Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133.923
Filtrar
1.
PLoS One ; 19(5): e0285655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753593

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting the sinuses or nose. Persistent inflammatory responses can lead to tissue remodeling, which is a pathological characteristics of CRS. Activation of fibroblasts in the nasal mucosal stroma, differentiation and collagen deposition, and subepithelial fibrosis have been associated with CRS. OBJECTIVES: We aimed to assess the inhibitory effects of doxycycline and deoxycholic acid-polyethyleneimine conjugate (DA3-Doxy) on myofibroblast differentiation and extracellular matrix (ECM) production in nasal fibroblasts stimulated with TGF-ß1. METHODS: To enhance efficacy, we prepared DA3-Doxy using a conjugate of low-molecular-weight polyethyleneimine (PEI) (MW 1800) and deoxycholic acid (DA) and Doxy. The synthesis of the DA3-Doxy polymer was confirmed using nuclear magnetic resonance, and the critical micelle concentration required for cationic micelle formation through self-assembly was determined. Subsequently, the Doxy loading efficiency of DA3 was assessed. The cytotoxicity of Doxy, DA3, PEI, and DA-Doxy in nasal fibroblasts was evaluated using the WST-1 assay. The anti-tissue remodeling and anti-inflammatory effects of DA3-Doxy and DA3 were examined using real-time polymerase chain reaction (Real-time PCR), immunocytochemistry, western blot, and Sircol assay. RESULTS: Both DA3 and DA3-Doxy exhibited cytotoxicity at 10 µg/ml in nasal fibroblasts. Doxy partially inhibited α-smooth muscle actin, collagen types I and III, and fibronectin. However, DA3-Doxy significantly inhibited α-SMA, collagen types I and III, and fibronectin at 5 µg/ml. DA3-Doxy also modulated TGF-ß1-induced changes in the expression of MMP 1, 2, and 9. Nonetheless, TGF-ß1-induced expression of MMP3 was further increased by DA3-Doxy. The expression of TIMP 1 and 2 was partially reduced with 5 µg/ml DA3-Doxy. CONCLUSIONS: Although initially developed for the delivery of genetic materials or drugs, DA3 exhibits inhibitory effects on myofibroblast differentiation and ECM production. Therefore, it holds therapeutic potential for CRS, and a synergistic effect can be expected when loaded with CRS treatment drugs.


Assuntos
Diferenciação Celular , Ácido Desoxicólico , Doxiciclina , Fibroblastos , Polietilenoimina , Humanos , Polietilenoimina/química , Polietilenoimina/farmacologia , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Doxiciclina/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/citologia , Actinas/metabolismo
2.
Epigenetics Chromatin ; 17(1): 16, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773546

RESUMO

BACKGROUND: Given their physiological similarities to humans, pigs are increasingly used as model organisms in human-oriented biomedical studies. Additionally, their value to animal agriculture across the globe has led to the development of numerous studies to investigate how to improve livestock welfare and production efficiency. As such, pigs are uniquely poised as compelling models that can yield findings with potential implications in both human and animal contexts. Despite this, many gaps remain in our knowledge about the foundational mechanisms that govern gene expression in swine across different developmental stages, particularly in early development. To address some of these gaps, we profiled the histone marks H3K4me3, H3K27ac, and H3K27me3 and the SWI/SNF central ATPase BRG1 in two porcine cell lines representing discrete early developmental time points and used the resulting information to construct predicted chromatin state maps for these cells. We combined this approach with analysis of publicly available RNA-seq data to examine the relationship between epigenetic status and gene expression in these cell types. RESULTS: In porcine fetal fibroblast (PFF) and trophectoderm cells (PTr2), we saw expected patterns of enrichment for each of the profiled epigenetic features relative to specific genomic regions. H3K4me3 was primarily enriched at and around global gene promoters, H3K27ac was enriched in promoter and intergenic regions, H3K27me3 had broad stretches of enrichment across the genome and narrower enrichment patterns in and around the promoter regions of some genes, and BRG1 primarily had detectable enrichment at and around promoter regions and in intergenic stretches, with many instances of H3K27ac co-enrichment. We used this information to perform genome-wide chromatin state predictions for 10 different states using ChromHMM. Using the predicted chromatin state maps, we identified a subset of genomic regions marked by broad H3K4me3 enrichment, and annotation of these regions revealed that they were highly associated with essential developmental processes and consisted largely of expressed genes. We then compared the identities of the genes marked by these regions to genes identified as cell-type-specific using transcriptome data and saw that a subset of broad H3K4me3-marked genes was also specifically expressed in either PFF or PTr2 cells. CONCLUSIONS: These findings enhance our understanding of the epigenetic landscape present in early swine development and provide insight into how variabilities in chromatin state are linked to cell identity. Furthermore, this data captures foundational epigenetic details in two valuable porcine cell lines and contributes to the growing body of knowledge surrounding the epigenetic landscape in this species.


