Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.172
Filtrar
1.
Physiol Rep ; 12(15): e16181, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39138135

RESUMO

This study aimed to evaluate the influence of combined intermittent fasting (IF) and high-intensity interval training (HIIT) on morphology, caspase-independent apoptosis signaling pathway, and myostatin expression in soleus and gastrocnemius (white portion) muscles from healthy rats. Sixty-day-old male Wistar rats (n = 60) were divided into four groups: control (C), IF, high-intensity-interval training (T), and high-intensity-interval training and intermittent fasting (T-IF). The C and T groups received ad libitum chow daily; IF and T-IF received the same standard chow every other day. Animals from T and T-IF underwent a HIIT protocol five times a week for 12 weeks. IF reduced gastrocnemius mass and increased pro-apoptotic proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) in soleus and cleaved-to-non-cleaved PARP-1 ratio and myostatin expression in gastrocnemius white portion. HIIT increased AIF and apoptosis repressor with caspase recruitment domain expression in soleus and cleaved-to-total PARP-1 ratio in gastrocnemius muscle white portion. The combination of IF and HIIT reduced fiber cross-sectional area in both muscles, increased EndoG and AIF expression, and decreased cleaved-to-non-cleaved PARP-1 ratio in gastrocnemius muscle white portion. Muscle responses to IF and HIIT are directly impacted by the muscle fiber type composition and are modulated, at least in part, by myostatin and caspase-independent apoptosis signaling.


Assuntos
Fator de Indução de Apoptose , Apoptose , Jejum , Treinamento Intervalado de Alta Intensidade , Fibras Musculares de Contração Lenta , Atrofia Muscular , Miostatina , Ratos Wistar , Transdução de Sinais , Animais , Masculino , Apoptose/fisiologia , Jejum/metabolismo , Jejum/fisiologia , Miostatina/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Ratos , Transdução de Sinais/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fator de Indução de Apoptose/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Endodesoxirribonucleases/metabolismo , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/metabolismo , Jejum Intermitente , Poli(ADP-Ribose) Polimerase-1
2.
Physiol Res ; 73(3): 369-379, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027954

RESUMO

The skeletal muscle is the main organ responsible for insulin action, and glucose disposal and metabolism. Endurance and/or resistance training raises the number of mitochondria in diabetic muscles. The details of these adaptations, including mitochondrial adaptations of the slow and fast muscles in diabetes, are unclear. This study aimed to determine whether exercise training in streptozotocin (STZ)-induced mice leads to differential adaptations in the slow and fast muscles, and improving glucose clearance. Eight-week-old mice were randomly distributed into normal control (CON), diabetes (DM), and diabetes and exercise (DM+Ex) groups. In the DM and DM+Ex groups, mice received a freshly prepared STZ (100 mg/kg) intraperitoneal injection on two consecutive days. Two weeks after the injection, the mice in the groups ran on a treadmill for 60 min at 20 m/min for a week and subsequently at 25 m/min for 5 weeks (5 days/week). The analyses indicated that running training at low speed (25 m/min) enhanced mitochondrial enzyme activity and expression of lactate and glucose transporters in the plantaris (low-oxidative) muscle that improved whole-body glucose metabolism in STZ-induced diabetic mice. There were no differences in glucose transporter expression levels in the soleus (high-oxidative) muscle. The endurance running exercise at 20-25 m/min was sufficient to induce mitochondrial adaptation in the low-oxidative muscles, but not in the high-oxidative muscles, of diabetic mice. In conclusion, the present study indicated that running training at 25 m/min improved glucose metabolism by increasing the mitochondrial enzyme activity and glucose transporter 4 and monocarboxylate transporter 4 protein contents in the low-oxidative muscles in STZ-induced diabetic mice.


