR was applied on simulated low-resolution microendoscopic images to generate super-resolved (SR) ones. Varying the degradation model of image data acquisition, we identified the optimal parameters for optical fiber probe prototyping. The proposed screening method was validated with a human pathology reading study. Results: For various degradation parameters considered, the DL-SR method demonstrated different levels of improvement of traditional measures of image quality. The endoscopists' interpretations of the SR images were comparable to those performed on the high-resolution ones. Conclusions: This work suggests avenues for development of DL-SR-enabled sparse image reconstruction to improve high-yield EC screening and similar clinical applications.


Assuntos
Esôfago de Barrett , Aprendizado Profundo , Neoplasias Esofágicas , Humanos , Fibras Ópticas , Neoplasias Esofágicas/diagnóstico por imagem , Esôfago de Barrett/patologia , Processamento de Imagem Assistida por Computador
5.
J Dent ; 145: 104998, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636650

RESUMO

OBJECTIVES: The study aimed to introduce a novel two-step optical fiber-based photo-activation of dental resin-based composites (RBCs) for reducing polymerization shrinkage stress (PSS). METHODS: Proposed protocol design - in the first step, two flexible plastic optical fibers connected to a dental light curing unit (LCU), were used as light guides inserted into the filling to initiate low-irradiance polymerization from within; in the second step, fibers were extracted and remaining voids were filled with RBC, followed by conventional high-irradiance curing to finalize polymerization. Three bulk-fill RBCs were tested (Beautifil-Bulk Restorative, Filtek Bulk-fill Posterior, Tetric PowerFill) using tooth cavity models. Three non-invasive examination techniques were employed: Digital Holographic Interferometry, Infrared Thermography, and Raman spectroscopy for monitoring model deformation, RBC temperature change, and degree of conversion (DC), respectively. A control group (for each examined RBC) underwent conventional photo-activation. RESULTS: The experimental protocol significantly reduced model deformation by 15 - 35 %, accompanied by an 18 - 54 % reduction in RBC temperature change, emphasizing the impact of thermal shrinkage on PSS. Real-time measurements of deformation and temperature provided indirect insights into reaction dynamics and illuminated potential mechanisms underlying PSS reduction. After a 24-hour dark-storage period, DC outcomes comparable to conventional curing were observed, affirming the clinical applicability of the method. CONCLUSIONS: Protocol involving the use of two 1.5 mm fibers in the first step (300 mW/cm2 x 10 s), followed by a second conventional curing step (1000 mW/cm2 x 10 s), is recommended to achieve the desired PSS reduction, while maintaining adequate DC and ensuring efficient clinical application. CLINICAL SIGNIFICANCE: Obtained PSS reduction offers promise in potentially improving the performance of composite restorations. Additionally, leveraging the flexibility of optical fibers improves light guide approach for restorations on posterior teeth. Meanwhile, implementation in clinical practice is easily achievable by coupling the fibers with commercial dental LCUs using the provided plastic adapter.


Assuntos
Resinas Compostas , Teste de Materiais , Fibras Ópticas , Polimerização , Resinas Compostas/química , Resinas Compostas/efeitos da radiação , Humanos , Lâmpadas de Polimerização Dentária , Materiais Dentários/química , Materiais Dentários/efeitos da radiação , Temperatura , Análise Espectral Raman , Cura Luminosa de Adesivos Dentários/métodos , Estresse Mecânico , Propriedades de Superfície
6.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626737

RESUMO

A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aß42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aß42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aß42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6µs ± 3.9µs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aß42 in different concentrations. The lowest Aß42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Técnicas Biossensoriais , Diagnóstico Precoce , Tecnologia de Fibra Óptica , Fragmentos de Peptídeos , Análise Espectral , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Humanos , Tecnologia de Fibra Óptica/métodos , Fragmentos de Peptídeos/análise , Técnicas Biossensoriais/métodos , Análise Espectral/métodos , Fibras Ópticas , Biomarcadores/análise , Refratometria , Desenho de Equipamento
7.
Sci Rep ; 14(1): 9446, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658694