Assuntos
Cromatina , Epigênese Genética , Histonas , Animais , Suínos , Cromatina/metabolismo , Histonas/metabolismo , Código das Histonas , Regulação da Expressão Gênica no Desenvolvimento , Fibroblastos/metabolismo , Fibroblastos/citologia , Linhagem Celular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Sci Rep ; 14(1): 11561, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773300

RESUMO

Mitochondrial diseases are mainly caused by dysfunction of mitochondrial respiratory chain complexes and have a variety of genetic variants or phenotypes. There are only a few approved treatments, and fundamental therapies are yet to be developed. Leigh syndrome (LS) is the most severe type of progressive encephalopathy. We previously reported that apomorphine, an anti- "off" agent for Parkinson's disease, has cell-protective activity in patient-derived skin fibroblasts in addition to strong dopamine agonist effect. We obtained 26 apomorphine analogs, synthesized 20 apomorphine derivatives, and determined their anti-cell death effect, dopamine agonist activity, and effects on the mitochondrial function. We found three novel apomorphine derivatives with an active hydroxy group at position 11 of the aporphine framework, with a high anti-cell death effect without emetic dopamine agonist activity. These synthetic aporphine alkaloids are potent therapeutics for mitochondrial diseases without emetic side effects and have the potential to overcome the low bioavailability of apomorphine. Moreover, they have high anti-ferroptotic activity and therefore have potential as a therapeutic agent for diseases related to ferroptosis.


Assuntos
Aporfinas , Doença de Leigh , Mitocôndrias , Doença de Leigh/tratamento farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Aporfinas/farmacologia , Aporfinas/química , Aporfinas/síntese química , Aporfinas/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Apomorfina/farmacologia , Apomorfina/uso terapêutico , Apomorfina/análogos & derivados , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Agonistas de Dopamina/química , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/uso terapêutico
4.
Elife ; 132024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767331

RESUMO

Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.


If wounds get infected, they heal much more slowly, sometimes leading to skin damage and other complications, including disseminated infections or even amputation. Infections can happen in many types of wounds, ranging from ulcers in patients with diabetes to severe burns. If infections are not cleared quickly, the wounds can become 'chronic' and are unable to heal without intervention. Enterococcus faecalis is a type of bacteria that normally lives in the gut. Within that environment, in healthy people, it is not harmful. However, if it comes into contact with wounds ­ particularly diabetic ulcers or the site of a surgery ­ it can cause persistent infections and prevent healing. Although researchers are beginning to understand how E. faecalis initially colonises wounds, the biological mechanisms that transform these infections into chronic wounds are still largely unknown. Celik et al. therefore set out to investigate exactly how E. faecalis interferes with wound healing. To do this, Celik et al. looked at E. faecalis-infected wounds in mice and compared them to uninfected ones. Using a genetic technique called single-cell RNA sequencing, Celik et al. were able to determine which genes were switched on in individual skin and immune cells at the site of the wounds. This in turn allowed the researchers to determine how those cells were behaving in both infected and uninfected conditions. The experiments revealed that when E. faecalis was present in wounds, several important cell types in the wounds did not behave normally. For example, although the infected skin cells still underwent a change in behaviour required for healing (called an epithelial-mesenchymal transition), the change was both premature and incomplete. In other words, the skin cells in infected wounds started changing too early and did not finish the healing process properly. E. faecalis also changed the way macrophages and neutrophils worked within the wounds. These are cells in our immune system that normally promote inflammation, a process involved in both uninfected wounds or during infections and is a key part of wound healing when properly controlled. In the E. faecalis-infected wounds, these cells' inflammatory properties were suppressed, making them less helpful for healing. These results shed new light on how E. faecalis interacts with skin cells and the immune system to disrupt wound healing. Celik et al. hope that this knowledge will allow us to find new ways to target E. faecalis infections, and ultimately develop treatments to help chronic wounds heal better and faster.