Assuntos
Adaptação Fisiológica , Diabetes Mellitus Experimental , Mitocôndrias Musculares , Condicionamento Físico Animal , Corrida , Animais , Diabetes Mellitus Experimental/metabolismo , Adaptação Fisiológica/fisiologia , Camundongos , Masculino , Condicionamento Físico Animal/fisiologia , Mitocôndrias Musculares/metabolismo , Corrida/fisiologia , Músculo Esquelético/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Resistência Física/fisiologia , Estreptozocina , Glicemia/metabolismo
3.
Physiol Rep ; 12(13): e16052, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987200

RESUMO

We previously observed lifelong endurance exercise (LLE) influenced quadriceps whole-muscle and myofiber size in a fiber-type and sex-specific manner. The current follow-up exploratory investigation examined myofiber size regulators and myofiber size distribution in vastus lateralis biopsies from these same LLE men (n = 21, 74 ± 1 years) and women (n = 7, 72 ± 2 years) as well as old, healthy nonexercisers (OH; men: n = 10, 75 ± 1 years; women: n = 10, 75 ± 1 years) and young exercisers (YE; men: n = 10, 25 ± 1 years; women: n = 10, 25 ± 1 years). LLE exercised ~5 days/week, ~7 h/week for the previous 52 ± 1 years. Slow (myosin heavy chain (MHC) I) and fast (MHC IIa) myofiber nuclei/fiber, myonuclear domain, satellite cells/fiber, and satellite cell density were not influenced (p > 0.05) by LLE in men and women. The aging groups had ~50%-60% higher proportion of large (>7000 µm2) and small (<3000 µm2) myofibers (OH; men: 44%, women: 48%, LLE; men: 42%, women: 42%, YE; men: 27%, women: 29%). LLE men had triple the proportion of large slow fibers (LLE: 21%, YE: 7%, OH: 7%), while LLE women had more small slow fibers (LLE: 15%, YE: 8%, OH: 9%). LLE reduced by ~50% the proportion of small fast (MHC II containing) fibers in the aging men (OH: 14%, LLE: 7%) and women (OH: 35%, LLE: 18%). These data, coupled with previous findings, suggest that myonuclei and satellite cell content are uninfluenced by lifelong endurance exercise in men ~60-90 years, and this now also extends to septuagenarian lifelong endurance exercise women. Additionally, lifelong endurance exercise appears to influence the relative abundance of small and large myofibers (fast and slow) differently between men and women.


Assuntos
Exercício Físico , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Resistência Física , Células Satélites de Músculo Esquelético , Humanos , Feminino , Masculino , Células Satélites de Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/citologia , Adulto , Resistência Física/fisiologia , Exercício Físico/fisiologia , Idoso , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/fisiologia , Fibras Musculares de Contração Lenta/citologia , Núcleo Celular/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Músculo Quadríceps/citologia , Músculo Quadríceps/fisiologia , Envelhecimento/fisiologia , Adulto Jovem
4.
Meat Sci ; 216: 109582, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38991479

RESUMO

This study conducted a thorough analysis of the myofiber type composition in the extensor digitorum longus muscle (EDL) and soleus muscle (SOL) of Kazakh horses, across different genders (male and female). The results showed significant differences in myofiber type composition between EDL and SOL, with a higher proportion of Type I fibers in SOL muscles and a greater prevalence of Type II fibers in EDL muscles. Additionally, the myofiber diameter in Kazakh horses was relatively small, potentially related to the tenderness and edible quality of their muscles. Using high-throughput sequencing technology, we constructed 32 cDNA sequencing libraries and obtained high-quality read data. Gene expression analysis revealed 278 and 372 differentially expressed genes (DEGs) in EDL and SOL muscles, respectively, including genes related to muscle contraction, metabolism, and development. Intersection analysis of DEGs between genders showed that 60 DEGs were significantly different in both male and female horses. GO annotation and KEGG analysis further elucidated the roles of these DEGs in muscle structure, function, and cellular signaling. Protein-protein interaction (PPI) network analysis and identification of hub genes provided new insights into the molecular mechanisms underlying muscle growth and development. Finally, the reliability of the DEGs data was validated through quantitative real-time PCR (qRT-PCR). This study not only enhances our understanding of the biological characteristics of horse muscles but also provides potential molecular targets for improving horse muscle performance and health.