RESUMO

To validate the feasibility of a fiber-optic pressure sensor-based pressure measurement device for monitoring intrarenal pressure and to analyze the effects of ureteral acess sheath (UAS) type, surgical location, perfusion flow rate, and measurement location on intrarenal pressure (IRP). The measurement deviations and response times to transient pressure changes were compared between a fiber-optic pressure sensing device and a urodynamic device IRP in an in vitro porcine kidney and in a water tank. Finally, pressure measurements were performed in anesthetized female pigs using fiber-optic pressure sensing device with different UAS, different perfusion flow rates, and different surgical positions at different renal calyces and ureteropelvic junctions (UPJ). According to our operation, the result is fiber optic pressure sensing devices are highly accurate and sensitive. Under the same conditions, IRP varied among different renal calyces and UPJ (P < 0.05). IRP was lowest at 50 ml/min and highest at 150 ml/min (P < 0.05). Surgical position had a significant effect on IRP (P < 0.05). 12/14 Fr UAS had a lower IRP than 11/13 Fr UAS. Therefore fiber optic pressure sensing devices are more advantageous for IRP measurements. In ureteroscopy, the type of ureteral sheath, the surgical position, the perfusion flow rate, and the location of the measurement all affect the intrarenal pressure value.


Assuntos
Tecnologia de Fibra Óptica , Rim , Pressão , Ureteroscopia , Animais , Tecnologia de Fibra Óptica/instrumentação , Suínos , Feminino , Rim/fisiologia , Ureteroscopia/instrumentação , Ureteroscopia/métodos , Fibras Ópticas , Urodinâmica
8.
Anal Chem ; 96(14): 5446-5454, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38556805

RESUMO

In this study, a novel integrated photoelectrochemical (PEC) sensor platform was proposed, utilizing an optical fiber (OF) as the working electrode for guided in situ light. A CdS quantum dots (QDs)/ZnO nanosheets (NSs) n-n heterojunction was quickly and easily constructed on the OF surface by successive ionic layer adsorption and reaction (SILAR). Au nanoparticles (NPs)@dsDNA as a capturing probe were modified on the CdS QDs/ZnO NSs@OF (CZ@OF). Due to the energy transfer between Au NPs@dsDNA and CdS QDs, the resultant opto-electrode has a lower background near zero, enabling the "signal-on" detection of biomarkers (interleukin-6 (IL-6) as a model). The OF-PEC biosensor demonstrated a wide linear range from 1 to 100 pg mL-1 with a regression coefficient (R2) of 0.9958 and an impressive detection limit (LOD) of 0.19 pg mL-1. More significantly, the proposed OF-PEC can be successfully used for the detection of IL-6 in serum samples from patients with pulmonary arterial hypertension, and it showed consistency and is more sensitive to trace concentrations compared to BD FACSCanto II flow cytometry used at the hospital. This holds significance for an early disease diagnosis. Therefore, the proposed OF-PEC not only achieves integration of the light source and sensing interface but also enables sensitive and accurate "signal-on" detection of IL-6. Furthermore, due to the flexibility and remote detection capabilities of OF, the application of OF-PEC is expected to be expanded more widely. This approach opens up possibilities for advances in PEC sensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Pontos Quânticos , Óxido de Zinco , Humanos , Técnicas Eletroquímicas , Citocinas , Interleucina-6 , Ouro , Adsorção , Fibras Ópticas , Eletrodos , Limite de Detecção
9.
Biosensors (Basel) ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38667166