Assuntos
Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Queratinócitos , Cicatrização , Enterococcus faecalis/fisiologia , Enterococcus faecalis/genética , Animais , Camundongos , Infecções por Bactérias Gram-Positivas/microbiologia , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/imunologia , Modelos Animais de Doenças , Infecção dos Ferimentos/microbiologia , Transcriptoma , Camundongos Endogâmicos C57BL , Análise de Célula Única , Transição Epitelial-Mesenquimal/genética , Masculino , Fibroblastos/microbiologia , Fibroblastos/metabolismo
5.
PLoS One ; 19(5): e0303789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768102

RESUMO

Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal disease caused by lowered activity of the enzyme alpha-L-iduronidase (IDUA). Current therapeutic options show limited efficacy and do not treat some important aspects of the disease. Therefore, it may be advantageous to identify strategies that could improve the efficacy of existing treatments. Pharmacological chaperones are small molecules that protect proteins from degradation, and their use in combination with enzyme replacement therapy (ERT) has been proposed as an alternative therapeutic strategy. Using the SEE-Tx® proprietary computational drug discovery platform, a new allosteric ligand binding cavity in IDUA was identified distal from the active site. Virtual high-throughput screening of approximately 5 million compounds using the SEE-Tx® docking platform identified a subset of small molecules that bound to the druggable cavity and functioned as novel allosteric chaperones of IDUA. Experimental validation by differential scanning fluorimetry showed an overall hit rate of 11.4%. Biophysical studies showed that one exemplary hit molecule GT-01803 bound to (Kd = 22 µM) and stabilized recombinant human IDUA (rhIDUA) in a dose-dependent manner. Co-administration of rhIDUA and GT-01803 increased IDUA activity in patient-derived fibroblasts. Preliminary in vivo studies have shown that GT-01803 improved the pharmacokinetic (PK) profile of rhIDUA, increasing plasma levels in a dose-dependent manner. Furthermore, GT-01803 also increased IDUA enzymatic activity in bone marrow tissue, which benefits least from standard ERT. Oral bioavailability of GT-01803 was found to be good (50%). Overall, the discovery and validation of a novel allosteric chaperone for rhIDUA presents a promising strategy to enhance the efficacy of existing treatments for MPS I. The compound's ability to increase rhIDUA activity in patient-derived fibroblasts and its good oral bioavailability underscore its potential as a potent adjunct to ERT, particularly for addressing aspects of the disease less responsive to standard treatment.


Assuntos
Iduronidase , Mucopolissacaridose I , Iduronidase/metabolismo , Iduronidase/genética , Mucopolissacaridose I/tratamento farmacológico , Humanos , Regulação Alostérica/efeitos dos fármacos , Animais , Camundongos , Terapia de Reposição de Enzimas/métodos , Descoberta de Drogas , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Estabilidade Enzimática , Simulação de Acoplamento Molecular
6.
Iran Biomed J ; 28(2&3): 90-101, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38770915

RESUMO

Background: Synthetic and natural polymer scaffolds can be used to design wound dressing for repairing the damaged skin tissue. This study investigated acute wound healing process using a decellularized skin scaffold and MEF. Methods: Mouse skin fragments were decellularized and evaluated by DNA content, toxicity, H&E staining, Raman confocal microscopy, Masson's trichrome staining, SEM, and biodegradation assays. The fragments were recellularized by the MEFs, and cell attachment and penetration were studied. De- and decellularized scaffolds were used wound dressings in mouse acute wound models as two experimental groups. Using morphological and immunohistochemical assessments, wound healing was evaluated and compared among the experimental and control groups. Results: DNA content of the decellularized tissue significantly reduced compared to the native control group (7% vs. 100%; p < 0.05). ECM components, e.g. collagen types I, III, and IV, elastin, and glycosaminoglycan, were well preserved in the decellularized group. The porosity and fiber arrangement in the stroma had a structure similar to normal skin tissue. A significant reduction in healing time was observed in the group treated with a decellularized scaffold. A thicker epidermis layer was observed in the recovered tissue in both experimental groups compared to the control group. Immunostaining showed a positive reaction for CD31 as an endothelial marker in both experimental groups, confirming new vascularization in these groups. Conclusion: Using MEFs with decellularized skin as a wound dressing increases the rate of wound healing and also the formation of new capillaries. This system could be beneficial for clinical applications in the field of tissue engineering.