Assuntos
Perfilação da Expressão Gênica , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Transcriptoma , Animais , Cavalos/genética , Masculino , Feminino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Mapas de Interação de Proteínas
5.
Acta Physiol (Oxf) ; 240(9): e14208, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39077881

RESUMO

AIM: Parvalbumin (PV) is a primary calcium buffer in mouse fast skeletal muscle fibers. Previous work showed that PV ablation has a limited impact on cytosolic Ca2+ ([Ca2+]cyto) transients and contractile response, while it enhances mitochondrial density and mitochondrial matrix-free calcium concentration ([Ca2+]mito). Here, we aimed to quantitatively test the hypothesis that mitochondria act to compensate for PV deficiency. METHODS: We determined the free Ca2+ redistribution during a 2 s 60 Hz tetanic stimulation in the sarcoplasmic reticulum, cytosol, and mitochondria. Via a reaction-diffusion Ca2+ model, we quantitatively evaluated mitochondrial uptake and storage capacity requirements to compensate for PV lack and analyzed possible extracellular export. RESULTS: [Ca2+]mito during tetanic stimulation is greater in knock-out (KO) (1362 ± 392 nM) than in wild-type (WT) (855 ± 392 nM), p < 0.05. Under the assumption of a non-linear intramitochondrial buffering, the model predicts an accumulation of 725 µmoles/L fiber (buffering ratio 1:11 000) in KO, much higher than in WT (137 µmoles/L fiber, ratio 1:4500). The required transport rate via mitochondrial calcium uniporter (MCU) reaches 3 mM/s, compatible with available literature. TEM images of calcium entry units and Mn2+ quenching showed a greater capacity of store-operated calcium entry in KO compared to WT. However, levels of [Ca2+]cyto during tetanic stimulation were not modulated to variations of extracellular calcium. CONCLUSIONS: The model-based analysis of experimentally determined calcium distribution during tetanic stimulation showed that mitochondria can act as a buffer to compensate for the lack of PV. This result contributes to a better understanding of mitochondria's role in modulating [Ca2+]cyto in skeletal muscle fibers.


Assuntos
Cálcio , Citosol , Camundongos Knockout , Parvalbuminas , Animais , Parvalbuminas/metabolismo , Citosol/metabolismo , Cálcio/metabolismo , Camundongos , Fibras Musculares de Contração Rápida/metabolismo , Mitocôndrias Musculares/metabolismo , Camundongos Endogâmicos C57BL , Retículo Sarcoplasmático/metabolismo , Mitocôndrias/metabolismo , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo
6.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892319

RESUMO

The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.


Assuntos
Metabolômica , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Animais , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Metabolômica/métodos , Metaboloma , Metabolismo Energético , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Glicólise
7.
Endocrinol Metab (Seoul) ; 39(3): 521-530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858821

RESUMO

BACKGRUOUND: Aging leads to sarcopenia, which is characterized by reduced muscle mass and strength. Many factors, including altered muscle protein turnover, diminished neuromuscular function, hormonal changes, systemic inflammation, and the structure and composition of muscle fibers, play a crucial role in age-related muscle decline. This study explored differences in muscle fiber types contributing to overall muscle function decline in aging, focusing on individuals with hip fractures from falls. METHODS: A pilot study at Chungnam National University Hospital collected muscle biopsies from hip fracture patients aged 20 to 80 undergoing surgical treatment. Muscle biopsies from the vastus lateralis and gluteus maximus were obtained during hip arthroplasty or internal fixation. Handgrip strength, calf and thigh circumference, and bone mineral density were evaluated in individuals with hip fractures from falls. We analyzed the relationships between each clinical characteristic and muscle fiber type. RESULTS: In total, 26 participants (mean age 67.9 years, 69.2% male) were included in this study. The prevalence of sarcopenia was 53.8%, and that of femoral and lumbar osteoporosis was 19.2% and 11.5%, respectively. Vastus lateralis analysis revealed an age-related decrease in type IIx fibers, a higher proportion of type IIa fibers in women, and an association between handgrip strength and type IIx fibers in men. The gluteus maximus showed no significant correlations with clinical parameters. CONCLUSION: This study identified complex associations between age, sex, handgrip strength, and muscle fiber composition in hip fracture patients, offering insights crucial for targeted interventions combating age-related muscle decline and improving musculoskeletal health.