RESUMO

Heart failure (HF) is a clinical entity included in cardiovascular diseases affecting millions of people worldwide, being a leading cause of hospitalization of older adults, and therefore imposing a substantial economic burden on healthcare systems. HF is characterized by dyspnea, fatigue, and edema associated with elevated blood levels of natriuretic peptides, such as N Terminal pro-B-type Natriuretic Peptide (NT-proBNP), for which there is a high demand for point of care testing (POCT) devices. Optical fiber (OF) biosensors offer a promising solution, capable of real-time detection, quantification, and monitoring of NT-proBNP concentrations in serum, saliva, or urine. In this study, immunosensors based on plasmonic uncladded OF tips were developed using OF with different core diameters (200 and 600 µm). The tips were characterized to bulk refractive index (RI), anddetection tests were conducted with NT-proBNP concentrations varying from 0.01 to 100 ng/mL. The 200 µm sensors showed an average total variation of 3.6 ± 2.5 mRIU, an average sensitivity of 50.5 mRIU/ng·mL-1, and a limit of detection (LOD) of 0.15 ng/mL, while the 600 µm sensors had a response of 6.1 ± 4.2 mRIU, a sensitivity of 102.8 mRIU/ng·mL-1, and an LOD of 0.11 ng/mL. Control tests were performed using interferents such as uric acid, glucose, and creatinine. The results show the potential of these sensors for their use in biological fluids.


Assuntos
Técnicas Biossensoriais , Peptídeo Natriurético Encefálico , Fibras Ópticas , Fragmentos de Peptídeos , Peptídeo Natriurético Encefálico/sangue , Humanos , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/análise , Insuficiência Cardíaca/diagnóstico , Limite de Detecção
10.
Biosens Bioelectron ; 257: 116312, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657380

RESUMO

Pre-eclampsia (PE) is a life-threatening complication that occurs during pregnancy, affecting a large number of pregnant women and newborns worldwide. Rapid, on-site and affordable screening of PE at an early stage is necessary to ensure timely treatment and minimize both maternal and neonatal morbidity and mortality rates. Placental growth factor (PlGF) is an angiogenic blood biomarker used for PE diagnosis. Herein, we report the plasmonic fiber optic absorbance biosensor (P-FAB) strategy for detecting PlGF at femtomolar concentration using polymethyl methacrylate (PMMA) based U-bent polymeric optical fiber (POF) sensor probes. A novel poly(amidoamine) (PAMAM) dendrimer based PMMA surface modification is established to obtain a greater immobilization of the bioreceptors compared to a linear molecule like hexamethylenediamine (HMDA). Plasmonic sandwich immunoassay was realized by immobilizing the mouse anti-PlGF (3H1) on the U-bent POF sensor probe surface and gold nanoparticles (AuNP) labels conjugated with mouse anti-PlGF (6H9). The POF sensor probes could measure PlGF within 30 min using the P-FAB strategy. The limit-of-detection (LoD) was found to be 0.19 pg/mL and 0.57 pg/mL in phosphate-buffered saline and 10× diluted serum, respectively. The clinical sample testing, with eleven positive and eleven negative preeclamptic pregnancy samples, successfully confirmed the accuracy, reliability, specificity, and sensitivity of the P-FAB based POF sensor platform, thereby paving the way for cost-effective technology for PlGF detection and its potential for pre-eclampsia diagnosis.


Assuntos
Técnicas Biossensoriais , Dendrímeros , Ouro , Nanopartículas Metálicas , Fibras Ópticas , Fator de Crescimento Placentário , Pré-Eclâmpsia , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/sangue , Gravidez , Feminino , Humanos , Dendrímeros/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Fator de Crescimento Placentário/sangue , Ouro/química , Nanopartículas Metálicas/química , Limite de Detecção , Imunoensaio/métodos , Imunoensaio/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Animais , Camundongos , Polimetil Metacrilato/química
11.
Anal Chem ; 96(18): 6906-6913, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656893