Assuntos
Fibroblastos , Neovascularização Fisiológica , Pele , Alicerces Teciduais , Cicatrização , Animais , Alicerces Teciduais/química , Camundongos , Embrião de Mamíferos , Matriz Extracelular Descelularizada/química , Angiogênese
7.
Carbohydr Polym ; 338: 122173, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763720

RESUMO

The dynamic interplay between cells and their native extracellular matrix (ECM) influences cellular behavior, imposing a challenge in biomaterial design. Dynamic covalent hydrogels are viscoelastic and show self-healing ability, making them a potential scaffold for recapitulating native ECM properties. We aimed to implement kinetically and thermodynamically distinct crosslinkers to prepare self-healing dynamic hydrogels to explore the arising properties and their effects on cellular behavior. To do so, aldehyde-substituted hyaluronic acid (HA) was synthesized to generate imine, hydrazone, and oxime crosslinked dynamic covalent hydrogels. Differences in equilibrium constants of these bonds yielded distinct properties including stiffness, stress relaxation, and self-healing ability. The effects of degree of substitution (DS), polymer concentration, crosslinker to aldehyde ratio, and crosslinker functionality on hydrogel properties were evaluated. The self-healing ability of hydrogels was investigated on samples of the same and different crosslinkers and DS to obtain hydrogels with gradient properties. Subsequently, human dermal fibroblasts were cultured in 2D and 3D to assess the cellular response considering the dynamic properties of the hydrogels. Moreover, assessing cell spreading and morphology on hydrogels having similar modulus but different stress relaxation rates showed the effects of matrix viscoelasticity with higher cell spreading in slower relaxing hydrogels.


Assuntos
Reagentes de Ligações Cruzadas , Fibroblastos , Ácido Hialurônico , Hidrogéis , Bases de Schiff , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Bases de Schiff/química , Reagentes de Ligações Cruzadas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Células Cultivadas
8.
BMC Oral Health ; 24(1): 525, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702623

RESUMO

OBJECTIVE: To evaluate the antibacterial effectiveness of a combination of ε-poly-L-lysine (ε-PL), funme peptide (FP) as well as domiphen against oral pathogens, and assess the efficacy of a BOP® mouthwash supplemented with this combination in reducing halitosis and supragingival plaque in a clinical trial. MATERIALS AND METHODS: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the compound against Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were determined by the gradient dilution method. Subsequently, the CCK-8 assay was used to detect the toxicity of mouthwash on human gingival fibroblastst, and the effectiveness in reducing halitosis and supragingival plaque of the mouthwash supplemented with the combination was analyzed by a randomized, double-blind, parallel-controlled clinical trial. RESULTS: The combination exhibited significant inhibitory effects on tested oral pathogens with the MIC < 1.56% (v/v) and the MBC < 3.13% (v/v), and the mouthwash containing this combination did not inhibit the viability of human gingival fibroblasts at the test concentrations. The clinical trial showed that the test group displayed notably lower volatile sulfur compounds (VSCs) at 0, 10, 24 h, and 7 d post-mouthwash (P < 0.05), compared with the baseline. After 7 days, the VSC levels of the and control groups were reduced by 50.27% and 32.12%, respectively, and notably cutting severe halitosis by 57.03% in the test group. Additionally, the Plaque Index (PLI) of the test and control group decreased by 54.55% and 8.38%, respectively, and there was a significant difference in PLI between the two groups after 7 days (P < 0.01). CONCLUSIONS: The combination of ε-PL, FP and domiphen demonstrated potent inhibitory and bactericidal effects against the tested oral pathogens, and the newly formulated mouthwash added with the combination exhibited anti-dental plaque and anti-halitosis properties in a clinical trial and was safe. TRIAL REGISTRATION: The randomized controlled clinical trial was registered on Chinese Clinical Trial Registry (No. ChiCTR2300073816, Date: 21/07/2023).