Assuntos
Fraturas do Quadril , Músculo Quadríceps , Sarcopenia , Humanos , Masculino , Feminino , Idoso , Fraturas do Quadril/patologia , Sarcopenia/patologia , Músculo Quadríceps/patologia , Pessoa de Meia-Idade , Projetos Piloto , Idoso de 80 Anos ou mais , Força da Mão , Adulto , Densidade Óssea , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/metabolismo , Adulto Jovem , Envelhecimento/fisiologia , Envelhecimento/patologia , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Rápida/metabolismo
8.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892380

RESUMO

Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.


Assuntos
Cálcio , Fibras Musculares de Contração Rápida , Simendana , Simendana/farmacologia , Animais , Camundongos , Cálcio/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Contração Muscular/efeitos dos fármacos , Sarcômeros/metabolismo , Sarcômeros/efeitos dos fármacos , Masculino , Miofibrilas/metabolismo , Miofibrilas/efeitos dos fármacos
9.
J Physiol ; 602(12): 2807-2822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762879

RESUMO

Piperine has been shown to bind to myosin and shift the distribution of conformational states of myosin molecules from the super-relaxed state to the disordered relaxed state. However, little is known about the implications for muscle force production and potential underlying mechanisms. Muscle contractility experiments were performed using isolated muscles and single fibres from rats and mice. The dose-response effect of piperine on muscle force was assessed at several stimulation frequencies. The potentiation of muscle force was also tested in muscles fatigued by eccentric contractions. Potential mechanisms of force potentiation were assessed by measuring Ca2+ levels during stimulation in enzymatically dissociated muscle fibres, while myofibrillar Ca2+ sensitivity was assessed in chemically skinned muscle fibres. Piperine caused a dose-dependent increase in low-frequency force with no effect on high-frequency force in both slow- and fast-twitch muscle, with similar relative increases in twitch force, rate of force development and relaxation rate. The potentiating effect of piperine on low-frequency force was reversible, and piperine partially recovered low-frequency force in fatigued muscle. Piperine had no effect on myoplasmic free [Ca2+] levels in mouse muscle fibres, whereas piperine substantially augmented the force response to submaximal levels of [Ca2+] in rat MyHCII fibres and MyHCI fibres along with a minor increase in maximum Ca2+-activated force. Piperine enhances low-frequency force production in both fast- and slow-twitch muscle. The effects are reversible and can counteract muscle fatigue. The primary underlying mechanism appears to be an increase in Ca2+ sensitivity. KEY POINTS: Piperine is a plant alkaloid derived from black pepper. It is known to bind to skeletal muscle myosin and enhance resting ATP turnover but its effects on contractility are not well known. We showed for the first time a piperine-induced force potentiation that was pronounced during low-frequency electrical stimulation of isolated muscles. The effect of piperine was observed in both slow and fast muscle types, was reversible, and could counteract the force decrements observed after fatiguing muscle contractions. Piperine treatment caused an increase in myofibrillar Ca2+ sensitivity in chemically skinned muscle fibres, while we observed no effect on intracellular Ca2+ concentrations during electrical stimulation in enzymatically dissociated muscle fibres.


Assuntos
Alcaloides , Benzodioxóis , Cálcio , Contração Muscular , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Piperidinas , Alcamidas Poli-Insaturadas , Animais , Alcamidas Poli-Insaturadas/farmacologia , Benzodioxóis/farmacologia , Piperidinas/farmacologia , Alcaloides/farmacologia , Camundongos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/fisiologia , Ratos , Contração Muscular/efeitos dos fármacos , Masculino , Cálcio/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/fisiologia , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Relação Dose-Resposta a Droga
10.
J Physiol ; 602(12): 2751-2762, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695322