RESUMO

Glycerol tributyrate as a low-density lipoprotein plays a crucial role in drug development and food safety. In this work, a novel high-stability fiber optic sensor for glyceryl tributyrate based on the poly(acrylic acid) (PAA) and chitosan (CS) composite hydrogel embedding method is first proposed. Compared with traditional functionalization, the lipase in a polymer network structure used in this article can not only avoid chemical reactions that cause damage to the enzyme structure but also avoid the instability of ionic bonds and physical adsorption. Therefore, the PAA/CS hydrogel method proposed in this article can effectively retain enzyme structure. First, the impact of different layers (one to five layers) of PAA/CS on pH sensing performance was explored, and it was determined that layers 1-3 could be used for subsequent sensing experiments. Within the linear detection range of 0.5-10 mM, the detection sensitivities of the one to three layers of the biosensor are divided into 0.65, 0.95, and 1.51 nm/mM, respectively, with the three layers having the best effect. When the number of coating layers is three, the detection limit of the sensor is 0.47 mM, meeting the millimole level detection standard for anticancer requirement. Furthermore, the stability and selectivity of the sensor (in the presence of hemoglobin, urea, cholesterol, acetylcholine, and glucose) were analyzed. The three-layer sensor is used for sample detection. At concentrations of 1-10 mM, the absolute value of the recovery percentage (%) is 82-99%, which can accurately detect samples. The sensor proposed in this paper has the advantages of low sample consumption, high sensitivity, simple structure, and label-free measurement. The enzyme-embedding method provides a new route for rapid and reliable glyceryl tributyrate detection, which has potential applications in food safety as well as the development of anticancer drugs.


Assuntos
Resinas Acrílicas , Quitosana , Fibras Ópticas , Ressonância de Plasmônio de Superfície , Resinas Acrílicas/química , Quitosana/química , Hidrogéis/química , Limite de Detecção , Lipase/química , Lipase/metabolismo , Técnicas Biossensoriais/métodos
12.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544254

RESUMO

The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the enzyme-linked immunosorbent assay, require a lot of work, are not multiplexed, and only allow for single-time point observations. In order to get one step closer to clinical usage, a dynamic platform for biosensing the cancer biomarker CD44 using a single-mode optical fiber-based ball resonator biosensor was designed, constructed and evaluated in this work. The main novelty of the work is an in-depth study of the capability of an in-house fabricated optical fiber biosensor for in situ detection of a cancer biomarker (CD44 protein) by conducting several types of experiments. The main results of the work are as follows: (1) Calibration of the fabricated fiber-optic ball resonator sensors in both static and dynamic conditions showed similar sensitivity to the refractive index change demonstrating its usefulness as a biosensing platform for dynamic measurements; (2) The fabricated sensors were shown to be insensitive to pressure changes further confirming their utility as an in situ sensor; (3) The sensor's packaging and placement were optimized to create a better environment for the fabricated ball resonator's performance in blood-mimicking environment; (4) Incubating increasing protein concentrations with antibody-functionalized sensor resulted in nearly instantaneous signal change indicating a femtomolar detection limit in a dynamic range from 7.1 aM to 16.7 nM; (5) The consistency of the obtained signal change was confirmed by repeatability studies; (6) Specificity experiments conducted under dynamic conditions demonstrated that the biosensors are highly selective to the targeted protein; (7) Surface morphology studies by AFM measurements further confirm the biosensor's exceptional sensitivity by revealing a considerable shift in height but no change in surface roughness after detection. The biosensor's ability to analyze clinically relevant proteins in real time with high sensitivity offers an advancement in the detection and monitoring of malignant tumors, hence improving patient diagnosis and health status surveillance.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica/métodos , Fibras Ópticas , Proteínas , Neoplasias/diagnóstico , Receptores de Hialuronatos
13.
Biosens Bioelectron ; 255: 116237, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537429