Assuntos
Placa Dentária , Halitose , Antissépticos Bucais , Polilisina , Humanos , Halitose/prevenção & controle , Halitose/tratamento farmacológico , Halitose/microbiologia , Antissépticos Bucais/uso terapêutico , Placa Dentária/microbiologia , Placa Dentária/prevenção & controle , Método Duplo-Cego , Masculino , Feminino , Polilisina/uso terapêutico , Adulto , Testes de Sensibilidade Microbiana , Adulto Jovem , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos
9.
Platelets ; 35(1): 2347331, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38722091

RESUMO

Platelet-rich plasma (PRP) holds promise as a therapeutic modality for wound healing; however, immediate utilization encounters challenges related to volume, concentration, and consistency. Cryopreservation emerges as a viable solution, preserving PRP's bioactive components and extending its shelf life. This study explores the practicality and efficacy of cryopreserved platelet-rich plasma (cPRP) in wound healing, scrutinizing both cellular mechanisms and clinical implications. Fresh PRP and cPRP post freeze-thaw underwent assessment in macrophage, fibroblast, and endothelial cell cultures. The impact of cPRP on active component release and cell behavior pertinent to wound healing was evaluated. Varied concentrations of cPRP (1%, 5%, 10%) were examined for their influence on cell polarization, migration, and proliferation. The results showed minimal changes in cPRP's IL-1ß levels, a slight decrease in PDGF-BB, and superior effects on macrophage M2 polarization and fibroblast migration, while no statistical significance was observed in endothelial cell angiogenesis and proliferation. Remarkably, 5% PRP exhibited the most significant stimulation among all cPRP concentrations, notably impacting cell proliferation, angiogenesis, and migration. The discussion underscores that cPRP maintains platelet phenotype and function over extended periods, with 5% cPRP offering the most favorable outcomes, providing a pragmatic approach for cold storage to extend post-thaw viability and amplify therapeutic effects.


What is the context? Platelet-rich plasma (PRP) is a potential bioactive material for wound healing, but using it immediately faces issues like volume, concentration, and consistency.Low-temperature freezing is a method employed to preserve PRP. However, the current understanding of the effects of the freezing-thawing process on the components of PRP and its impact on cells relevant to wound healing remains unclear.What is new? This study explores the feasibility and effectiveness of using cryopreserved PRP at −80°C for promoting wound healing. This research stands out for its focus on cellular responses and practical implications in therapeutic contexts.To understand their distinct impact on different cell types relevant to wound healing, the study meticulously examined various final concentrations of cPRP (1%, 5%, 10%).The study identified the superior effects of 5% cPRP on crucial cellular activities, notably in cell polarization, proliferation, angiogenesis, and migration.What is the impact? Low-temperature freezing can be considered an effective method for PRP preservation.Some bioactive components in cPRP exhibit subtle changes; however, these changes result in better effects on certain cell types related to healing.The study illustrates that all concentrations of cPRP effectively enhance cell proliferation, migration, and differentiation, emphasizing the comparable efficacy of cryopreserved PRP to non-cryopreserved PRP.


Assuntos
Criopreservação , Plasma Rico em Plaquetas , Cicatrização , Plasma Rico em Plaquetas/metabolismo , Humanos , Criopreservação/métodos , Proliferação de Células , Movimento Celular , Fibroblastos/metabolismo
10.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731556

RESUMO

Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on the skincare advantages derived from fermenting red rice with Aspergillus oryzae remain sparse. This study utilized red rice as a substrate for fermentation by Aspergillus oryzae, producing a substance known as red rice Aspergillus oryzae fermentation (RRFA). We conducted a preliminary analysis of RRFA's composition followed by an evaluation of its skincare potential through various in vitro tests. Our objective was to develop a safe and highly effective skincare component for potential cosmetic applications. RRFA's constituents were assessed using high-performance liquid chromatography (HPLC), Kjeldahl nitrogen determination, the phenol-sulfuric acid method, and enzyme-linked immunosorbent assay (ELISA). We employed human dermal fibroblasts (FB) to assess RRFA's anti-aging and antioxidative properties, immortalized keratinocytes (HaCaT cells) and 3D epidermal models to examine its moisturizing and reparative capabilities, and human primary melanocytes (MCs) to study its effects on skin lightening. Our findings revealed that RRFA encompasses several bioactive compounds beneficial for skin health. RRFA can significantly promote the proliferation of FB cells. And it markedly enhances the mRNA expression of ECM-related anti-aging genes and reduces reactive oxygen species production. Furthermore, RRFA significantly boosts the expression of Aquaporin 3 (AQP3), Filaggrin (FLG), and Hyaluronan Synthase 1 (HAS1) mRNA, alongside elevating moisture levels in a 3D epidermal model. Increases were also observed in the mRNA expression of Claudin 1 (CLDN1), Involucrin (IVL), and Zonula Occludens-1 (ZO-1) in keratinocytes. Additionally, RRFA demonstrated an inhibitory effect on melanin synthesis. Collectively, RRFA contains diverse ingredients which are beneficial for skin health and showcases multifaceted skincare effects in terms of anti-aging, antioxidant, moisturizing, repairing, and whitening capabilities in vitro, highlighting its potential for future cosmetic applications.