RESUMO

There is a growing appreciation that regulation of muscle contraction requires both thin filament and thick filament activation in order to fully activate the sarcomere. The prevailing mechano-sensing model for thick filament activation was derived from experiments on fast-twitch muscle. We address the question whether, or to what extent, this mechanism can be extrapolated to the slow muscle in the hearts of large mammals, including humans. We investigated the similarities and differences in structural signatures of thick filament activation in porcine myocardium as compared to fast rat extensor digitorum longus (EDL) skeletal muscle under relaxed conditions and sub-maximal contraction using small angle X-ray diffraction. Thick and thin filaments were found to adopt different structural configurations under relaxing conditions, and myosin heads showed different changes in configuration upon sub-maximal activation, when comparing the two muscle types. Titin was found to have an X-ray diffraction signature distinct from those of the overall thick filament backbone, and its spacing change appeared to be positively correlated to the force exerted on the thick filament. Structural changes in fast EDL muscle were found to be consistent with the mechano-sensing model. In porcine myocardium, however, the structural basis of mechano-sensing is blunted suggesting the need for additional activation mechanism(s) in slow cardiac muscle. These differences in thick filament regulation can be related to their different physiological roles where fast muscle is optimized for rapid, burst-like, contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned, graded response to allow for their substantial functional reserve. KEY POINTS: Both thin filament and thick filament activation are required to fully activate the sarcomere. Thick and thin filaments adopt different structural configurations under relaxing conditions, and myosin heads show different changes in configuration upon sub-maximal activation in fast extensor digitorum longus muscle and slow porcine cardiac muscle. Titin has an X-ray diffraction signature distinct from those of the overall thick filament backbone and this titin reflection spacing change appeared to be directly proportional to the force exerted on the thick filament. Mechano-sensing is blunted in porcine myocardium suggesting the need for additional activation mechanism(s) in slow cardiac muscle. Fast skeletal muscle is optimized for rapid, burst-like contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned graded response to allow for their substantial functional reserve.


Assuntos
Miocárdio , Animais , Suínos , Miocárdio/metabolismo , Conectina/metabolismo , Ratos , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Sarcômeros/fisiologia , Sarcômeros/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Difração de Raios X , Contração Muscular/fisiologia , Miosinas/metabolismo , Miosinas/fisiologia
11.
Exp Gerontol ; 190: 112423, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608790

RESUMO

Aging is associated with impaired strength and power during isometric and shortening contractions, however, during lengthening (i.e., eccentric) contractions, strength is maintained. During daily movements, muscles undergo stretch-shortening cycles (SSCs). It is unclear whether the age-related maintenance of eccentric strength offsets age-related impairments in power generation during SSCs owing to the utilization of elastic energy or other cross-bridge based mechanisms. Here we investigated how aging influences SSC performance at the single muscle fibre level and whether performing active lengthening prior to shortening protects against age-related impairments in power generation. Single muscle fibres from the psoas major of young (∼8 months; n = 31 fibres) and old (∼32 months; n = 41 fibres) male F344BN rats were dissected and chemically permeabilized. Fibres were mounted between a force transducer and length controller and maximally activated (pCa 4.5). For SSCs, fibres were lengthened from average sarcomere lengths of 2.5 to 3.0 µm and immediately shortened back to 2.5 µm at both fast and slow (0.15 and 0.60 Lo/s) lengthening and shortening speeds. The magnitude of the SSC effect was calculated by comparing work and power during shortening to an active shortening contraction not preceded by active lengthening. Absolute isometric force was ∼37 % lower in old compared to young rat single muscle fibres, however, when normalized to cross-sectional area (CSA), there was no longer a significant difference in isometric force between age groups, meanwhile there was an ∼50 % reduction in absolute power in old as compared with young. We demonstrated that SSCs significantly increased power production (75-110 %) in both young and old fibres when shortening occurred at a fast speed and provided protection against power-loss with aging. Therefore, in older adults during everyday movements, power is likely 'protected' in part due to the stretch-shortening cycle as compared with isolated shortening contractions.


Assuntos
Envelhecimento , Contração Muscular , Fibras Musculares Esqueléticas , Força Muscular , Animais , Masculino , Ratos , Envelhecimento/patologia , Envelhecimento/fisiologia , Contração Isométrica/fisiologia , Cinética , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Força Muscular/fisiologia , Ratos Endogâmicos BN , Ratos Endogâmicos F344
12.
J Food Sci ; 89(6): 3788-3801, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638069

RESUMO

The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.