RESUMO

Scintillation-based fiber dosimeters are a powerful tool for minimally invasive localized real-time monitoring of the dose rate during Low Dose Rate (LDR) and High Dose Rate (HDR) brachytherapy (BT). This paper presents the design, fabrication, and characterization of such dosimeters, consisting of scintillating sensor tips attached to polymer optical fiber (POF). The sensor tips consist of inorganic scintillators, i.e. Gd2O2S:Tb for LDR-BT, and Y2O3:Eu+4YVO4:Eu for HDR-BT, dispersed in a polymer host. The shape and size of the tips are optimized using non-sequential ray tracing simulations towards maximizing the collection and coupling of the scintillation signal into the POF. They are then manufactured by means of a custom moulding process implemented on a commercial hot embossing machine, paving the way towards series production. Dosimetry experiments in water phantoms show that both the HDR-BT and LDR-BT sensors feature good consistency in the magnitude of the average photon count rate and that the photon count rate signal is not significantly affected by variations in sensor tip composition and geometry. Whilst individual calibration remains necessary, the proposed dosimeters show great potential for in-vivo dosimetry for brachytherapy.


Assuntos
Técnicas Biossensoriais , Braquiterapia , Dosímetros de Radiação , Fibras Ópticas , Polímeros
14.
Biosens Bioelectron ; 254: 116189, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38507927

RESUMO

Plasmonic optical fiber-based biosensors are currently in their early stages of development as practical and integrated devices, gradually making their way towards the market. While the majority of these biosensors operate using white light and multimode optical fibers (OFs), our approach centers on single-mode OFs coupled with tilted fiber Bragg gratings (TFBGs) in the near-infrared wavelength range. Our objective is to enhance surface sensitivity and broaden sensing capabilities of OF-based sensors to develop in situ sensing with remote interrogation. In this study, we comprehensively assess their performance in comparison to the gold-standard plasmonic reference, a commercial device based on the Kretschmann-Raether prism configuration. We present their refractive index sensitivity and their capability for insulin sensing using a dedicated microfluidics approach. By optimizing a consistent surface biotrapping methodology, we elucidate the dynamic facets of both technologies and highlight their remarkable sensitivity to variations in bulk and surface properties. The one-to-one comparison between both technologies demonstrates the reliability of optical fiber-based measurements, showcasing similar experimental trends obtained with both the prismatic configuration and gold-coated TFBGs, with an even enhanced limit of detection for the latter. This study lays the foundation for the detection of punctual molecular interactions and opens the way towards the detection of spatially and temporally localized events on the surface of optical probes.


Assuntos
Técnicas Biossensoriais , Fibras Ópticas , Técnicas Biossensoriais/métodos , Insulina , Benchmarking , Reprodutibilidade dos Testes
15.
Biosens Bioelectron ; 254: 116232, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520984

RESUMO

Healthcare system is undergoing a significant transformation from a traditional hospital-centered to an individual-centered one, as a result of escalating chronic diseases, ageing populations, and ever-increasing healthcare costs,. Wearable sensors have become widely used in health monitoring systems since the COVID-19 pandemic. They enable continuous measurement of important health indicators like body temperature, wrist pulse, respiration rate, and non-invasive bio fluids like saliva and perspiration. Over the last few decades, the development has mostly concentrated on electrochemical and electrical wearable sensors. However, due to the drawbacks of such sensors, such as electronic waste, electromagnetic interference, non-electrical security, and poor performance, researchers are exhibiting a strong interest in optical principle-based systems. Fiber-based optical wearables are among the most promising healthcare systems because of advancements in high-sensitivity, durable, multiplexed sensing, and simple integration with flexible materials to improve wearability and simplicity. We present an overview of recent developments in optical fiber-based wearable sensors, focusing on two mechanisms: wavelength interrogation and intensity modulation for the detection of body temperature, pulse rate, respiration rate, body movements, and biomedical noninvasive fluids, with a thorough examination of their benefits and drawbacks. This review also focuses on improving working performance and application techniques for healthcare systems, including the integration of nanomaterials and the usage of the Internet of Things (IoT) with signal processing. Finally, the review concludes with a discussion of the future possibilities and problems for optical fiber-based wearables.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/métodos , Fibras Ópticas , Pandemias , Monitorização Fisiológica/métodos
16.
Biosens Bioelectron ; 253: 116191, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460209