Assuntos
Aspergillus oryzae , Fermentação , Proteínas Filagrinas , Oryza , Aspergillus oryzae/metabolismo , Oryza/química , Oryza/metabolismo , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Células HaCaT , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/efeitos dos fármacos , Higiene da Pele/métodos , Pele/metabolismo
11.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731597

RESUMO

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Assuntos
Artemisia , Artemisininas , Fibroblastos , Fibrose , Humanos , Artemisininas/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Artemisia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sobrevivência Celular/efeitos dos fármacos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Actinas/metabolismo , Actinas/genética , Artesunato/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Artemeter/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia
12.
BMC Immunol ; 25(1): 31, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734625

RESUMO

BACKGROUND: Thyroid eye disease (TED) is an inflammatory process involving lymphocyte-mediated immune response and orbital tissue damage. The anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies produced by B lymphocytes are involved in the activation of orbital fibroblasts and the inflammatory process of orbital tissue damage in TED. The purpose of this study was to explore the role of IGF-1R in the mechanistic connection between orbital fibroblasts and B lymphocytes in TED. METHODS: Orbital fibroblasts sampled from orbital connective tissues and peripheral B lymphocytes isolated from peripheral blood, which were obtained from 15 patients with TED and 15 control patients, were co-cultured at a ratio of 1:20. The level of IGF-1R expression in orbital fibroblasts was evaluated by flow cytometry and confocal microscopy. Transient B lymphocyte depletion was induced with anti-CD20 monoclonal antibody rituximab, while the IGF-1R pathway was blocked by the IGF-1R binding protein. The expression levels of interleukin-6 (IL-6) and regulated upon activation, normal T cell expressed and secreted (RANTES) in the co-culture model were quantified via ELISA. RESULTS: IGF-1R expression was significantly elevated in TED orbital fibroblasts compared to that of controls. A 24-h co-culture of orbital fibroblasts with peripheral B lymphocytes induced elevated expression levels of IL-6 and RANTES in each group (TED patients and controls), with the highest levels occurring in TED patients (T + T group). Rituximab and IGF-1R binding protein significantly inhibited increased levels of IL-6 and RANTES in the co-culture model of TED patients. CONCLUSIONS: IGF-1R may mediate interaction between orbital fibroblasts and peripheral B lymphocytes; thus, blocking IGF-1R may reduce the local inflammatory response in TED. Rituximab-mediated B lymphocyte depletion played a role in inhibiting inflammatory responses in this in vitro co-culture model, providing a theoretical basis for the clinical application of anti-CD20 monoclonal antibodies in TED.


Assuntos
Linfócitos B , Técnicas de Cocultura , Fibroblastos , Oftalmopatia de Graves , Receptor IGF Tipo 1 , Humanos , Oftalmopatia de Graves/metabolismo , Oftalmopatia de Graves/imunologia , Fibroblastos/metabolismo , Receptor IGF Tipo 1/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Rituximab/farmacologia , Rituximab/uso terapêutico , Órbita/metabolismo , Órbita/imunologia , Depleção Linfocítica , Interleucina-6/metabolismo , Células Cultivadas , Quimiocina CCL5/metabolismo , Comunicação Celular , Idoso
13.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38719857

RESUMO

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Assuntos
Artrite Reumatoide , Quimiocinas , Citocinas , Fibroblastos , Histona-Lisina N-Metiltransferase , Histonas , Proteína de Leucina Linfoide-Mieloide , Membrana Sinovial , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Fibroblastos/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Citocinas/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Histonas/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Regulação da Expressão Gênica , Fator de Necrose Tumoral alfa/metabolismo , Regiões Promotoras Genéticas , Feminino , Masculino , Células Cultivadas , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Idoso
14.
Physiol Rep ; 12(9): e16032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720166