Assuntos
Ácido Butírico , Microbioma Gastrointestinal , Extrato de Sementes de Uva , Camundongos Endogâmicos BALB C , Proantocianidinas , Animais , Proantocianidinas/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Camundongos , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Ceco/microbiologia , Ceco/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/classificação
13.
Exp Neurol ; 376: 114772, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599366

RESUMO

Animals on Earth need to hold postures and execute a series of movements under gravity and atmospheric pressure. VAChT-Cre is a transgenic Cre driver mouse line that expresses Cre recombinase selectively in motor neurons of S-type (slow-twitch fatigue-resistant) and FR-type (fast-twitch fatigue-resistant). Sequential motor unit recruitment is a fundamental principle for fine and smooth locomotion; smaller-diameter motor neurons (S-type, FR-type) first contract low-intensity oxidative type I and type IIa muscle fibers, and thereafter larger-diameter motor neurons (FInt-type, FF-type) are recruited to contract high-intensity glycolytic type IIx and type IIb muscle fibers. To selectively eliminate S- and FR-type motor neurons, VAChT-Cre mice were crossbred with NSE-DTA mice in which the cytotoxic diphtheria toxin A fragment (DTA) was expressed in Cre-expressing neurons. The VAChT-Cre;NSE-DTA mice were born normally but progressively manifested various characteristics, including body weight loss, kyphosis, kinetic and postural tremor, and muscular atrophy. The progressive kinetic and postural tremor was remarkable from around 20 weeks of age and aggravated. Muscular atrophy was apparent in slow muscles, but not in fast muscles. The increase in motor unit number estimation was detected by electromyography, reflecting compensatory re-innervation by remaining FInt- and FF-type motor neurons to the orphaned slow muscle fibers. The muscle fibers gradually manifested fast/slow hybrid phenotypes, and the remaining FInt-and FF-type motor neurons gradually disappeared. These results suggest selective ablation of S- and FR-type motor neurons induces progressive muscle fiber-type transition, exhaustion of remaining FInt- and FF-type motor neurons, and late-onset kinetic and postural tremor in mice.


Assuntos
Camundongos Transgênicos , Neurônios Motores , Tremor , Animais , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Camundongos , Tremor/genética , Tremor/fisiopatologia , Fibras Musculares de Contração Lenta/patologia , Fibras Musculares de Contração Rápida/patologia , Doenças Musculares/fisiopatologia , Doenças Musculares/patologia , Doenças Musculares/etiologia , Fadiga Muscular/fisiologia , Postura/fisiologia , Animais Recém-Nascidos , Modelos Animais de Doenças
14.
Rheumatol Int ; 44(6): 1077-1087, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581449

RESUMO

Sporadic inclusion body myositis (sIBM) is a subgroup of idiopathic inflammatory myopathies characterised by progressive muscle weakness and skeletal muscle inflammation. Quantitative data on the myofibre morphology in sIBM remains scarce. Further, no previous study has examined fibre type association of satellite cells (SC), myonuclei number, macrophages, capillaries, and myonuclear domain (MD) in sIBM patients. Muscle biopsies from sIBM patients (n = 18) obtained previously (NCT02317094) were included in the analysis for fibre type-specific myofibre cross-sectional area (mCSA), SCs, myonuclei and macrophages, myonuclear domain, and capillarisation. mCSA (p < 0.001), peripheral myonuclei (p < 0.001) and MD (p = 0.005) were higher in association with type 1 (slow-twitch) than type 2 (fast-twitch) fibres. Conversely, quiescent SCs (p < 0.001), centrally placed myonuclei (p = 0.03), M1 macrophages (p < 0.002), M2 macrophages (p = 0.013) and capillaries (p < 0.001) were higher at type 2 fibres compared to type 1 fibres. In contrast, proliferating (Pax7+/Ki67+) SCs (p = 0.68) were similarly associated with each fibre type. Type 2 myofibres of late-phase sIBM patients showed marked signs of muscle atrophy (i.e. reduced mCSA) accompanied by higher numbers of associated quiescent SCs, centrally placed myonuclei, macrophages and capillaries compared to type 1 fibres. In contrast, type 1 fibres were suffering from pathological enlargement with larger MDs as well as fewer nuclei and capillaries per area when compared with type 2 fibres. More research is needed to examine to which extent different therapeutic interventions including targeted exercise might alleviate these fibre type-specific characteristics and countermeasure their consequences in impaired functional performance.