RESUMO

To alleviate the discomfort associated with frequent blood glucose detection in diabetic patients, a novel non-invasive tear glucose biosensor has been developed. This involved the design and preparation of a photoelectrochemical probe based on an optical fiber and biological enzymes. One end of the optical fiber connects to a light source, acting as an energy source and imparting, self-powered capability to the biosensor. The opposite end is loaded with nanomaterials and glucose oxidase, designed for insertion into the sample to realize photoelectrochemical sensing. This innovative configuration not only improves the integration of the biosensor but is also suitable for analyzing minuscule voluminal samples. The results show that the proposed biosensor exhibits a linear range from 10 nM to 100 µM, possesses a low detection limit of 4.1 nM and a short response time of 0.7 s. Benefiting from the high selectivity of the enzyme, the proposed biosensor demonstrates excellent resistance to the interference of common tear components. In summary, this work provides a more effective method for non-invasive glucose detection and affords valuable ideas for the design and fabrication of non-invasive and self-powered biosensors.


Assuntos
Técnicas Biossensoriais , Fibras Ópticas , Humanos , Técnicas Biossensoriais/métodos , Glucose , Glicemia , Glucose Oxidase
17.
Lasers Med Sci ; 39(1): 61, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358591

RESUMO

Thermoablative techniques currently represent, in accordance with international guidelines, the most used methods in the treatment of varicose veins. From some years, lasers with a wavelength greater than 1900 nm have been introduced for EndoVenous Laser Ablation (EVLA) treatment. However, currently, few clinical studies regarding this new technology are reported in the medical literature. The aim of this study is to evaluate outcomes at a 2-year follow-up (mid-term) of EVLA of varicose veins of the lower limbs using a 1940-nm laser and a new cylindric monoring fiber. This clinical trial was conducted as a multicenter, retrospective, non-randomized, non-blind clinical study. Ninety-three patients were enrolled for a total of one hundred consecutive procedures performed in the period between January 2021 and May 2021 in two Italian facilities. The primary efficacy endpoint was the occlusion rate of the treated vein immediately after surgery and at the follow-up (24 months). The secondary efficacy endpoint was the evaluation of the parameters of energy delivered during the procedure (power and linear energy density or LEED). The primary safety endpoints were the incidence of pain (1 day and 7 days after surgery) and the rate of intraoperative and postoperative complications. The precepted pain was evaluated with the visual analog scale (VAS). The secondary safety endpoint was the evaluation of the improvement of the patient's symptoms related to venous disease. This evaluation was conducted by recording the changes in clinical, etiologic, anatomic, and pathophysiologic (CEAP) classification. All procedures were carried out regularly on an outpatient basis, and no intraoperative complications occurred. The occlusion rate of the target veins was 100% at 7- and 30-day controls. At follow-up controls, performed at 6 months, 1 and 2 years carried out showed an occlusion rate respectively of 99% (97 to 100), 96.9% (93.6 to 100), and 95.9% (92.1 to 99.9). The secondary efficacy endpoint was the evaluation of the parameters of energy delivered during the procedure (power watt and linear energy density): As regards the power parameters, we report an average of watts of 4.5 ± 0.8 [2.5 to 6] and linear energy density delivered (LEED) of 41.2 ± 8.6 [(21.1 to 66.7)]. The pain reported (with VAS scale) on 1 day of the procedure was 2 [1; 3] and 1 [0 to 4] at 7 days. All patients showed improved symptoms related to venous disease, with reduction of the individual CEAP class to which they belong. This study demonstrates that EndoVascular Laser Ablation (EVLA) treatment of varicose veins with a wavelength > 1900 nm is safe and effective. The overall occlusion rate was high. The reported results suggest that using lower parameters, such as output power (watts) and LEED (linear energy density), do not reduce the success rate of the treatment when used over 35 J/cm.