RESUMO

INPP4A has been shown to be involved in the regulation of cell proliferation and apoptosis of multiple cell types including fibroblasts. Previous reports from our group have demonstrated the role of inositol polyphosphate 4-phosphatase Type I A (INPP4A) in these functions. Though existing evidences suggest a critical role for INPP4A in the maintenance of lung homeostasis, its role in chronic lung diseases is relatively under explored. In the current study, we made an attempt to understand the regulation of INPP4A in idiopathic pulmonary fibrosis (IPF). Through integration of relevant INPP4A gene expression data from public repositories with our results from in vitro experiments and mouse models, we show that INPP4A is altered in IPF. Interestingly, the direction of the change is dependent both on the disease stage and the region of the lung used. INPP4A was found to be upregulated when analyzed in lung sample representative of the whole lung, but was downregulated in the fibrotic regions of the lung. Similarly, INPP4A was found to be high, compared to controls, only in the early stage of the disease. Though the observed increase in INPP4A was found to be negatively correlated to physiological indices, FVC, and DLCO, of lung function, treatment with anti-INPP4A antibody worsened the condition in bleomycin treated mice. These contrasting results taken together are suggestive of a nuanced regulation of INPP4A in IPF which is dependent on the disease stage, cellular state and extent of fibrosis in the lung region being analyzed.


Assuntos
Fibrose Pulmonar Idiopática , Monoéster Fosfórico Hidrolases , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , Animais , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Feminino
15.
J Cell Mol Med ; 28(9): e18316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722291

RESUMO

Tissue engineering includes the construction of tissue-organ scaffold. The advantage of three-dimensional scaffolds over two-dimensional scaffolds is that they provide homeostasis for a longer time. The microbial community in Symbiotic culture of bacteria and yeast (SCOBY) can be a source for kombucha (kombu tea) production. In this study, it was aimed to investigate the usage of SCOBY, which produces bacterial cellulose, as a biomaterial and 3D scaffold material. 3D printable biomaterial was obtained by partial hydrolysis of oolong tea and black tea kombucha biofilms. In order to investigate the usage of 3D kombucha biomaterial as a tissue scaffold, "L929 cell line 3D cell culture" was created and cell viability was tested in the biomaterial. At the end of the 21st day, black tea showed 51% and oolong tea 73% viability. The cytotoxicity of the materials prepared by lyophilizing oolong and black tea kombucha beverages in fibroblast cell culture was determined. Black tea IC50 value: 7.53 mg, oolong tea IC50 value is found as 6.05 mg. Fibroblast viability in 3D biomaterial + lyophilized oolong and black tea kombucha beverages, which were created using the amounts determined to these values, were investigated by cell culture Fibroblasts in lyophilized and 3D biomaterial showed viability of 58% in black tea and 78% in oolong tea at the end of the 7th day. In SEM analysis, it was concluded that fibroblast cells created adhesion to the biomaterial. 3D biomaterial from kombucha mushroom culture can be used as tissue scaffold and biomaterial.


Assuntos
Materiais Biocompatíveis , Sobrevivência Celular , Impressão Tridimensional , Alicerces Teciduais , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Engenharia Tecidual/métodos , Linhagem Celular , Chá de Kombucha
17.
Front Immunol ; 15: 1323410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726004

RESUMO

Background: Huntingtin-interacting protein-1 (HIP1) is a new arthritis severity gene implicated in the regulation of the invasive properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). These invasive properties of FLS strongly correlate with radiographic and histology damage in patients with RA and rodent models of arthritis. While HIP1 has several intracellular functions, little is known about its binding proteins, and identifying them has the potential to expand our understanding of its role in cell invasion and other disease-contributing phenotypes, and potentially identify new targets for therapy. Methods: FLS cell lines from arthritic DA (highly invasive) and from arthritis-protected congenic rats R6 (minimally invasive), which differ in an amino-acid changing HIP1 SNP, were cultured and lysed, and proteins were immunoprecipitated with an anti-HIP1 antibody. Immunoprecipitates were analyzed by mass spectrometry. Differentially detected (bound) proteins were selected for functional experiments using siRNA knockdown in human RA FLS to examine their effect in cell invasiveness, adhesion, cell migration and proliferation, and immunofluorescence microscopy. Results: Proteins detected included a few known HIP1-binding proteins and several new ones. Forty-five proteins differed in levels detected in the DA versus R6 congenic mass spectrometry analyses. Thirty-two of these proteins were knocked down and studied in vitro, with 10 inducing significant changes in RA FLS phenotypes. Specifically, knockdown of five HIP1-binding protein genes (CHMP4BL1, COPE, KIF1C, YWHAG, and YWHAH) significantly decreased FLS invasiveness. Knockdown of KIF1C also reduced RA FLS migration. The binding of four selected proteins to human HIP1 was confirmed. KIF1C colocalized with lamellipodia, and its knockdown prevented RA FLS from developing an elongated morphology with thick linearized actin fibers or forming polarized lamellipodia, all required for cell mobility and invasion. Unlike HIP1, KIF1C knockdown did not affect Rac1 signaling. Conclusion: We have identified new HIP1-binding proteins and demonstrate that 10 of them regulate key FLS phenotypes. These HIP1-binding proteins have the potential to become new therapeutic targets and help better understand the RA FLS pathogenic behavior. KIF1C knockdown recapitulated the morphologic changes previously seen in the absence of HIP1, but did not affect the same cell signaling pathway, suggesting involvement in the regulation of different processes.