Assuntos
Miosite de Corpos de Inclusão , Regeneração , Humanos , Miosite de Corpos de Inclusão/patologia , Miosite de Corpos de Inclusão/fisiopatologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Macrófagos/patologia , Inflamação/patologia , Biomarcadores/análise , Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/patologia , Biópsia , Fibras Musculares de Contração Lenta/patologia , Fibras Musculares de Contração Rápida/patologia
15.
J Cell Physiol ; 239(5): e31226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591363

RESUMO

Understanding how skeletal muscle fiber proportions are regulated is essential for understanding muscle function and improving the quality of mutton. While circular RNA (circRNA) has a critical function in myofiber type transformation, the specific mechanisms are not yet fully understood. Prior evidence indicates that circular ubiquitin-specific peptidase 13 (circUSP13) can promote myoblast differentiation by acting as a ceRNA, but its potential role in myofiber switching is still unknown. Herein, we found that circUSP13 enhanced slow myosin heavy chain (MyHC-slow) and suppressed MyHC-fast expression in goat primary myoblasts (GPMs). Meanwhile, circUSP13 evidently enhanced the remodeling of the mitochondrial network while inhibiting the autophagy of GPMs. We obtained fast-dominated myofibers, via treatment with rotenone, and further demonstrated the positive role of circUSP13 in the fast-to-slow transition. Mechanistically, activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway significantly impaired the slow-to-fast shift in fully differentiated myotubes, which was restored by circUSP13 or IGF1 overexpression. In conclusion, circUSP13 promoted the fast-to-slow myofiber type transition through MAPK/ERK signaling in goat skeletal muscle. These findings provide novel insights into the role of circUSP13 in myofiber type transition and contribute to a better understanding of the genetic mechanisms underlying meat quality.


Assuntos
Cabras , Sistema de Sinalização das MAP Quinases , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Cadeias Pesadas de Miosina , RNA Circular , Animais , Autofagia/fisiologia , Diferenciação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Desenvolvimento Muscular/genética , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , RNA Circular/metabolismo
16.
J Proteome Res ; 23(4): 1285-1297, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38480473

RESUMO

C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibras Musculares de Contração Lenta , Camundongos , Humanos , Animais , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteômica/métodos , Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Contração Muscular , Espectrometria de Massas
17.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542488

RESUMO

Disuse muscle atrophy is a disease caused by restricted activity, affecting human health and animal protein quality. While extensive research on its mechanism has been studied in mammals, comparatively little is known about this process in chickens, which are a significant source of protein for human consumption worldwide. Understanding the mechanisms underlying skeletal muscle atrophy in chickens is crucial for improving poultry health and productivity, as well as for developing strategies to mitigate muscle loss. In this study, two groups of chickens were subjected to limb immobilization for two and four weeks, respectively, in order to induce disuse muscle atrophy and uniformly sampled gastrocnemius muscle at the fourth week. A combined analysis of the transcriptome and metabolome was conducted to investigate the mechanisms of disuse-induced muscle atrophy. Through H&E staining and immunofluorescence, we found that, compared to slow-twitch muscle fibers, the fast-twitch muscle fibers showed a greater reduction in cross-sectional area in the immobilized leg, and were also the main driver of changes in cross-sectional area observed in the non-immobilized leg. Integrated analysis revealed that differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were mainly enriched in pathways related to energy metabolism, such as fatty acid metabolism, oxidative phosphorylation (OXPHOS), and glycolysis. These results provide important insights for further research on disuse muscle atrophy.


Assuntos
Fibras Musculares de Contração Rápida , Transtornos Musculares Atróficos , Humanos , Animais , Fibras Musculares de Contração Rápida/metabolismo , Galinhas/genética , Transcriptoma , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Atrofia Muscular/metabolismo , Metaboloma , Mamíferos/genética
18.
J Comp Physiol B ; 194(1): 41-45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347296