Assuntos
Terapia a Laser , Varizes , Humanos , Fibras Ópticas , Estudos Retrospectivos , Varizes/cirurgia , Dor
18.
Opt Lett ; 49(4): 1081-1084, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359258

RESUMO

A low contrast is a limiting factor for imaging a microstructure beneath the biological sample surface. In this work, we describe a novel, to our knowledge, full-field optical coherence tomography (FFOCT) system with a probe connected by a fiber bundle and a multimode optical fiber. The device is based on the tandem structure of the Michelson interferometer and the Fizeau interferometer. One advantage of our device is that light propagates through the fiber bundle only once, greatly improving detection sensitivity. In addition, by spatial filtering in the Fourier domain and inverse filtering, the effects of pixelation artifacts and multiple scattering in the en face images obtained by our system are suppressed. The depth-resolved en face images of the human finger skin ex vivo and the porcine esophagus ex vivo are presented to demonstrate the capability of our system.


Assuntos
Pele , Tomografia de Coerência Óptica , Animais , Suínos , Humanos , Tomografia de Coerência Óptica/métodos , Fibras Ópticas , Artefatos
19.
ACS Appl Mater Interfaces ; 16(7): 8333-8345, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38321958

RESUMO

With the advantages of high flexibility, strong real-time monitoring capabilities, and convenience, wearable devices have shown increasingly powerful application potential in medical rehabilitation, health monitoring, the Internet of Things, and human-computer interaction. In this paper, we propose a novel and wearable optical microfiber intelligent sensor based on a wavy-shaped polymer optical microfiber (WPOMF) for cardiorespiratory and behavioral monitoring of humans. The optical fibers based on polymer materials are prepared into optical microfibers, fully using the advantages of the polymer material and optical microfibers. The prepared polymer optical microfiber is designed into a flexible wave-shaped structure, which enables the WPOMF sensor to have higher tensile properties and detection sensitivity. Cardiorespiratory and behavioral detection experiments based on the WPOMF sensor are successfully performed, which demonstrates the high sensitivity and stability potential of the WPOMF sensor when performing wearable tasks. Further, the success of the AI-assisted medical keyword pronunciation recognition experiment fully demonstrates the feasibility of integrating AI technology with the WPOMF sensor, which can effectively improve the intelligence of the sensor as a wearable device. As an optical microfiber intelligent sensor, the WPOMF sensor offers broad application prospects in disease monitoring, rehabilitation medicine, the Internet of Things, and other fields.


Assuntos
Polímeros , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica , Fibras Ópticas
20.
Bioinspir Biomim ; 19(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38306671

RESUMO

With increasing attention on the world's oceans, a significant amount of research has been focused on the sensing of marine-related parameters in recent years. In this paper, a bioinspired flow sensor with corrosion resistance, anti-interference capability, a portable design structure, easy integration, and directional sensing ability is presented to realize flow speed sensing in open water. The sensor is realized by a flexible artificial cupula that seals one side of an optical fiber acting as an artificial kinocilium. Below the artificial kinocilium, an encapsulated s-tapered optical fiber mimics the fish neuromast sensory mechanism and is supported by a 3D-printed structure that acts as the artificial supporting cell. To characterize the sensor, the optical transmission spectra of the sensory fiber under a set of water flow velocities and four orthogonal directions were monitored. The sensor's peak intensity responses were found to demonstrate flow sensing ability for velocity and direction, proving that this biomimetic portable sensing structure is a promising candidate for flow sensing in marine environments.


Assuntos
Biomimética , Fibras Ópticas , Animais , Água , Mecanorreceptores , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...