Assuntos
Artrite Reumatoide , Fibroblastos , Cinesinas , Fenótipo , Sinoviócitos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Humanos , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Cinesinas/genética , Cinesinas/metabolismo , Ratos , Fibroblastos/metabolismo , Movimento Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
18.
Sci Rep ; 14(1): 10400, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710823

RESUMO

Without the protective shielding of Earth's atmosphere, astronauts face higher doses of ionizing radiation in space, causing serious health concerns. Highly charged and high energy (HZE) particles are particularly effective in causing complex and difficult-to-repair DNA double-strand breaks compared to low linear energy transfer. Additionally, chronic cortisol exposure during spaceflight raises further concerns, although its specific impact on DNA damage and repair remains unknown. This study explorers the effect of different radiation qualities (photons, protons, carbon, and iron ions) on the DNA damage and repair of cortisol-conditioned primary human dermal fibroblasts. Besides, we introduce a new measure, the Foci-Integrated Damage Complexity Score (FIDCS), to assess DNA damage complexity by analyzing focus area and fluorescent intensity. Our results show that the FIDCS captured the DNA damage induced by different radiation qualities better than counting the number of foci, as traditionally done. Besides, using this measure, we were able to identify differences in DNA damage between cortisol-exposed cells and controls. This suggests that, besides measuring the total number of foci, considering the complexity of the DNA damage by means of the FIDCS can provide additional and, in our case, improved information when comparing different radiation qualities.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fibroblastos , Hidrocortisona , Humanos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Hidrocortisona/farmacologia , Radiação Ionizante , Células Cultivadas , Dano ao DNA
19.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711334

RESUMO

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Miócitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Humanos , Animais , Camundongos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Modelos Animais de Doenças , Neovascularização Fisiológica , Células Cultivadas
20.
Folia Neuropathol ; 62(1): 32-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741435

RESUMO

Human induced pluripotent stem cells (hiPSCs) are a potential source of somatic cells for cell therapies due to their ability to self-renew and differentiate into various cells of the body. To date, the clinical application of hiPSCs has been limited due to safety issues. The present study aims to standardize the safety procedure of the derivation of GMP-compliant induced pluripotent stem cell (iPSC) lines from human fibroblasts. The hiPSC lines were generated using the nonintegrative Sendai virus method to incorporate Yamanaka reprogramming factors (OCT3/4, SOX2, KLF4 and c-MYC) into cells. A constant temperature was maintained during the cell culture, including all stages of the culture after transduction with Sendai virus. Pluripotency was proved in six independently generated hiPSC lines from adult female (47 years old) and male (57 years old) donors' derived fibroblasts via alkaline phosphatase live (ALP) staining, qPCR, and immunocytochemistry. The hiPSC lines showed a gradual decrease in the presence of the virus with each subsequent passage, and this reduction was specific to the hiPSC line. The frequency and probability of chromosomal aberrations in hiPSCs were dependent on both the iPSC clone identity and sex of the donor. In summary, the generation of hiPSC for clinical applications requires safety standards application (biosafety protocol, quality control of hiPSC lines, viral and genetic integrity screening) from the first stages of the clonal selection of hiPSC from the same donor.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fator 4 Semelhante a Kruppel , Vírus Sendai , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Linhagem Celular , Fibroblastos , Diferenciação Celular/fisiologia , Transdução Genética/métodos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...