RESUMO

A brief tetanic stimulation has a very different effect on the subsequent isometric twitch force of fast and slow skeletal muscles. Fast muscle responds with an enhanced twitch force which doubles that of the pre-tetanic value, whereas slow muscle depresses the post-tetanic twitch by about 20%. Twitch potentiation of fast muscle has long been known to be due to myosin light chain 2 phosphorylation. It is proposed that post-tetanic twitch depression in slow muscle is due to the dephosphorylation of the slow isoform of the thick filament protein, myosin-binding protein-C, by Ca2+/calmodulin-activated phosphatase calcineurin, whilst its phosphorylation underlies the force enhancement due to ß-adrenergic stimulation in slow and fast muscle.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Animais , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Fibras Musculares de Contração Rápida/fisiologia
19.
Can J Physiol Pharmacol ; 102(4): 293-304, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976473

RESUMO

Sclerostin, a potent inhibitor of the Wnt signaling pathway, plays a critical role in bone homeostasis. Evidence suggests that sclerostin may also be involved in crosstalk between other tissues, including muscle. This pilot study attempted to examine the effects of sclerostin on soleus and extensor digitorum longus (EDL) muscle tissue from male mice that were given continuous recombinant sclerostin injections for 4 weeks. A total of 48 10-week-old male C57BL/6J mice were assigned to be sedentary or perform 1 h treadmill running per day for 4 weeks and administered subcutaneous injections of either saline or recombinant sclerostin 5 days/week. Sclerostin injection led to a reduction in the soleus myosin heavy chain (MHC) I, MHC I/IIA, MHC IIA/X, and MHC IIB cross-sectional area (p < 0.05) with no exercise effects on these reductions. In contrast, there were no effects of sclerostin injections or exercise on the fast-twitch EDL muscle in terms of size, MHC protein, or markers of Wnt signaling. These findings provide preliminary evidence of sclerostin's endocrine role in muscle via decreases in myofiber cross-sectional area, which seems to be independent of fiber type but muscle type-specific. More studies, however, are needed to confirm these preliminary results.


Assuntos
Fibras Musculares de Contração Rápida , Músculo Esquelético , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Projetos Piloto
20.
J Appl Physiol (1985) ; 136(2): 244-261, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095016

RESUMO

We investigated fast and slow muscle fiber transcriptome exercise dynamics among three groups of men: lifelong exercisers (LLE, n = 8, 74 ± 1 yr), old healthy nonexercisers (OH, n = 9, 75 ± 1 yr), and young exercisers (YE, n = 8, 25 ± 1 yr). On average, LLE had exercised ∼4 day·wk-1 for ∼8 h·wk-1 over 53 ± 2 years. Muscle biopsies were obtained pre- and 4 h postresistance exercise (3 × 10 knee extensions at 70% 1-RM). Fast and slow fiber size and function were assessed preexercise with fast and slow RNA-seq profiles examined pre- and postexercise. LLE fast fiber size was similar to OH, which was ∼30% smaller than YE (P < 0.05) with contractile function variables among groups, resulting in lower power in LLE (P < 0.05). LLE slow fibers were ∼30% larger and more powerful compared with YE and OH (P < 0.05). At the transcriptome level, fast fibers were more responsive to resistance exercise compared with slow fibers among all three cohorts (P < 0.05). Exercise induced a comprehensive biological response in fast fibers (P < 0.05) including transcription, signaling, skeletal muscle cell differentiation, and metabolism with vast differences among the groups. Fast fibers from YE exhibited a growth and metabolic signature, with LLE being primarily metabolic, and OH showing a strong stress-related response. In slow fibers, only LLE exhibited a biological response to exercise (P < 0.05), which was related to ketone and lipid metabolism. The divergent exercise transcriptome signatures provide novel insight into the molecular regulation in fast and slow fibers with age and exercise and suggest that the ∼5% weekly exercise time commitment of the lifelong exercisers provided a powerful investment for fast and slow muscle fiber metabolic health at the molecular level.NEW & NOTEWORTHY This study provides the first insights into fast and slow muscle fiber transcriptome dynamics with lifelong endurance exercise. The fast fibers were more responsive to exercise with divergent transcriptome signatures among young exercisers (growth and metabolic), lifelong exercisers (metabolic), and old healthy nonexercisers (stress). Only lifelong exercisers had a biological response in slow fibers (metabolic). These data provide novel insights into fast and slow muscle fiber health at the molecular level with age and exercise.


Assuntos
Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Masculino , Humanos , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Transcriptoma , Exercício Físico/fisiologia , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA